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Abstract Chronic granulomatous disease (CGD) is an
immunodeficiency caused by the lack of the superoxide-
producing phagocyte nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase. However, CGD patients not
only suffer from recurrent infections, but also present with
inflammatory, non-infectious conditions. Among the latter,
granulomas figure prominently, which gave the name to the
disease, and colitis, which is frequent and leads to a
substantial morbidity. In this paper, we systematically
review the inflammatory lesions in different organs of
CGD patients and compare them to observations in CGD
mouse models. In addition to the more classical inflamma-
tory lesions, CGD patients and their relatives have
increased frequency of autoimmune diseases, and CGD
mice are arthritis-prone. Possible mechanisms involved in

CGD hyperinflammation include decreased degradation of
phagocytosed material, redox-dependent termination of
proinflammatory mediators and/or signaling, as well as
redox-dependent cross-talk between phagocytes and lym-
phocytes (e.g. defective tryptophan catabolism). As a
conclusion from this review, we propose the existence of
ROShigh and ROSlow inflammatory responses, which are
triggered as a function of the level of reactive oxygen
species and have specific characteristics in terms of
physiology and pathophysiology.
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Abbreviations
CGD Chronic granulomatous disease
ROS Reactive oxygen species
NADPH Nicotinamide adenine dinucleotide

phosphate-oxidase
NOX NADPH oxidase
DUOX dual oxidase
OR Odds ratio
iNOS inducible nitric oxide synthase
MOG myelin oligodendrocyte glycoprotein
IQ intellectual quotient
SNP single nucleotide polymorphism
IDO indol 2,3 dioxidase

Introduction

A fatal childhood disease characterized by the occurrence
of granulomas and recurrent infections was first described
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in 1954 by Janeway [1], and 1957 by Good [2]. About
10 years later, Paul Quie [3, 4] linked the disease to a
deficiency in bactericidal activity of the phagocytes. After
stimulation, the neutrophils of these patients failed to
increase oxygen consumption and to generate reactive
oxygen species (ROS) [3], the so-called “respiratory burst”
[4, 5]. The disease, which was renamed chronic granulo-
matous disease (CGD), was first thought to affect only
males [3], but with time female patients were also reported
[6, 7]. Finally, phagocyte nicotinamide adenine dinucleo-
tide phosphate-oxidase (NADPH) oxidase deficiency was
identified as the cause of CGD [8–10].

Today, the catalatic subunit of the phagocyte NADPH
oxidase enzyme is called NOX2 (formerly gp91phox) and
despite the fact that is has never been crystallized, there is
some knowledge about its structure. NOX2 contains six
transmembrane domains, cytosolic NADPH and FAD
binding sites, and two intramembranous haemes that are
necessary for catalysing the reduction of molecular O2 to
generate the superoxide anion in the phagosome or the
extracellular space. The NOX2 protein is associated with
another transmembrane protein, p22phox, which acts to
stabilise the complex and to dock the cytosolic partner
p47phox. Generation of superoxide anion requires a phos-
phorylation-dependent activation step, allowing the recruit-
ment of p40phox, p47phox and p67phox and the GTPase Rac,
all of which associate to the membrane-bound complex to
form the functional NADPH oxidase [11]. NOX2 is one
member of a multi-gene NOX family of ROS-generating
NADPH oxidases comprising seven members (NOX1–
NOX5, DUOX1 and DUOX2). In this review, we will
focus exclusively on the deficiency of the NOX2 isoform.

One of the key pathognomonic features of CGD patients
is recurrent infection. Tendency towards infection is usually
evident during the first years of life. The sites of infection
involve either epithelial surfaces, including skin, lungs and
gut, or the reticuloendothelial system including liver, spleen
and lymph nodes. The bactericidal defect is not absolute,
but is rather quite specific for a subset of pathogens,
causing pneumonia, soft tissue infections, sepsis, liver
abscesses and osteomyelitis, to name the most common.
There is a marked overrepresentation of certain bacterial
pathogens such as Staphylococcus aureus, Pseudomonas,
Serratia marcescens and Nocardia and for certain fungal
pathogens, in particular Aspergillus [12, 13]. The United
States national registry states that the most commonly
found infections in CGD patients are pneumonia, subcuta-
neous and liver abscesses, osteomyelitis and septicaemia.
These findings are corroborated by other large cohort
studies [13] and by imaging studies [14]. Pneumonia is
mostly caused by Aspergillus, abscesses by Staphylococcus
spp, osteomyelitis by Serratia while septicaemias are
mostly due to Salmonella. New germs are also emerging:

Burkholderia cepacia (formerly referred to as Pseudomo-
nas cepacia), which was absent in the first series, now
represents the second most prevalent organism isolated
from patients with pneumonia or bacteraemia [15]. NOX2
deficiency has been seen predominantly as a decrease in
host defence, with an inability to mount an inflammatory
response. However, there is increasing evidence for hyper-
inflammatory, non-infectious complications of CGD. In-
deed, the disease took its name from the exuberant chronic
granuloma formation, which in most instances occurs
without an infectious agent. It seems counterintuitive that
a genetic defect associated with immune deficiency also
causes an amplified inflammatory response. However,
presently available data suggest that both increased and
decreased NOX2 activity may lead to inflammatory
complications. The situation is most puzzling for arthritis
and inflammatory bowel disease, which have been classi-
fied as diseases caused by increased NOX activity by some,
but as diseases associated with a lack of ROS generation by
others [16–19]. In general, the association of increased
NOX2 activity with inflammation has been widely dis-
cussed (e.g. Bedard [20] and Lambeth [18]) and will not be
discussed here. In contrast, the relationship between
decreased NOX2 activity and inflammation remains poorly
understood and will be the focus of this review.

The mortality in CGD patients is high and usually
occurs in the first two decades of life [13, 18], with about
50% of patients surviving into their third decade [21].
Only isolated patients survive into the fifth and sixth
decades. In the US, the overall mortality is estimated at 2–
5% per year [15]. Deaths in CGD patients are mainly due
to overwhelming infections, mostly pneumonia and sepsis.
The most common germs are Aspergillus, accounting for
one third of all deaths, followed by Pseudomonas and
Candida. The emerging Burkholderia cepacia causes
nearly 20% of the deaths alone [15]. Analysis of survival
of CGD patients suggests that recent advances in treat-
ment have improved survival of patients in the first two
decades of life, but there does not appear to be increased
survival at later ages [13]. The improved survival in the
first two decades is mainly due to early diagnosis along
with aggressive management, including the use of pro-
phylactic and therapeutic antibiotics, as well as prophy-
lactic interferon γ.

