
DOI: 10.1007/s00145-004-0150-y

J. Cryptology (2005) 18: 37–61

© 2004 International Association for
Cryptologic Research

Minimal Complete Primitives for Secure
Multi-Party Computation∗

Matthias Fitzi
Department of Computer Science,

University of California,
Davis, CA 95616, U.S.A.

fitzi@cs.ucdavis.edu

Juan A. Garay
Bell Labs – Lucent Technologies,

600 Mountain Ave.,
Murray Hill, NJ 07974, U.S.A.
garay@research.bell-labs.com

Ueli Maurer
Department of Computer Science, ETH,

CH-8096 Zurich, Switzerland
maurer@inf.ethz.ch

Rafail Ostrovsky
Telcordia Technologies Inc.,

445 South Street,
Morristown, NJ 07960-6438, U.S.A.

rafail@research.telcordia.com

Communicated by Oded Goldreich

Received October 2001 and revised June 2003
Online publication 27 April 2004

Abstract. The study of minimal cryptographic primitives needed to implement secure
computation among two or more players is a fundamental question in cryptography. The
issue of complete primitives for the case of two players has been thoroughly studied.
However, in the multi-party setting, when there are n > 2 players and t of them are
corrupted, the question of what are the simplest complete primitives remained open for
t ≥ n/3. (A primitive is called complete if any computation can be carried out by the
players having access only to the primitive and local computation.)

In this paper we consider this question, and introduce complete primitives of min-
imal cardinality for secure multi-party computation. The cardinality issue (number of

∗ A preliminary version of this paper appeared in Advances in Cryptology – CRYPTO ’01, LNCS 2139,
Springer-Verlag, pp. 80–100, Santa Barbara, CA, August 2001.

37

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159146525?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

38 M. Fitzi, J. A. Garay, U. Maurer, and R. Ostrovsky

players accessing the primitive) is essential in settings where primitives are implemented
by some other means, and the simpler the primitive the easier it is to realize. We show
that our primitives are complete and of minimal cardinality possible for most cases.

Key words. Multi-party computation, Secure function evaluation, Unconditional se-
curity, Complete functions, Oblivious cast.

1. Introduction

In (general) secure multi-party computation, n parties (“players”) attempt to compute
multi-party functionalities in the presence of an adversary who may corrupt up to t of
them. The study of secure multi-party computation is important both from a theoretical
and a practical point of view. It not only establishes what is possible to compute and what
is not in multi-party environments, but may sometimes yield techniques and components
that can be used in application-specific systems [Go1].

Traditionally, the models for secure multi-party computation have assumed that cer-
tain communication “resources” (primitives) are available to the players. Well-known
instances include pairwise private channels [BGW], [CCD], a broadcast channel [RB],
and, more recently, a “mini-cast” primitive, which is available to every triple of play-
ers [FM]. In this paper, and with respect to the strongest, active adversary, we initiate the
study of minimal complete primitives for secure multi-party computation from the point
of view of the cardinality of the primitive—i.e., the number of players accessing it. A
primitive is called complete if any computation can be carried out by the players having
access (only) to the primitive and local computation. A primitive is called minimal if any
primitive involving fewer players is not complete.

For n players, t of which might be corrupted, the question is well understood for
t < n/3. In this paper we consider this question for t ≥ n/3. We show that in fact
there are three interesting “regions” for t : t < n/3, n/3 ≤ t < n/2, and n/2 ≤ t < n,
and present, for each region, minimal complete primitives for t-resilient unconditional
multi-party computation.

1.1. Motivation

There are three main motivations for this work. First, determining the minimal necessary
primitives for secure multi-party computation, for various adversary models, is of fun-
damental theoretical interest. Second, minimizing the number of players involved in a
primitive is important because the lower the primitive’s cardinality the easier it might be
to realize it by exploiting some physical phenomenon (e.g., quantum entanglement). For
instance, broadcast among three players [FM] appears to be a more realistic primitive
than Internet-scale broadcast. Third, investigating information-theoretic reductions of
multi-party computation to a certain primitive is of interest, even if the implementation
of this primitive is based on cryptographic assumptions, for the following reasons:

– The (cryptographic) security proof of a protocol for a complex task is typically easier
when the analysis can be broken up into a global information-theoretic argument
and a “local” cryptographic argument.

– Information-theoretic multi-party protocols are typically more efficient (though
less resilient) than their cryptographic counterparts, and hence the described design
approach may lead to the most efficient multi-party protocols.

Minimal Complete Primitives for Secure Multi-Party Computation 39

1.2. Prior and Related Work

Secure multi-party computation. Secure multi-party computation has been actively
studied since the statement of the problem by Yao in [Ya]. For the standard model
with secure pairwise channels between the players, the first general solution of the
problem was given by Goldreich et al. [GMW] with respect to computational security.
Ben-Or et al. [BGW] and Chaum et al. [CCD] constructed the first general protocols
with unconditional security. Additionally, it was proven in [BGW] that unconditionally
secure multi-party computation was possible if and only if less than half (one-third) of
the players are corrupted passively (actively).

