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Abstract Epithelial cells in the kidney, gastrointestinal
tract and exocrine glands are engaged in vectorial
transport of salt and nutrients. In these tissues, K*
channels play an important role for the stabilization of
membrane voltage and maintenance of the driving force
for electrogenic transport. Luminal K* channels represent
an exit pathway for the excretion of K* in secreted fluid,
urine and faeces, thereby effecting body K* homeostasis.
Indeed, the expression and function of several luminal K*
channels is modulated by hormones regulating water,
Na*, and K* metabolism. In addition to net transport of K*
in the serosal (or apical) direction, K* channels can be
coupled functionally to K*-transporting ATPases such as
the basolateral Na*/K* ATPase or the luminal H*/K*
ATPase. These ATPases export Na* or H* and take up
K*, which is then recycled via K* channels. This review
gives a short overview on the molecular identity of
epithelial K* channels and summarizes the different
mechanisms of K* channel function during transport in
epithelial cells.

Keywords K* channel - Potassium - Reabsorption -
Secretion - Intestine - Kidney

Introduction

Transport of solutes, electrolytes and water across
epithelia cells is essential for homeostasis of salt and
water metabolism, reabsorption of nutrients, exocrine
secretion and excretion of metabolic end-products. In
epithelia, K* channels are involved in different cellular
functions: (1) maintenance of a polarized cell membrane
as a driving force for electrogenic transport; (2) cell
volume regulation; (3) K* excretion according to meta-
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bolic needs; (4) K* recycling across luminal and basolat-
eral membranes (functionally coupled to K*-exchanging
ion pumps); (5) cell fate: differentiation versus prolifer-
ation or apoptosis.

In the human genome around 80 different genes for K*
channel o~ and S-subunits have been described (http://
www.gene.ucl.ac.uk/nomenclature/genefamily/
KCN.shtml). In addition, hetero-oligomerization and
splice variants yield a large number of structurally and
functionally different native K* channels. Table 1 gives
an, inevitably incomplete, overview of the epithelial
expression of different K* channel genes. In recent years,
the breathtaking progress of protein analysis and gene
discovery has sped up our understanding of for K*
channel structure and the role of these channels in
genetically determined diseases. However, our knowledge
of the tissue-specific expression pattern and its conse-
quences for the function of native epithelia is still far from
complete. The combination of molecular and biochemical
techniques, genetically modified animals and functional
methods will help to gain more insights into the diversity
of epithelial K* channel physiology.

Basolateral epithelial K* channels: driving force
and cell volume regulation

In polarized epithelial cells basolateral K* channels
hyperpolarize the cell membrane, thereby increasing the
driving force for other electrogenic transport systems.
Depending on the paracellular resistance, basolateral
hyperpolarization leads also to hyperpolarization of the
luminal membrane supporting transport across the lumi-
nal membrane. In epithelial cells from rat colonic crypts
two distinct basolateral K* channels have been identified
at the molecular level, exemplifying the physiological
role of basolateral K* channels in general. Resting voltage
of rat colonic enterocytes is mainly determined by
KCNN4 (IK1, SK4 [17, 18, 40, 42, 65, 107]), a K*
channel with a 10- to 20-pS single-channel conductance
(Fig. 1C). KCNN4 bound to calmodulin [21, 43] is
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A Renal proximal tubule / intestinal villus cell
lumen cell blood
Luminal K channels |_V"’: imv Basolateral K" channels

KCNQ1/KCNET: KCNJ2, 3, 8, 16:
depolarization (+)
KCNK1:

PKC (+), alkaline pH (+)
KCNMAT1(?):

flow (+), Ca™ (+)

KCNJ1 (=ROMK) =
alkaline pH, (+), PKA (+), 5‘8'.
PIP, (+), ATP. (-} ©
KCNMA1(?)

flow (+), Ca™ (+),
cell swelling (+?)
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C Colon crypt base cell
I_V,,= 15 mv’_l
- P KCNQ1/KCNE3
? CAMP (+), Ca™ (+),

KCNN4

Lo K. co (), PR ),
2CI  cell swelling (+)
Kno
MNa’

D Colon crypt surface cell / collecting duct principle cell
V.=15mv
e— |
KCNJ1 (=ROMK) " I*(' KCNQ1/KCNE3
alkaline pH, (+), PKA(+),  Na'—o=p Na' CAMP (+), Ca™ (+),
PIP, (+), ATF, (-) KCNN4

Ca” (+), PKC (+),
cell swelling (+)

KCNMA1(?)
flow (+), Ca™ (+),
cell swelling (+?)