The genetic aspects of CGD are specifically addressed
by MJ Stasia and Li, in this issue [22]. Therefore, we will
simply provide a small reminder of elements necessary for
the comprehension of the topic discussed here. The
inheritance of CGD may be either X-linked or autosomal
recessive. The X-linked trait results in a defect of CYBB
gene on the X chromosome in position p21.1 [23], which
accounts for two thirds of CGD cases. The CYBB gene
codes for the NOX2 subunit of the phagocyte NADPH
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oxidase. The autosomal recessive disorder accounts for the
remaining third and is primarily due to mutations of the
genes coding for p47phox (20%), p22phox (5%), or p67phox

(5%) [9, 24–26]. To date, no mutation of the gene coding
for the p40phox subunit has been identified. One needs to be
aware that not all CGD cases are inherited, but that they
may occur also through de novo mutations [27]. The small
GTPase Rac2 is important for NOX2 activation. A patient
with impaired superoxide production due to a point
mutation (D57N) in Rac2 has been reported. He presented
with severe bacterial infections and poor wound healing.
However, the symptoms of his immunodeficiency were
different from classical CGD [28, 29]. Autosomal recessive
patients suffer a less severe disease than X-linked patients
with a lower morbidity and mortality, a greater percentage
surviving past the second decade (42% vs 22%) [15]. Most
patients are male and white although there could be an
underdiagnosis bias in other races [15].

A carrier state was recognised early on in the mothers
and sisters of X-linked patients. These carrier females
exhibit an abnormal tetrazolium dye-phagocytosis histo-
chemical test [30], due to random inactivation of one of the
X chromosomes. This phenomenon of X chromosome
inactivation, called lyonization, is known to normally
favour cells expressing the nonmutated X chromosomes in
X-linked diseases [31]. Yet this is not the case in CGD,
where X-linked carriers show a random mosaic population
of two leukocyte populations, oxidase-positive and -
negative neutrophils. It is not surprising that X-CGD
carriers present a phenotype of CGD symptoms that are
directly correlated with the amount of superoxide produc-
tion [32]. Not only might they present with clinical
evidence of host defence defect [33, 34], but also with
increased frequency of inflammatory diseases, especially
skin lesions. These lesions will be discussed in more detail
in the appropriate chapters. Carriers also have been found
to possess autoantibodies more frequently than non-carrier
relatives (95% vs 10%) [35].

Increased inflammation in chronic granulomatous
disease

Patients with CGD suffer from a variety of inflammatory
conditions [15, 36], also classified as “complications not
obviously caused by infection” [37]. This terminology
summarizes the poor knowledge of the mechanisms
underlying these inflammatory CGD manifestations. In
some instances, inflammatory disorders are the first clinical
manifestation of CGD [38]. One of the most typical
inflammatory responses in CGD is granuloma formation.
Granuloma formation can affect various organs, with a
preference for hollow viscera, such as colon, stomach, and

bladder. A number of observations argue in favour of a
non-infectious origin of CGD granulomas:

1) in many instances, no microbes can be recovered from
the lesions [39–41].

2) the lesions respond to numerous immunomodulators,
such as steroids [38, 40, 42, 43], salazopyrine [19, 44],
or even cyclosporine A or azathioprine [45, 46], but not
to antibiotics [19, 40].

3) hyperinflammatory reactions are readily induced by
sterile fungal cell wall preparations in NOX2-deficient
mice [47–49].

However, while the inflammatory, non-infectious nature
of many CGD manifestations is now firmly established, the
primary mechanism of the increased inflammatory response
remains poorly understood. The histopathological findings
show mostly non-specific persistent inflammation (Fig. 1;
the histology shown in this figure is taken from mouse
models, which strongly resemble histological findings in
CGD patients). The most commonly described feature is an
acute and/or chronic inflammation with fibrosis containing
non-caseous granulomas. Only in particular tissues such as
the intestinal tract, liver and lymph nodes do the lesions
show particular features. In these organs, active chronic
inflammation is described, with a relative paucity of
neutrophils, increased number of eosinophils, eosinophilic
crypt abscesses (intestinal tract), abundant nuclear debris
and pigmented macrophages [50]. These features may
allow an experienced pathologist to differentiate hyper-
inflammatory CGD complications from other granuloma-
forming diseases such as tuberculosis or Crohn’s disease
[41]. Granulomas may be of microscopic or macroscopic
size (up to several centimeters). Microscopic granulomas
are typically part of a diffuse inflammatory process, such as
colitis, while macroscopic granulomas usually cause a
localized pathology through mechanical disturbance, such
as gastric outlet obstruction. The distinction between
diffuse hyperinflammation and pathology due to large
granuloma is usually not addressed in the literature.
Therefore, we will specify these aspects in the specific
subchapters below, wherever the information is available.

Digestive tract and associated organs

Digestive tract Gut involvement is now reported as the
most common hyperinflammatory symptom in CGD
patients [13]. It was already recognised as a possible
complication in the early descriptions of the disease [51].
The real prevalence is unknown, but the reported preva-
lence reaches up to 33%, with 70% of these patients
identified within the first decade of life [38]. The X-linked
NOX2-deficient patients are more affected by gastrointes-
tinal symptoms than the autosomal patients lacking cyto-
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plasmic subunits [38]. Thus, the genetic variant of the
disease that causes the most severe infectious problems also
causes the most frequent hyperinflammation. Note that, as
opposed to infection, gastrointestinal hyperinflammation
does not lead to an obvious increase in mortality of the
patients. It has, however, become an important cause of
morbidity in CGD patients [38].

Hyperinflammatory CGD lesions may affect any part of
the gastrointestinal tract, from mouth to anus, as shown in
the Table 1. Symptoms depend on the site and the
pathology (diffuse vs localized) and range from abdominal

manifestations, such as vomiting, to more systemic prob-
lems, such as weight loss or anaemia. An overview of gut-
specific symptoms is listed in Table 2. The following
clinical signs are commonly observed: growth failure,
anaemia and failure to thrive, abdominal pain, diarrhoea,
with or without blood (39%), nausea and vomiting (24%),
and constipation (2%) [19, 38]. In CGD patients such
symptoms are almost always stereotypically attributed to
infection or to side effects of antibiotics. It is, however,
important to include hyperinflammation in the differential
diagnosis.

