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Abstract The growth function W (t) of a Coxeter group W relative to a Coxeter
generating set is always a rational function. We prove by an explicit construction that
there are infinitely many cocompact Coxeter groups W in hyperbolic 4-space with the
following property. All the roots of the denominator of W (t) are on the unit circle
except exactly two pairs of real roots.

Keywords Coxeter group · Growth Function · Polynomials and location of zeros ·
Hyperbolic polytope
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1 Introduction

Steinberg (1968) proved that the growth function W (t) of a Coxeter group W relative
to a Coxeter generating set is always a rational function W (t) = R(t)/Q(t) with (rel-
atively prime) polynomials R(t), Q(t) in Z[t]. Serre (1971) and Charney and Davis
(1991) observed that the growth function of every cocompact hyperbolic Coxeter
group is reciprocal for even-dimensional hyperbolic spaces and antireciprocal for
odd-dimensional hyperbolic spaces. Parry (1993) generalized results of Cannon and
Wagreich (1992) and proved the following.
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If W is a cocompact hyperbolic Coxeter group in the hyperbolic space H
2 or

H
3 (that is, W is generated by reflections in the facets of a compact hyperbolic

polygon or polyhedron) then the polynomial Q is a product of distinct irreducible
cyclotomic polynomials and exactly one Salem polynomial P . The polynomial
P is palindromic and all its roots are on the unit circle except exactly one pair
of real roots (λ, 1/λ).

Of course, this leads to the question whether and how these facts can be generalized
to cocompact hyperbolic Coxeter groups in H

4.
For the cocompact 5-generator groups it is easy to see that the denominator Q(t) of

the growth function W (t) can be written as a product of cyclotomic polynomials and
exactly one irreducible palindromic polynomial P which has two pairs of real roots
outside the unit circle (P is not a Salem polynomial). The groups

for k = 3, 4 and 5 show that all properly complex roots are not necessarily on the unit
circle. Investigating the cocompact hyperbolic 6-generator groups in H

4 classified by
Kaplinskaja (1974) and Esselmann (1996) we find that the palindromic polynomial
P has exactly two pairs of real roots outside the unit circle for all groups except one.
The polynomial P of the group

has four pairs of real roots outside the unit circle.
The results mentioned about the cocompact Coxeter groups in H

4 are experimental
observations only. For a general and systematic investigation of the growth functions
of these groups we refer to Perren (2009).

In this paper we prove by an explicit construction that there are infinitely many
cocompact Coxeter groups in H

4 such that the denominator Q(t) of W (t) itself has
the following property. All the roots of the polynomial Q(t) are on the unit circle
except exactly two pairs of real roots. This construction is motivated by the work of
Makarov (1968). Using the process of truncating and pasting together he constructed
infinite series of bounded Coxeter polytopes, called garlands, in H

4 (and H
5).

The paper is organized as follows. In Sect. 2 we prove a preliminary result about the
roots of a palindromic polynomial. In Sect. 3 we recall important facts about Coxeter
systems and its growth functions. The construction of garlands is described in Sect. 4.
Finally, in Sect. 5, we state and prove the main theorems (Theorems 1 and 2).

2 Palindromic polynomials

A polynomial f (t) in Z[t] with degree n is called palindromic if f (t) = tn f (t−1).
It is called anti-palindromic if f (t) = −tn f (t−1). In other words, palindromic polyno-
mials are integer polynomials that read the same whether read backwards or forwards.
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We will use the following notations if f is palindromic:

f (t) =

⎧
⎪⎨

⎪⎩

∑ n
2 −1

j=0
an− j (t

n− j + t j ) + a n
2
t

n
2 = [an, an−1, . . . , a n

2
]e+ if n even

∑ n−1
2

j=0
an− j (t

n− j + t j ) = [an, an−1, . . . , a n+1
2

]o+ if n odd

If f is anti-palindromic we write:

f (t) =

⎧
⎪⎨

⎪⎩

∑ n
2 −1

j=0
an− j (t

n− j − t j ) + a n
2

t
n
2 = [an, an−1, . . . , a n

2
]e− if n even

∑ n−1
2

j=0
an− j (t

n− j − t j ) = [an, an−1, . . . , a n+1
2

]o− if n odd

If f is a nonlinear palindromic polynomial of odd degree, then f (−1) = − f (−1)

and so −1 is a root of f . It follows that a nonlinear irreducible palindromic polyno-
mial has even degree. The roots of a monic irreducible palindromic polynomial of
even degree appear in pairs {z, 1/z}. Furthermore, if z is a root, so is z̄ and if |z| = 1
we have z̄ = 1/z.