=K' K=
HD%
Cl

E Gastric parietal cell

KCNE2/KCNQ1

acidic pH,, (+), cAMP (+),
ca” (+)

KCNJ10

acid resistent

HCO,
ol

Fig. 1A-E Simplified models for K* channel function in different
cell types. For simplicity, only one K* channel is drawn on
basolateral or luminal side, although several different channels
might be present. K* channel genes are named according to the
Human Genome Organization (HUGO, http://www.gene.ucl.ac.uk/
nomenclature/genefamily/KCN.shtml). Main regulation of K*
channels is indicated as (+) for stimulation and (—) for inhibition
(PKA protein kinase A, PKC protein kinase C, PIP, phosphatidyl-
inositol-4,5-bisphosphate)

regulated closely by Ca?* in the latter’s physiological
range (100-500 nM) [100] and, therefore, Ca2+—elevating
agonists, such as acetylcholine or histamine, increase
KCNN4 open probability. KCNN4 activation hyperpo-
larizes the basolateral and—depending on the permeabil-
ity of the paracellular pathway—also the luminal
membrane of enterocytes, thereby supporting electrogenic
transport, e.g. luminal CI~ secretion or Na* reabsorption
(Fig. 1). KCNN4 is expressed abundantly in epithelial
cells of colon [107] and of salivary glands [75, 95] and
less in small intestine [34, 41]. However, during cAMP-

mediated intestinal C1~ secretion, KCNN4 activity is very
low due to a reduction of intracellular Ca**. The driving
force for CI” exit at the luminal side of the cell is
maintained by a cAMP-stimulated basolateral K* con-
ductance [106], which has been identified at the molec-
ular level as KCNQI1 associated with its S-subunit
KCNE3 [90]. Inhibition of KCNE3/KCNQI channel
complex by the chromanol 293B or derivatives depolar-
izes the cell membrane, thereby diminishing the driving
force for luminal CI~ exit via the cystic fibrosis
transmembrane conductance regulator (CFTR) CI~ chan-
nel. Such a role for basolateral KCNE3/KCNQI1 channels
in CI” secretion has been observed in various CI~
secreting epithelia such as colon [53, 63, 90], small
intestine [108] and airways [30, 70]. In addition, KCNE3
might assemble with KCNQ1 in distal nephron segments
of the kidney.

Besides the stabilization of membrane voltage during
electrogenic transport, basolateral K* channels are en-
gaged in maintenance of cell volume, which represents a
continuous challenge for transporting cells. In colonic
crypts, cell swelling induces activation of KCNN4 K*
channels, probably via increases in intracellular Ca*
activity. The enhanced K* conductance leads to an exit
of K* as an osmolyte, stabilizes the membrane voltage
and supports Cl~ secretion. Together these mechanisms
underlie the regulatory volume decrease [110]. Na*-
coupled reabsorption of sugars and amino acids depolar-
izes the membrane of small intestinal enterocytes and is
paralleled by osmotic water influx. Depolarization,
changes in the metabolic state and cell swelling activate
basolateral (and luminal) K* channels, which in turn
repolarize the membrane voltage needed for ongoing
transport and regulatory volume decrease [31, 68].
Similar mechanisms of K* channel activation have been
described in renal proximal tubular cells which perform
mass transport of solutes and water similar to small
intestinal enterocytes. Reabsorption of glucose and phe-
nylalanine has been shown to activate (probably via cell
swelling [99]) basolateral K* channels in proximal tubular
cells [11] and there is good evidence for an ATP-
regulated K* conductance that allows recycling of K*
taken up by Na*/K*-ATPase [54, 55, 71, 78] (Fig. 1A).
The pH-regulated and cell volume-sensitive K* channel
KCNKS (TASK?2) is expressed strongly in renal proximal
tubules. KCNKS5 is—among others—a good candidate
channel for activation by transport-associated changes in
cell metabolism, cell volume and extracellular pH (pos-
sible activation by increase in basolateral NaHCO;
extrusion) [6, 76, 77, 86, 109]. The precise function and
subcellular localization of renal KCNKS5 channels, how-
ever, remains to be established.

Furthermore, inwardly rectifying ATP-sensitive K*
channels (members of the KCNJ family), cyclic nucleo-
tide-regulated K* channels and maxi K* channels (KC-
NMAI1 associated with S-subunits) have been described
or proposed as basolateral K* channels in various
epithelial tissues on the basis of immuno-localization



studies and functional characteristics of native channels
[10, 35, 49, 66, 68, 79].

Luminal K* channels: repolarization, fine tuning
of K* excretion and K* recycling

In renal proximal tubules, and probably in the small
intestine, luminal K* channels play an important role for
restoring the driving force of Na*-coupled transport
systems (amino acids, sugars), which depolarize the
luminal membrane (Fig. 1A). Some of these luminal K*
channels are activated directly by the transport-associated
depolarization (i.e. KCNEI/KCNQI and KCNAIO in
renal proximal tubules [98, 116]), others are regulated by
mediators, second messenger pathways and cell volume
[36, 37, 93]. Since the epithelia of small intestinal villi
and renal proximal tubules have a low paracellular
resistance [27], basolateral K* channels act in concert
with luminal channels and hyperpolarize both basolateral
and luminal membranes. However, the direction of the
paracellular short circuit current differs, depending on
luminal or basolateral K* channel activation [104].