Table 1 Characteristics of the gastrointestinal histology in CGD patients

Gastrointestinal Histology Ament 1973[51]
N–8 (%)

Schäppi 2001[19]
N–7 (%)

Marciano 2004[38]
N–15 (%)

Levine 2005[41]
N–20 (%)

Upper GI Involvement / / / 42
Pigmented macrophages / / / 4
Granuloma / / / 5

Ileum Involvement 88 / 32 –
Pigmented macrophages – / – –
Granuloma 0 / – –

Colon Involvement 100 100 67 100
Pigmented macrophages – 71 – 69
Granuloma 63 29 33 41

Total GI involvement / / / 71

The table compares incidence in different studies for gut localizations, along with the typical histological features present in gastrointestinal
biopsies of CGD lesions.
GI gastrointestinal, “/” this localisation was not studied by the authors, “–” data not provided by the authors

x400x200

x400x200

DC

BA

skin

lung

Fig. 1 Hyperinflammatory
responses in skin and lung of
NOX2-deficient mice. Panels A
and B show HE-stained histolog-
ical sections from mice 7 days
after intradermal injection of ster-
ile Aspergillus cell wall prepara-
tions. A massive accumulation of
inflammatory cells, in particular
neutrophils, can be observed. In
wild-type mice, virtually no in-
flammation would be observed at
this point (not shown). Panels C
and D show spontaneously
occurring lung lesions (in particu-
lar eosinophilic crystals) in
NOX2-deficient mice at the age
of 6 months; such lesion is also
observed in small fraction of wild-
type mice, but in virtually 100%
of CGD mice
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Inflammatory gut involvement in CGD presents itself in
two ways: focal obstructive lesions and diffuse inflammation.

1) Focal obstructive lesions are observed in up to 35% of
patients [38]. Although obstructive lesions can develop
anywhere along the gastrointestinal tract, the most
commonly affected region is the distal stomach. This
leads to gastric outlet obstruction and affects a
substantial fraction of CGD patients (15-50%) [15,
36, 37, 52]. It is more often present in the X-linked
than in the autosomal patients [15]. Obstructive lesions
can also be present in the oesophagus [36, 38], or the
duodenum [38]. In general, it appears that obstructive
CGD complications manifest themselves later in life
than infectious complications [53]. For example, the
mean age of CGD patients presenting with gastric
outlet obstruction is 44 months [54], while at the age of
24 months most CGD patients have already gone
through infectious complications.

2) Diffuse inflammation is observed in the oesophagus,
the small bowel, and the colon. Colitis and enteritis are
relatively common in CGD patients, being increasingly
diagnosed during the last decade [15]. As seen for focal
obstructive lesions, diffuse colitis is more prevalent in
patients with the X-linked disease than in patients with
the autosomal recessive form [36, 46, 55] (19% vs
13%) [15], (89% vs 11%; OR:6.07 [38]) and is more
severe [19]. It might also start earlier in life [56]. The
endoscopical lesions are a chronic active colitis, with
patchy friability, pseudopolyps, petechial haemor-
rhages, strictures, fissures and ulcers [19, 46, 53, 57].
On histology, the characteristics are a focal infiltrate of
polymorphonuclear cells causing cryptitis and crypt
abscesses, with increased infiltration of eosinophils and
macrophages, but paucity of neutrophils as compared
to other inflammatory bowel diseases. The granulomas
are well defined, due to aggregates of epithelioid
histiocytes surrounded by a cuff of dense lymphocytic
inflammation [50]. This is in contrast with the
granulomas seen in Crohn’s disease, which are poorly
formed, less prominent [19, 38], and which contain

periodic-Schiff reagent positive granules [45]. CGD
granulomas are more frequent in colon biopsies than in
small bowel biopsies [51]. Signs of chronic colitis,
such as Paneth cell metaplasia and crypt shortening
[38], are more rarely described. The architecture of the
colon is disorganised with a reduction in the gland
number [51]. A high-level expression of inflammatory
markers is observed: human leukocyte antigen-DR
expression is increased in the epithelium and vascular
endothelium, along with an increased expression of
adhesion molecules—vascular adhesion molecule-1
and intracellular adhesion molecule-1 specifically in
the lamina propria, E-selectin in small vessels [50].
CGD colitis is commonly mistaken for Crohn’s disease
[57, 58], although CGD colitis is more patchy in its
distribution [38]. Some typical features, such as the
presence of nuclear debris, large pigmented macro-
phages with brown cytoplasm [17, 41, 51, 59], and
eosinophilic cytoplasmic inclusions [19] can help to
differentiate CGD colitis from other inflammatory
bowel diseases, even in a blind fashion [60]. Taking
all of these features into account will allow the careful
examiner to distinguish it from Crohn’s disease,
avoiding the mistaken diagnosis [45, 58, 61]. Abnor-
mal histology is found even in non-symptomatic
patients [51]. Colitis in CGD patients is invariably
culture-negative and responds to immunosuppression
rather than to antibiotics [19, 40, 50].

The choice of treatment depends on the type of gut
involvement. In general, immunomodulators are used. In
obstructive complications, the first line of treatment is the
use of steroids [38, 40, 46, 62, 63]. Recurrence of the
symptoms is high, with 71% of relapse after reduction or
cessation of the therapy [38]. Other therapeutical choices
are drugs used in inflammatory bowel diseases, such as
sulfasalazine and infliximab [19, 38, 45]. Remission
induced by recombinant human granulocyte colony stimu-
lating factor has been reported in a case of enteritis [64] and
impaired wound healing [65]. The efficacy of hydroxy-
chloroquine, a drug used in the treatment of malaria and

Table 2 Description of gas-
trointestinal symptoms in CGD
patients

“–” data not provided by the
authors

Gastrointestinal Symptoms Ament 1973[51]
N=9 (%)

Schäppi 2001[19]
N=7 (%)

Marciano 2004[38]
N=140 (%)

Abdominal pain 11 86 100
Diarrhoea 55 71 33
Bloody diarrhoea 11 71 6
Nausea, vomiting 22 14 24
Failure to thrive – 71 11
Constipation – 29 2
Height <5 DS 11 43 32
Weight <5 DS 22 29 22
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inflammatory disorders, has been recently reported in one
case with severe gastric involvement [66]. Surgery is
sometimes needed [38], with an ileostomy being raised in
case of severe colitis. Gastric outlet obstruction is probably
a contraindication for a surgical approach as it bears a risk
of recurrent fistulae [67].