If f is a nonlinear anti-palindromic polynomial of any degree, then f (1) = − f (1)

and so 1 is a root of f . It follows that f is reducible over Z.
We are particularly interested in polynomials over Z with many roots on the unit

circle. In general, it is impossible to decide by numerical computations, if a polynomial
has roots exactly on the unit circle. In our situation, we can simplify this problem by
using rational transformations. The following theorem is an adaption of the process
developed by Kempner (1935) to palindromic polynomials.

Proposition 1 Let f in Z[t] be a palindromic polynomial of (even) degree n ≥ 2 with
f (±1) �= 0 and let

g(t) = (t − i)n f

(
t + i

t − i

)

= (t + i)n f

(
t − i

t + i

)

.

Then g is a polynomial in Z[t] of degree n and an even function. Furthermore, the
roots of f and g are related as follows.

(i) f has 2k roots on the unit circle if and only if g has k positive real roots.
(ii) f has 2l real roots if and only if g has l positive imaginary roots.

Proof The two equations for g follow from the fact that f (t) = tn f (t−1) for palin-
dromic polynomials. Further, it is easy to check that g(t) = g(t) for all t ∈ R and
g(−t) = g(t) for all t ∈ C. Hence, g is an even polynomial over Z.

(i) The map w(t) = t−i
t+i maps the real axis in the t-plane bijectively on the unit

circle (positively oriented) in the w-plane. More precisely, w((−∞, 0))= {eiη :
η ∈ (0, π)}, w(0) = −1 and w((0,∞)) = {eiη : η ∈ (π, 2π)}. Hence each
pair {z, z = 1/z} of roots of f on the unit circle is mapped by w−1 to a pair of
real roots (one positive and one negative).
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(ii) The map w(t) = t−i
t+i maps the positive imaginary axis in the t-plane on the

interval (−1, 1) in the w-plane. More precisely, w((0, i)) = (−1, 0), w(i) = 0
and w((i,∞i)) = (0, 1). Hence each pair {ε, 1/ε} of real roots of f , where
exactly one is in (−1, 1), is mapped by w−1 to a pair of imaginary roots (one
positive and one negative). ��

As g is an even function we can restate the conclusion of Proposition 1 as follows.

Corollary 1 If u = t2 then

(i) f (t) has 2k roots on the unit circle if and only if g(u) has k positive real roots.
(ii) f (t) has 2l real roots if and only if g(u) has l negative real roots.

3 Coxeter systems and growth functions

A Coxeter system is a triple (W, S,R) consisting of a group W and a set S ⊂ W of
generators, subject only to relations

R = {(ss′)m(s,s′) = id|s, s′ ∈ S}

where m(s, s) = 1, m(s, s′) = m(s′, s) for s �= s′ in S. If there is no relation between
a pair s, s′, we write m(s, s′) = m(s′, s) = ∞. The group W is called a Coxeter group.
For all subsets I ⊂ S we denote by WI the (Coxeter) subgroup of W generated by the
set I .

The nerve N = N (W ) of (W, S,R) is the partially ordered set (poset) of those
subsets I ⊂ S such that WI is finite. The partial ordering is by inclusion. For all
I ⊂ S we define L I = {τ ∈ N : I < τ }. The set L∅ is called the proper nerve of
(W, S,R). It is a simplicial complex. More precisely, it is isomorphic to the poset of
simplices of a simplicial complex with vertex set S. Moreover, for I �= ∅, the sim-
plicial complex L I can be identified with the link of I in L∅ (see Charney and Davis
1991).

In the following, we will consider Coxeter systems allowing a special partition of
generators and relations. A so-called one-generator orthogonal Coxeter system is a
Coxteter system (W, S,R) such that the generators s1, . . . , sm, sm+1, . . . , sk, s in S
can be arranged in such a way that

R = R0 ∪ R1 ∪ R2 ∪ R3 ∪ R4

where the set R0 contains all relations between the elements s1, . . . , sm , the set R1
contains all relations between the elements sm+1, . . . , sk and the set R2 contains all
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relations between one element in {s1, . . . , sm} and one element in {sm+1, . . . , sk}. The
sets R3 and R4 are given by

R3 = {(s j s)
2 = (ss j )

2 = id| j = 1, . . . , m}
R4 = {(s j s)

∞ = (ss j )
∞| j = m + 1, . . . , k}.

The generator s is called an orthogonal generator of the system (W, S,R). Further, the
Coxeter subsystems (A, {s1, . . . , sm},R0) and (A•, {s1, . . . , sm, s},R0 ∪R3), where
A = A(s) and A• = A•(s) are the subgroups of W generated by s1, . . . , sm and
s1, . . . , sm, s respectively, are called principal subsystems of (W, S,R). In a geomet-
ric realisation of W , the hyperplane H corresponding to the generator s is orthogonal
to all hyperplanes of W intersecting H .