In more “tight” epithelia, such as distal colon and renal
collecting duct, the relative importance of luminal K*
channels for repolarization is enhanced compared with
“proximal” epithelia: in the presence of a high paracel-
lular resistance, activation of basolateral K* channels does
not suffice to hyperpolarize the luminal membrane.
Moreover, the luminal K* channel activity in “distal”
epithelia directly affects the ionic composition of urine
and faeces: i.e. activation of luminal K* channels during
colonic CI™ secretion results in electroneutral KCI secre-
tion; activation of basolateral K* channels, however, leads
to electrogenic luminal CI™ exit followed by paracellular
Na* flux (NaCl secretion) [32, 52]. Therefore, luminal K*
channel activity in the distal colon and renal collecting
ducts is adjusted tightly according to body K* homeosta-
sis. In the distal colon, luminal K*' conductance is
enhanced by the mineralocorticoid aldosterone and die-
tary K* intake [64, 88]. Very recently, it has been shown
in colonic mucosa, that luminal purinergic receptor
stimulation regulates luminal K* channels, identified
molecularly as maxi-K* channels (KCNMAT1) [51, 59]
(Fig. 1D).

In native collecting duct cells, at least two different
types of luminal K* channels have been identified, small-
conductance (25-35 pS) and large-conductance (80—
140 pS) channels [111]. The abundance of the small-
conductance channel is increased with a K*-rich diet, but
not with a low-Na™ diet [26, 80]. The small-conductance
K* channel is probably encoded by the KCNJ1 gene
(ROMK) [38, 67], which is defective in antenatal Bartter
syndrome type 2 [Online Mendelian Inheritance in Man
(OMIM) database http://www.ncbi.nlm.nih.gov/omim/
classification No. 600359). The large-conductance K*
channel (maxi-K channel, KCNMAI) is activated by
flow-induced membrane stretch and by rises in cytosolic
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Ca?*. This might contribute to the increase in K*
excretion at high urinary flow rate [74, 111].

In K*-excreting epithelial cells, luminal K* channels
underlie vectorial transport of K* across the epithelium.
On the other hand, luminal and basolateral K* channels
can also mediate K* recycling. For example, in renal thick
ascending limb (TAL) cells, KCNJI (ROMK) plays a
crucial role for K* recycling across the luminal mem-
brane. This K* recycling is needed for Na* reabsorption
via the Na™2CI"K* cotransporter (NKCC2) (Fig. 1B). In
patients suffering from KCNJ1 mutations, Na* reabsorp-
tion by the NKCC2 is markedly diminished, resulting in a
life-threatening salt wasting syndrome (antenatal Bartter
syndrome type 2).

In the small intestine and renal proximal tubule,
basolateral K* channels are coupled to Na*/K* ATPase
activity. This allows K* to recycle, thus ensuring hyper-
polarization, lowering of intracellular [K*], ongoing Na*/
K* ATPase activity and reabsorption of Na* and Na*-
coupled substrates [31, 71].

Gastric parietal cells secrete fluid containing 150 mM
HCI. The acid-producing enzyme is a P,-type ATPase,
which pumps H* into the lumen coupled to uptake of K*
[23, 24]. Therefore, a continuous supply of luminal K* is
required for sustained acid production by parietal cells
(Fig. 1E). Almost 20 years ago, it was postulated that the
K* recycling pathway is a K* conductance, but the
molecular identity of the K* channel(s) remained unclear
[113]. The observation of impaired gastric acid secretion
paralleled by massive gastric hyperplasia (probably due to
high gastrin levels) in KCNQI1 knockout mice indicated
that KCNQ1 might be involved in acid secretion [58]. In
fact, KCNQI1 co-assembles with KCNE2 to form a
luminal K* channel in gastric parietal cells [14, 29].
Inhibition of KCNQI by the chromanol 293B almost
completely inhibits acid secretion in mouse, rat and dog in
vivo and in isolated rabbit gastric glands in vitro [29].
These pharmacological data and the gastric phenotype of
KCNQI1 knockout mice suggest that KCNQI1 is required
for K* recycling across the luminal membrane for
sustained H*/K* ATPase activity. In addition to KCNQI,
KCNIJ10 is located in the luminal membrane of parietal
cells and probably acts together with KCNQI to recycle
K* [28].

Conclusions

K* channels fulfil a variety of different tasks in epithelial
cells and are regulated precisely so as to adapt to cellular
needs. In recent years we have gained greater insight into
K* channel genetics and the functional properties of the
channels in expression systems. Elucidation of the
function of molecularly identified K* channels in native
tissue, their subunit compositions and interactions with
regulatory proteins and macromolecular complexes is
needed for a better understanding of the physiological
roles of epithelial K* channels and possible clinical
implications. Specific pharmacological modulation of
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epithelial K* channels will offer new perspectives for the
treatment of epithelia-linked diseases such as diarrhoea,
peptic ulcer and metabolic disorders.
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