There are also a number of rarer forms of gut involvement.
Granulomatous stomatitis, oral ulcers and dental abscesses
have been described [68]. Oesophagitis is not frequent, but
can lead to severe symptoms, such as progressive dysphagia,
delayed emptying and either organ dilatation or stricture [53,
69, 70].

Liver Liver biopsies are performed in CGD patients in case
of suspected liver abscess or organomegaly. When system-
atically reviewing such tissue samples, Levine did not
detect the presence of microorganisms, but occasionally
found non-specific inflammation, pigmented macrophages,
or granuloma [41].

Pancreas, spleen No lesions other than the presence of
scattered pigment-containing macrophages in these organs
have been reported in the literature [71].

Urogenital tract

The reported incidence of inflammatory lesions within the
urogenital tract in CGD patients is around 40% [72, 73].
The most frequently reported lesions are urinary obstruction
due to granuloma, and cystitis without apparent infection,
which may be accompanied by focal or diffuse thickening
of the bladder wall [43, 72, 74]. CGD lesions of the urinary
tract can lead to decreased renal function [72]. The genital
tract can also be affected with granulomatous orchitis and
peniscrotal granulomas [43].

Obstruction of the urinary tract [13, 75] due to
granulomas is frequent, being reported in 3.8% to 12% of
patients [37, 72]. First noted by Kontras [76], chronic
cystitis is one of the most frequently observed lesions. It
presents as haematuria, sometimes leading to hydroneph-
rosis [77] and even renal insufficiency [78]. This syndrome
overlaps with the syndrome referred to as eosinophilic
cystitis, which has been described in children [43, 76, 79]
presenting as suprapubic pain, dysuria, urinary retention,
frequency and haematuria. The ultrasound may reveal
thickening of the bladder wall or a mass [43]. Eosinophilic
bladder lesions can also be found in asymptomatic CGD
patients [77]. Inflammatory bladder lesions are often
associated with urinary tract infection [76, 77]. At this
point it is not clear whether the chronic inflammatory
cystitis is the consequence or possibly the cause of the
infections.

The common treatment for these conditions are steroids,
although an anti-allergic medication, ketotifen, has been
reported to be efficient in one case [40, 43, 63].

Lesions of the urogenital tract are more frequently found
in X-linked disease as compared to autosomal recessive
[15, 36, 72].

Brain

A retrospective study found that the prevalence of cognitive
deficits in the X-linked CGD population was high, with
23% of patients having an IQ of 70 or below, indicative of
cognitive deficits. They suggest chronic illness and frequent
hospitalizations to be causal by affecting growth and
development as well as social and educational opportunities
[80]. NOX2 is expressed in the brain: at high levels in
microglia, which are the main phagocyte of the central
nervous system [81] and—probably at lower levels—in
neurons [82].

The cause for cognitive deficit in CGD patients is not
known, although three basic possibilities can be considered.
They can be due to the fact that NOX2 has a role in
neuronal development and/or brain function. However, it
might also be to due the frequent infections suffered by
CGD patients or to the dysregulation of inflammatory
processes in the brain. Thus, lack of NOX2 function leads
to cognitive deficits. However, it should be noted that there
is also increasing evidence that enhanced NOX2 activity
can lead to dementia, in particular in Alzheimer’s disease
[83, 84].

Non-infectious brain lesions have been rarely reported.
They mainly consist in granuloma and infiltrate of
pigmented, lipid-laden histiocytes [85]. One autopsy in a
young patient with neurological deficit revealed extended
brain involvement with the characteristic pigmented macro-
phages in the perivascular spaces and leptomeninges, focal
white matter lesions with demyelinisation, intense sclerosis
and lesions of the centrum ovale [86]. The authors
hypothesise that the unexplained white matter destruction
could originate from macrophage activity, previous infec-
tions or post-infectious encephalomyelitis.

Skin

Skin histology taken in the context of non-specific skin
alterations from patients with CGD showed granulomatous
(7/18) or non-specific inflammation [41]. The typical
pigmented macrophages are also found in skin biopsies
[87]. Poor wound healing has also been reported as a
feature of the skin of CGD patients [88]; however it is not
clear whether this is linked to an infection problem, or
whether this also belongs to the non-infectious complica-
tions of CGD. Discoid and systemic lupus erythematosus
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[13, 75] is reported in up to 3.8% of CGD patients [36].
There are also case reports of other autoimmune diseases
such as juvenile rheumatoid arthritis, immune-mediated
thrombocytopenia [36], and erythema nodosus [13].

Cutaneous lesions similar to discoid lupus are the most
common phenotype in X-CGD carriers (26%) and kindreds
(12%) [13, 89-95]. Other carriers had recurrent aphthous-
like stomatitis [89, 90, 92]. Their histology cannot be
differentiated from classical discoid lupus erythematosus
[96]. The occurrence of discoid lupus erythematosus-like
lesions and aphtous stomatitis is closely related to the
degree of reduction in superoxide production [96]. There is
also a high incidence of lupus erythematosus in family
members of CGD patients, up to 9% in the US registry.
Conversely, when females with discoid lupus erythemato-
sus were screened for CGD carriage, no cases were found
[96]; however, only a small number of women were tested
in this trial. Thus, while CGD carriage strongly augments
the risk of discoid lupus erythematosus, it does not appear
to be a major cause of the disease globally. Photosensitivity,
together with other cutaneous symptoms such as rash, is a
symptom reported in carrier mothers [89]. These symptoms
typically precede the development of discoid lupus eryth-
ematosus-like lesions [96]. Photosensitivity and rash are
reported by up to 58% of carriers, but the incidence of
discoid lupus is only 12% [95].