Let (W, S,R) be a Coxeter system and X a subgroup of W . For n ≥ 0 we denote
by an the number of elements in X of length n. The power series

X (t) =
∑

n≥0

antn

is called the Poincaré series of X . For X = W we get the Poincaré series W (t) of the
group W .

The Poincaré series W (t) is an explicitly computable rational function (more
precisely, is generated by a rational function) in t . This generating function is called
the growth function of the group W and also denoted by W (t).

The growth function W (t) can be defined recursively by the growth functions of
special subgroups of W . Let (W, S,R) be a Coxeter system with nerve N . Then we
have

1

W (t)
=

∑

I∈N

(−1)|I | 1

WI (t−1)
(1)

(see Steinberg 1968, p. 14).
If (W, S,R) is a finite Coxeter system (the group W is finite) with degrees

d1, . . . , dn (see Humphreys 1990, p.59), the growth function of W is a polynomial
with the following nice factorization

W (t) =
n∏

j=1

td j − 1

t − 1
=

n∏

j=1

(td j −1 + td j −2 + · · · + 1). (2)

(see Humphreys 1990, p. 73). In the following we will abbreviate td j −1+td j −2+· · ·+1
by [d j ] for 1 ≤ j ≤ n.
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Example 1 Applying formulae (1) and (2) we get for the Coxeter group with graph

the growth function

W (t) = [2]2[6][10]
[1,−3, 1, 0, 0, 1, 0, 1, 0]e+

.

4 Construction of garlands

Let (W, S,R) and (W ′, S′,R′) be two one-generator orthogonal Coxeter systems
with

S = {s1, . . . , sm, sm+1, . . . , sk, s}
S′ = {s′

1, . . . , s′
m, s′

m+1, . . . , s′
l , s′}

and, after renumbering the generators, R0(s1, . . . , sm) = R′
0(s

′
1, . . . , s′

m) or simply
R0 = R′

0. Then of course R3 = R′
3. The two principal subgroups A and A′ of W and

W ′ respectively are canonically isomorphic and we can glue together the two Coxeter
systems (W, S,R) and (W ′, S′,R′) along A to construct the following new Coxeter
system, called a garland,

(W, S,R) ∗A (W ′, S′,R′) = (W ∗A W ′, S ∗A S′,R ∗A R′)

with

S ∗A S′ = {s1, . . . , sm, sm+1, . . . , sk, s′
m+1, . . . , s′

l }
R ∗A R′ = R0 ∪ R1 ∪ R′

1 ∪ R2 ∪ R′
2 ∪ R5

where

R5 = {(si s
′
j )

∞ = (s′
j si )

∞ = id|i = m + 1, . . . , k; j = m + 1, . . . , l}.

Proposition 2 We have

1

(W ∗A W ′)(t)
= 1

W (t)
+ 1

W ′(t)
− 2

A•(t)
+ 1

A(t)
.

123



Beitr Algebra Geom (2012) 53:451–460 457

Proof We will use the recursion formula (1) for each of the five groups W ∗A W ′, W ,
W ′, A and A•. The relations determining the nerve of each of these groups are listed
in the following table.

nerve relations
N (W ) R0 R1 R2 R3
N (W ′) R′

0 = R0 R′
1 R′

2 R′
3 = R3

N (A•) R0 R3
N (A) R0
N (W ∗A W ′) R0 R1 R′

1 R2 R′
2

The relations R4 for W , R′
4 for W ′ and R5 for W ∗A W ′ do not contribute to the

nerves N (W ), N (W ′) and N (W ∗A W ′) respectively. As formula (1) only depends on
the nerves of the five groups, the theorem follows. ��

Of course, A• can be written as the direct product of the group A and the Coxeter
group with one generator. It follows that A•(t) = (1 + t)A(t).

Corollary 2 We have

1

(W ∗A W ′)(t)
= 1

W (t)
+ 1

W ′(t)
+ t − 1

t + 1

1

A(t)
.

The name garland is motivated by hyperbolic Coxeter groups. If the two Coxeter
systems (W, S,R) and (W ′, S′,R′) from above are realizable as geometric Coxeter
groups in the hyperbolic space, then the corresponding Coxeter polytopes can be glued
together along an isomorphic face and the resulting subset of the hyperbolic space is
itself a hyperbolic Coxeter polytope (see Vinberg 1993, p. 213).

Example 2 We consider the two one-generator orthogonal Coxeter systems (W, S,R)

and (W ′, S′,R′) given by the following two Coxeter graphs
∑

and
∑′. The Coxeter

groups W and W ′ are realizable as geometric Coxeter groups in the space H
4 (Fig. 1).