Joints and arthritis

Arthritic lesions can have numerous causes, and it seems
that increased ROS are present at the site of inflammation
where they are expected to oxidize membranes and
components of the matrix and to contribute to tissue
damage and enhanced inflammation [97]. Evidence indi-
cates that this increase in ROS is due to the activity of
NOX2. Circulating neutrophils and monocytes have in-
creased NOX2 activity in patients suffering from rheuma-
toid arthritis. In arthritis, a large number of neutrophils
infiltrate the inflamed joints and several studies show that
neutrophils isolated from synovial fluid of rheumatoid
arthritis patients generate more ROS than circulating resting
neutrophils [98–100]. This increased ROS generation is
therefore considered to participate in tissue destruction.

Nevertheless, there is an emerging concept that increased
ROS production could also be beneficial, in particular, in
cases of autoimmune disorders such as rheumatoid arthritis
and lupus. In humans, it has been reported that 37% of
mothers carrying the X-linked CGD mutation reported joint
pain, that improves under lupus treatment [95] and that a
patient with CGD presented signs of polyarthritis resem-
bling juvenile rheumatoid arthritis [16]. It is not yet known
whether this reduced capacity to produce ROS is a
significant factor in human rheumatoid arthritis, but, on an

interesting note, there is a strong association between a
single nucleotide polymorphism (SNP) in NCf4 (p40phox)
and rheumatoid arthritis in rheumatoid factor-negative men
[101]. This supports the importance of decreased reactive
oxygen species production at least for a subgroup of
patients with rheumatoid arthritis.

The possibility that decreased NOX2 activity leads to
arthritis is of major interest. It is supported by an increasing
body of evidence in animal data that will be discussed in
detail later in this review in the section regarding animal
models of arthritis.

Note that in rare cases CGD patients infected byAspergillus
spp (fumigatus and nidulans) have developed arthritic lesions
[102, 103]. These cases were due to direct infection and
successfully treated with antifungal compounds.

Eyes

Chorioretinitis has been described in CGD patients [13, 75].
The observed lesions are well circumscribed, with chorior-
etinal scars lying next to the major retinal vessels [104, 105].
Their incidence is 30% of X-linked, with no case in
autosomal recessive patients [104]. They are associated with
punched-out like atrophic areas of the choroid, retinal
pigment epithelium and retina [71, 104], sparing the macula
[105]. These lesions affect visual acuity only when they are
extensive [104] and can otherwise be asymptomatic [104,
105]. It has been hypothesised that the underlying patho-
mechanism is an abnormal degradation of phagocytosed
cellular debris; this might point towards an expression of the
NOX2 in retinal pigment epithelium, which is generally
thought to be the phagocyte of the retina [20, 104]. The same
typical lesions are present in 10% of CGD carriers, although
in a less extensive form [104].

Rare cases of oculomucocutaneous syndrome (Behçet
syndrome) [75], chronic uveitis [106], as well as peripheral
ulcerative keratitis [107] have been reported in CGD
patients, although a coincidental association cannot be
excluded.

Lungs

Given the high frequency of pulmonary infection in CGD
patients, there is relatively little data available on non-
infectious complications. In our opinion, however, such
lesions are most likely very frequent, clinically important,
but unfortunately generally overlooked. Globally, histological
studies demonstrated a high incidence of chronic active
inflammation and granuloma in the lungs (50%) and in the
pulmonary lymph nodes (83%) [14, 41]. However, the
question to which extent these lesions were non-infectious,
inflammatory lesions remains unclear. Mouse models strong-
ly argue in favour of inflammatory lung lesions (see below).
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Other organs

Bone marrow biopsies are seldom performed in CGD patients
and no notable abnormalities have been reported [41].

Animal models of increased inflammation in NOX2
deficiency

To study the CGD phenotype, different components of the
NADPH oxidase complex have been deleted by targeted
homologous recombination. The first mouse model of CGD
was a knock-out mouse generated in the laboratory of Mary
Dinauer [108] by targeting the gene encoding the 91-kD
NOX2 subunit, creating a null allele of the gene involved in
X-linked CGD. A second model was generated by Jackson
[109] by disruption of the p47phox gene. Recently, a third
model, the p40phox deficient mouse, was produced [110].
Although no p40phox mutation leading to a CGD phenotype
has been described in humans yet, p40phox−/− neutrophils
exhibit a low oxidative burst and a severe deficiency in
bacterial killing in vitro.

Naturally occurring mutations in the Ncf1 gene (p47phox)
affecting the oxidative burst have been identified in rat
[111] and in mouse [112]. These mutations are responsible
for both a decrease in oxidative burst and a susceptibility to
arthritis.

All of these mouse models lack phagocyte superoxide
production, which manifests as an increased susceptibility to
infection. Spontaneous phenotype of the NOX2 mouse model
is characterized by severe infections with pathogens such as
Aspergillus, Candida, Staphylococcus or Pseudomonas [113].

Rac2-deficient mice reproduce many characteristics of
CGD mice. In particular, Rac2 deficient phagocytic cells
have a reduced oxidative burst, decreased microbial killing,
and increased mortality after invasive aspergillosis [114].
However, Rac2 has other functions besides NOX activa-
tion. In particular, it is involved in the organisation of the
cytoskeleton. In addition to the reduced NOX2 activity,
other abnormalities include defects in F-actin polymeriza-
tion, chemotaxis, and exocytosis of primary granules in
response to chemoattractants as well as decreased L-
selectin-mediated adhesion [115, 116]. Thus, alterations
observed in Rac2-deficient mice cannot be unequivocally
attributed to a CGD phenotype.

Nevertheless, an interesting phenotype was observed in
Rac1- and Rac2-deficient mice in an arthritis model using
the infectious agent Chlamydia [117]. A dual role of Rac
was observed: (1) Rac-deficient neutrophils showed
delayed migration into the joints, which resulted in less
joint inflammation; (2) in the chronic phase, however, Rac
serves to alleviate arthritis, as Rac deficiency resulted in
more severe arthritis. The reduced bactericidal oxidative

activity of Rac-deficient mice results in a lack of host
clearance of Chlamydia, which probably leads to chronic
joint inflammation.

Digestive tract

Although a high percentage of patients suffer from gut
involvement, no spontaneous phenotype has been described
in NOX2-deficient mice. However, studies using Helico-
bacter pylori have yielded unexpected results that argue in
favour of an involvement of CGD hyperinflammation.
NOX2-deficient mice have a stronger inflammatory re-
sponse, but a decreased bacterial load in the Helicobacter
gastritis model [118, 119].

Brain

There is significant evidence showing a role of NOX2 in
neuronal injury during neuroinflammatory processes, in-
cluding Alzheimer’s disease [120], Parkinson’s disease, as
well as stroke, brain trauma and meningitis [20, 84].
Microglia is the resident macrophage in the brain and the
key cell involved in brain inflammation. During neuro-
inflammation, microglia can enter an overactivated state
and release ROS by NOX2 and reactive nitrogen species by
inducible nitric oxide synthase (iNOS) that cause neuro-
toxicity [121, 122].

However, in a model of autoimmune multiple sclerosis,
in vivo data on the role of the phagocyte NADPH oxidase
system in myelin oligodendrocyte glycoprotein (MOG)-
induced autoimmune encephalomyelitis yielded conflicting
results: injection of MOG peptides showed protection from
autoimmune encephalomyelitis for p47phox-deficient mice
or in mice carrying SNPs in the Ncf1 (p47phox) gene [123,
124], while after injection of whole length MOG, which
causes a more chronic and relapsing disease, p47phox

mutant mice developed a more severe autoimmune enceph-
alomyelitis [124]. Thus, the exact role of NADPH oxidase
in autoimmune encephalitis remains unclear.

However, a role of NOX2 does not appear to be limited to
pathologies of the central nervous system. Studies on
different CGD mouse models demonstrate that NADPH-
dependant ROS generation is required for long-term poten-
tiation and normal memory, two hippocampus-dependent
roles [125]. Moreover, NOX2-deficient mice show also a
spatial memory defect. These results could provide some
insight into the cognitive dysfunction in CGD patients (see
above).

Skin

Intradermal injection of heat-inactivated Aspergillus fumi-
gatus cell wall causes severe hyperinflammation in CGD
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mice [47]. Indeed, intradermal injection of Aspergillus
fumigatus extracts causes maximal inflammation at 72
h persisting up to 4 weeks in the CGD mice, while it
resolved within 10 days in wild type mice. However, CGD
skin hyperinflammation is only observed with defined
stimuli, in particular, fungal cell wall components. For
bacterial cell wall components, there is no difference in the
inflammatory response between NOX2-deficient and wild-
type mice [49]. Under certain pathological circumstances,
inflammation is dampened in CGD mice; models include
antibody-mediated autoimmune epidermolysis bullosa
acquisita [126] and sunburn [127].

Joints and arthritis

The participation of NOX2 in joint inflammation has been
extensively studied. However, the precise role of NOX-
generated ROS in arthritis is still controversial. On one hand,
there is a longstanding concept that NOX-derived ROS are
involved in the pathogenesis of arthritis [98, 128, 129].
However, many of these results are based on studies using
rather non-specific NOX inhibitors and should therefore be
taken with caution [20, 130–136]. On the other hand, the
anti-inflammatory role of NOX in arthritis is strongly
supported by studies using mutant rodents with a defective
oxidative burst. In NOX2 and p47phox knock-out mice there
is a more severe arthritis induced by zymosan and poly-L-
lysine coupled lysozyme. Deficient mice show granuloma-
tous synovitis and increased matrix destruction as well as
enhanced expression of inflammatory mediators [137].

As Ncf1 (p47phox) was identified as a gene that regulates
arthritis severity in rats, the group of Rikard Holmdahl has
provided a large amount of information supporting the anti-
inflammatory action of ROS generated by NOX2. These
comprehensive studies are described in detail elsewhere
[138]; however, we will briefly outline the important
findings.

In a search for genes associated with arthritis, linkage
analysis in rat strains differing in arthritis susceptibility
led to the identification of SNPs in the Ncf1 (p47phox)
gene. A coding non-synonymous SNP in the arthritis-
prone Dark Agouti rat was responsible for a decrease (low,
but not absent) in oxidative burst and an increase in
arthritis severity. These results were confirmed in another
species, the mouse. A spontaneous null mutation in the
mouse Ncf1 (p47phox) was isolated by multiple back-
crossing. These p47phox mutant mice showed a reduced
oxidative burst and developed severe and chronic colla-
gen-induced arthritis.

The alkane compound phytol has been shown to be
effective in the treatment of arthritic inflammation by
restoring the oxidative burst in arthritis-prone Dark Agouti
rats and in other models of arthritis, such as collagen-

induced arthritis, anti-collagen II antibody-induced arthritis
and non-oil collagen-induced arthritis [139]. Similar effects
were observed in rats with normal oxidative burst capacity.

Thus, the evidence that decreased ROS generation plays
a role in arthritis development is strong. Globally, however,
the role of ROS in autoimmune diseases like rheumatoid
arthritis is very complex and can be destructive or anti-
inflammatory depending on where, when and to what
extent they are generated. Indeed, a recent study showed
that a single injection of IFN-gamma in the joint increased
the symptoms in 47phox deficient mice while stable over-
expression of adenoviral IFN-gamma in the knee joint
decreased bone destruction [140].

Eyes

So far, there are no reports on retinal disorders in CGD
mice.

Lungs

Acidophilic macrophage pneumonia is a non-infectious
condition found in aging mice. Its incidence depends on the
mouse strain (3–30%) [141, 142]. The cause of this lung
inflammation is poorly understood. However, in our
opinion, it might be related to a problem of degradation
of phagocytosed material. Acidophilic macrophage pneu-
monia is found in 100% of CGD mice as young as
2.5 months, both NOX2-deficient and p47phox-deficient
[113, 143]. On histology eosinophilic, non-birefringent
crystals are seen either extracellularly or in macrophages
and giant cells. Also observed in CGD patients, particularly
in the colon, the provenance has not yet been clearly
established. Proposed physiopathology will be discussed in
the next chapter.

Models of non-infectious lung inflammation using heat-
inactivated Aspergillus fumigatus wall caused an infiltration
of neutrophils with tightly clustered foci within 24 h. The
lesions in the CGD mice included five times more
neutrophils than in the wild type, and more mononuclear
cells but the same amount of leukocytes. At day 7, the
lesion constitutes a distinctive pneumonia with neutrophil
microabscesses surrounded by large mononuclear cells. At
day 21, granuloma-like structures were observed and lasted
up to 6 weeks [47].