Fig. 1 The graphs
∑

and
∑′
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Fig. 2 W ∗A(a) W and W ∗A(a)− W

As orthogonal generators s and s′ we can choose a or b in (W, S,R) and c or d in
(W ′, S′,R′).

There are several possibilities to glue together these two groups. For example, there
are the two possibilities W ∗A(a) W and W ∗A(a)− W to glue together (W, S,R) and
(W, S,R) along the subgroup A(a) (the graph of A(a) has an inner symmetry). The
resulting Coxeter groups are constructed in Fig. 2.

For W ∗A(a) W we get by Corollary 2 can be written as

1

(W ∗A(a) W )(t)
= 2

1

W (t)
+ t − 1

t + 1

1

A(t)

= 2
[1,−3, 1, 0, 0, 1, 0, 1, 0]e+

[2]2[6][10] + t − 1

t + 1

−[1,−2, 1, 0,−1, 2]o−
[2][6][1, 0, 0]o+

= [1,−4, 1, 0, 1, 1, 0, 2, 0]e+
[2]2[5][6][1, 0, 0]o+

5 The growth function of some garlands

The Coxeter group G = W ∗A(a) W from Example 2 has a one-generator orthogonal
Coxeter system; more precisely, there are two distinct orthogonal generators. We can
glue together in an obvious way an arbitrary number n ≥ 1 of these groups to construct
a garland.

Theorem 1 Let Gn be the garland glued from n groups G = W ∗A(a) W and Gn(t)
be the corresponding growth function. Then we have

Gn(t) = [2]2[5][6][1, 0, 0]o+
Dn(t)

with

Dn(t) = t16 − 2(n + 1)t15 + t14 + (n − 1)t13 + t12 + nt11 + (n − 1)t10 + 2t9

+ 2(n−1)t8 + 2t7 + (n−1)t6 + nt5 + t4 + (n−1)t3 + t2−2(n + 1)t + 1

= [1,−2(n + 1), 1, (n − 1), 1, n, (n − 1), 2, 2(n − 1)]e+
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Proof For n = 1 the formula is true for Gn(t) = G(t) by direct calculations (see
Example 2). Now we assume that the formula is true for some n. Then by Corollary 2
we get

1

Gn+1(t)
= 1

Gn(t)
+ 1

G(t)
+ t − 1

t + 1

1

A(t)

where A is the Coxeter group with scheme • 5 • • 5 • and

A(t) = − [2] [10] [1, 0]o+
[1,−2, 1, 0,−1, 1,−1]o−

.

With the growth functions G(t) and Gn(t) (induction hypothesis) the result follows
immediately by induction. ��
Theorem 2 The polynomials

Dn(t) = [1,−2(n + 1), 1, (n − 1), 1, n, (n − 1), 2, 2(n − 1)]e+

have for all n ≥ 1 the following properties.

(i) Dn(t) has exactly six pairs of roots on the unit circle.
(ii) Dn(t) has exactly two pairs of real roots (τn, 1

τn
) and (γn, 1

γn
) with

0 < τn < γn < 1 <
1

γn
<

1

τn
.

Furthermore, the sequence {τn} is strictly decreasing to 0 as n → ∞.

Proof First of all, the roots of the palindromic polynomial Dn appear in pairs (z, 1/z).
For all n ≥ 1 let

Kn(t2) = (t − i)16 Dn

(
t + i

t − i

)

.

For u = t2 we get

Kn(u) = nu8 + (9 + 68n)u7 + (135 − 892n)u6 + (−2083 + 2108n)u5

+ (6115 − 10n)u4 + (−5829 − 2116n)u3 + (2500 + 900n)u2

+ (−225 − 60n)u + n + 1.

By direct calculations we can localize the eight real roots of Kn(u) in the following
intervals. For example, we get

Kn(2.6) = Kn(
26

10
) = −42′061′824

390′625
n − 671′615′872

78′125
< 0

for all n ≥ 1. Indeed, the intervals are independent of the parameter n.
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u −86 −3.1 0 0.03 0.15 0.43 1 2.6 8.5
sign(Kn(u)) + − + − + − + − +

Hence Kn(u) has exactly two negative and six positive real roots. It follows from
Corollary 1 that Dn(t) has exactly four real roots τn ≤ γn ≤ 1

γn
≤ 1

τn
and twelve

properly complex roots on the unit circle.
For an estimation of the real roots we first observe that Dn(0) = 1 > 0, Dn( 1

2 ) =
11977
65536 − 13415

16384 n < 0 and Dn(1) = 4n > 0. Hence we have 0 < τn < 1
2 < γn < 1 <

1
γn

< 1
τn

. By a direct calculation we finally see that Dn(
1

2n+2 ) > 0 and Dn(
1

2n+1 ) < 0,
that is

1

2n + 2
< τn <

1

2n + 1

for all n ≥ 1. ��
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