However, increased inflammation in CGD may be
beneficial under certain circumstances. Indeed, recent data
obtained with CGD mice suggest that the increased
inflammatory response is protective in pulmonary infection
due to influenza virus [144], pneumococci [145] and
cryptococci [146]. Note, however, that CGD mice are
immune-deficient with respect to pulmonary infections with
S. aureus [47] and Escherichia coli [147].
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Characteristics and mechanisms of the inflammatory
process in NOX2 deficiency

As ROS are usually associated with inflammation, the
increasingly well-documented observation that the absence
of ROS generation by NOX2 leads to enhanced inflamma-
tion represents a change in paradigm and requires investi-
gation into underlying mechanisms. Inflammation is a
highly regulated pathway, which is mediated by pro- and
anti-inflammatory biochemical signals. In particular, there
is emerging evidence that the resolution of inflammation is
an active process requiring the activation of endogenous
programs (for review, see [148]). In the light of the various
hyperinflammatory states observed in CGD, ROS produc-
tion by NOX2 is likely to play an active role in this
resolution. Degradation of phagocytosed material is one of
the obvious roles of ROS in the resolution of inflammation.
However, ROS could also contribute to the termination of
inflammation through suppression of pro-inflammatory
signals or through impaired survival of pro-inflammatory
cells. Defects in any of these processes can lead to
aggravated inflammation.

The mechanistic investigations into these processes are
in their initial phase and the possibilities remain wide open.

Basically the following mechanisms have to be considered
(Fig. 2):

1) decreased degradation of phagocytosed material

The initially proposed mechanism of CGD hyper-
inflammation is a decreased degradation of phagocytosed
material due to deficient generation in CGD phagocytes.
Phagocytosed material could accumulate in NOX2-
deficient phagocytes leading to persistent cell activation
[49, 149]. Deficient degradation could implicate either the
remaining phagocytosed microbial material [49] or phago-
cytosed apoptotic neutrophils by macrophages. The
pathognomonic eosinophilic crystals described in both
CGD patients and mice might be residues of poorly
degraded apoptotic neutrophils. In fact, the proteins within
these crystals are, at least in part derived from neutrophils
[143].

2) NOX2 signalling in myeloid cells
a) Calcium and ion channels

Reactive oxygen species (ROS)-dependent attenuation of
Ca2+ signalling [150, 151] may be impaired in CGD,
contributing to enhanced inflammation. This might occur
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Fig. 2 Mechanisms implicated in the ROS-dependent resolution of
inflammation in chronic granulomatous disease. NOX2-derived ROS
might exert their anti-inflammatory activity on the level of neutro-
phils, macrophages and dendritic cells, or on the level of lymphocytes.
NOX2-derived ROS might enhance neutrophil apoptosis and limit
neutrophil recruitment. A role of NOX2 in degradation of phagocy-

tosed material (microbial material, apoptotic cells) is likely. NOX2-
dependent kynurenine generation dampens T lymphocyte activation.
NOX2 might also be expressed at low levels in T lymphocyte and
regulate cell surface redox state and cytokine release. Thus, a
multitude of mechanisms involved in the resolution of inflammation
are lacking in NOX2-deficient cells

264 Semin Immunopathol (2008) 30:255–271



through regulation of membrane potential in CGD gran-
ulocytes, showing a more negative membrane potential,
which allows increased Ca2+ influx and thereby an
enhanced inflammatory response [150]. Also, a direct
regulation of Ca2+ channels by the redox potential via
thioredoxin has been suggested recently [152].

b) Altered intracellular signalling

ROS are increasingly implicated in the regulation of
intracellular signalling, particularly through the oxida-
tion of cysteine residues in phosphatases and in
transcription factors [20]. Thus, it is possible that the
absence of NOX2-derived ROS in CGD leukocytes
creates signalling alterations which favour proinflamma-
tory responses. Indeed, there are numerous publications
suggesting that the inflammatory response can be more
pronounced in CGD phagocytes with higher release of
TNF-α and IL-8 [150, 153–155]. On the other hand,
human CGD phagocytes have an impaired ability to
produce anti-inflammatory mediators, such as TGF-β
and prostanglandine 2 [156]. The stimulus is also an
important factor. In our studies, the fungal wall component
β-glucan, but not bacterial cell wall components, induced
hyperinflammation. This raises the possibility that ROS
provide a feedback inhibition to inflammatory signalling
through β-glucan receptors [49]. Also, human CGD
leukocytes stimulated by sterile Aspergillus cell wall
extracts release either pro- or anti-inflammatory cytokines,
depending on the source of the extract: conidial stimula-
tion tips the balance towards proinflammatory cytokines,
such as TNF-α and interleukine 6, while hyphal stimula-
tion leads to higher levels of Th2 regulatory cytokines,
such as IL-10 [157].

c) Apoptosis

Apoptosis of inflammatory cells is a potential mecha-
nism to limit inflammation. There is abundant evidence
suggesting that ROS can induce neutrophil apoptosis
[158–164]. Consequently, it has been suggested that
decreased apoptosis of neutrophils is one of the mecha-
nisms of CGD hyperinflammation [137, 156, 160, 165,
166]. Constitutive apoptosis seems to be abnormal in both
human and murine CGD neutrophils due to diminished/
delayed phosphatidyl serine exposure [167]. The recogni-
tion of exposed phosphatidyl serines is essential for the
uptake of the apoptotic cells. The failure to ingest apoptotic
cells is hypothesised to cause immunisation to self-
antigens, leading, for example, to higher lupus prevalence
in CGD patients. It should, however, be noted that in a skin
model of CGD hyperinflammation, increased, rather than
decreased, neutrophil apoptosis was observed [49]. Thus,
there is no strong in vivo data for the NOX2-dependent
apoptotic mechanism.

d) Immune receptor expression

Recently, impaired expression and function of innate
immune receptors has been described in neutrophils of
CGD patients [168]. A decreased expression of specific
receptors (TLR5, TLR9, complement receptors and
CXCR1) results in impairment of the various neutrophil
functions such as pathogen recognition, phagocytosis and
chemotaxis [168]. On the other hand, there is an
increased cell surface expression of other immune
receptors, such as TLR5 and CD18, in CGD patients. It
has been suggested that this upregulation has a protective
role concerning the development of lymphadenitis and
pneumonia [168]. It also appears that CD35 expression is
increased in immune cells from CGD patients, which
might be linked to the increased frequency of autoim-
mune pathologies [168].

e) Inflammatory mediators

The inability of CGD immune cells to inactivate
inflammatory mediators is another potential explanation
for hyperinflammation. Indeed, it has been suggested that
impaired oxidative inactivation of proinflammatory media-
tors may prolong the inflammatory response [169]. In vitro
catabolism of inflammatory mediators such as leukotrienes
[170–172] and S100 proteins has been shown to be ROS
production dependent [169].

3) NOX2 signalling in lymphocytes

The role of ROS in the activation of T-cells has been
mostly studied in the context of arthritis. Intracellular
ROS are increased in synovial T cells from patients with
rheumatoid arthritis, but this increase is not NOX2
dependent as it is not inhibited by DPI [173]. However,
it appears that the severity of arthritis is regulated by the
redox levels at the surface of T cells [174]. Lack of
reactive oxygen species breaks T-cell tolerance to collagen
type II and allows development of arthritis in mice [175].
NOX2 is also expressed in EBV-transformed B-cells, but
the physiological role of this expression is only poorly
understood [20].

The question whether NOX2 is indeed expressed in T
lymphocytes or whether NOX2 regulates redox-depen-
dent processes in lymphocytes exclusively through a
paracrine interaction (i.e. H2O2 diffusion) between
phagocyte and T lymphocytes remains open. The fact
that adoptive transfer of CD4+ T cells from mice with
Ncf1 (p47phox) polymorphism transfers their arthrito-
genic potential would argue in favour of a direct role of
NOX2 in T lymphocytes [174]. On the other hand,
determination of ROS generation in T cells alone has
suggested that they have little or no oxidative burst
capacity [138].
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4) Crosstalk between lymphocytes and NOX2
from myeloid cells
a) Redox status

As discussed above, macrophages and their ability to
generate ROS is thought to be involved in T cell responses
and arthritis development in mice [138].

A recent paper shows that hyperinflammation in NOX2-
deficient mice might—at least in part—be due to a
dysfunctional kynurenine pathway [176]. Kynurenine is
produced from tryptophan by indol 2,3 dioxidase (IDO). It
favours T-cell tolerance. Superoxide is a required cofactor
for tryptophan oxidation by IDO. Thus, lack of ROS
precludes kynurenine generation and therefore the devel-
opment of immune tolerance. It is interesting to note that a
recent study suggested a reversal of the hyperinflammatory
phenotype in CGD mice by replacement therapy with
kynurenine.

5) Modifier genes

The severity of CGD hyperinflammation may also be a
function of modifier genes. Indeed, the risk to develop
granulomatous complications appears to be influenced by
genotypes of myeloperoxidase and Fcγ receptors, while the
risk to develop a rheumatologic disorder is modified by the
presence of variant alleles of mannose binding lectin or
FcγRIIa [36]. Thus, subtle genetic differences in molecules
of innate immunity seem to contribute to interindividual
differences in host inflammatory responses in CGD
patients.

Conclusions: ROShigh and ROSlow inflammatory
responses

This review summarises the currently available information
about NOX2 and inflammation and aims at deciphering the
seemingly heterogeneous responses in both CGD patients
and animal models. In particular, we highlight the appar-
ently counterintuitive findings that NOX2 deficiency leads
to a hyperinflammatory response. To clarify this emerging
concept, we proposed the distinction between a “ROShigh

inflammatory response” and a “ROSlow inflammatory
response” (Fig. 3).

The ROShigh inflammatory response is characterized by
phagocyte NADPH oxidase activation, activation of ROS-
dependent killing mechanisms, but with a limitation in the
influx of neutrophils and oxygen-independent killing
mechanisms. It also may dampen the activation of the
specific immune system through mechanisms including
kynurenine generation. The ROShigh inflammatory response
appears to be superior for the host defence against
staphylococci [108], Aspergillus [47], E. coli [147],
Mycobacterium tuberculosis [177], as well as for the
clearance of phagocytosed material. The ROShigh inflam-
matory responses are typically associated with chronic lung
disorders [18, 178], and cardiovascular and neurodegener-
ative diseases [20].

The ROSlow inflammatory response is characterized by a
massive influx of neutrophils and a strong activation of
oxygen-independent killing mechanisms. It allows a stron-
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the defence against Influenza, Cryptococcus, etc. These advantages are

counterbalanced by disadvantages: ROShigh response is associated
with increased ROS-dependent tissue damage, including vascular
disease, neurodegeneration, and chronic lung disorders. On the other
hand, long-lasting inflammation and increased incidence of autoim-
mune disorders are seen in case of ROSlow response
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ger activation of the specific immune system. The ROSlow

inflammatory response seems to be superior for the host
defence in many situations, including pneumococcal [145],
Influenza [144], and cryptococcal pneumonia [146], Heli-
cobacter gastritis [118, 119]. ROSlow inflammatory
responses are histologically more severe and tend to lead
to more tissue damage. Also the ROSlow inflammatory
response is inefficient in removing phagocytosed material,
as evidenced by the pigmented macrophages, which are
consistently observed in CGD patients and in CGD mice.
Finally, the ROSlow inflammatory response is associated
with autoimmune disease, in particular lupus and arthritis.

Are ROSlow inflammatory responses an oddity of CGD
patients and their relatives, or is this a more widely
applicable concept? In our experience, the amount of ROS
generation by phagocytes varies greatly from one individ-
ual to the other (unpublished observation). Also, there is
increasing evidence of high or low levels of ROS
production in patient cohorts with defined diseases [18,
84] such as lupus, Alzheimer’s disease, amyotrophic lateral
sclerosis [179], osteopetrosis [180], osteoporosis [181].
Thus, there appear to be genetic variations in ROS
generation.

However, there might also be variations in ROS
generation independent of genetic factors, which would
favour a ROShigh and ROSlow inflammatory response,
respectively. Such putative factors include the oxygen
tension in a given tissue, nutritional uptake of prooxidants
and antioxidants, as well as the hormonal and cytokine
environment.

In summary, we propose that the study of the inflam-
matory response in CGD patients and mice, as discussed in
this review, opens a new avenue for an improved
understanding of inflammation and immune balance in
general.
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