For the model where, in addition to the pairwise secure channels, a global broadcast
channel is available, Rabin and Ben-Or [RB] constructed a protocol that tolerates (less
than) half of the players being actively corrupted. Their solution is not perfect, as it
carries a small probability of error. However, it was later shown by Dolev et al. [DDWY]
that this is unavoidable for the case t ≥ �n/3� (and the assumed communication prim-
itives), as there exist problems with no error-free solutions in this setting. Fitzi and
Maurer [FM] recently proved that, instead of global broadcast, broadcast among three
players is sufficient in order to achieve unconditionally secure multi-party computation
for t < n/2.

Complete primitives. Another line of research deals with the completeness of prim-
itives available to the players. Kilian [Ki1] proved that oblivious transfer (OT) [Ra]
is complete for two-party computation in the presence of an active adversary. A com-
plete characterization of complete functions for two-party computation, for both active
and passive adversaries, was given in [Ki3] based on [Ki2] and results by Beimel et
al. [BMM]. These results are stated with respect to asymmetric multi-party computa-
tion in the sense that the result of the function is provided to one single (predefined)
player.

A first generalization of completeness results to the more general n-party case was
made by Kilian et al. [KMO], [KKMO], who characterized all complete boolean func-
tions for multi-party computation secure against a passive adversary that corrupts any
number of players.

With the noted exception of Goldreich’s treatment of reductions in [Go2], previous
work on complete primitives typically assumes that the cardinality of the primitive is the
same as the number of players involved in the computation.1 In contrast, in this paper
we are concerned with the minimal cardinality of complete primitives for multi-party
computation.

1.3. Contributions of This Paper

In this paper, for any primitive cardinality k, 2 ≤ k ≤ n, we give upper and lower bounds
on t such that there is a complete primitive gk for multi-party computation secure against
an active adversary that may corrupt up to t of the players. To our knowledge, this is

1 Implicitly, though, Kilian and coworkers [KMO], [KKMO] transform calls to a cardinality n primitive into
pairwise OT invocations. Fitzi and Maurer’s work on achieving global broadcast (multi-party computation)
based on 2-cast and authenticated (resp., secure) channels can also be viewed as a step towards minimizing
the primitives’ cardinality.

40 M. Fitzi, J. A. Garay, U. Maurer, and R. Ostrovsky

the first time that the power of the cardinality of cryptographic primitives—and their
minimality—is rigorously studied.

When k = 2, it is well known that secure pairwise channels (or, more generally, OT)
are enough (complete) for t < n/3, as follows from [BGW], [CCD], and [Ki1]. We
show that, for n > 2, no primitive of cardinality 2 can go above this resiliency bound,
including primitives that are complete for two-party computation. Specifically, we show
that there is a problem, namely, broadcast (aka Byzantine agreement) [PSL], that cannot
be solved in a model where players are connected by “g2 channels” for any two-party
primitive g2.

The case k = 3 is of special interest. We introduce two primitives: oblivious cast, a
natural generalization of oblivious transfer to the three-party case,2 and converge cast,
a primitive that is related to the anonymous channel of [Ch], and show that they are
complete for t < n/2. In light of the impossibility result for k = 2, these primitives
are also minimal. We also show that no primitive of cardinality 3 can be complete for
t ≥ n/2.

For the case k = n we introduce another primitive, which we call the universal black
box (UBB), and show that it is complete for arbitrary resiliency (t < n). This primitive
has interesting implications for computations involving a trusted third party (TTP), in that
it enables oblivious TTPs, i.e., trusted parties which do not require any prior knowledge
of the function to be computed by the players—even if a majority of the players is
corrupted. The UBB is also minimal, since we also show that no primitive of cardinality
n − 1 can be complete for t < n, by showing that broadcast tolerating that many faults
cannot be achieved by any (n − 1)-cardinality primitive. The results mentioned so far
are summarized in Table 1.

Multicast and “convergecast,” with a single sender and a single recipient, respectively,
constitute two natural communication models. We also show that no primitive of this kind
(i.e., a primitive with one input or one output)—even of full cardinality—can achieve
more than t < n/2, and therefore be more powerful than our primitives of cardinality
3. In other words, with respect to these primitive types, Table 1 “collapses” to two
equivalence classes: k = 2 and 3 ≤ k ≤ n. For these impossibility proofs, we use

Table 1. Complete primitives of cardinality k.

Primitive
Resiliency

Number of
cardinality Efficient reduction Impossibility Primitive∗ instances

k = 2 t < n/3 t ≥ n/3 SC2 2
(

n
2

)
k = 3 t < n/2 t ≥ n/2 OC3/CC3 3

(
n
3

)
4 ≤ k ≤ n − 1 t < n/2 t ≥ n − 2 OC3/CC3 3

(
n
3

)
k = n t < n — UBBn 1

∗SC2: secure channel; OC3: oblivious cast; CC3: converge cast; UBBn : universal black box. OC3, CC3, and
UBBn are primitives introduced in this paper.

2 Independently (but previously), a similar primivite called “Oblivious Multicast” was introduced by Blaze
in [Bl].

Minimal Complete Primitives for Secure Multi-Party Computation 41

reductions to problems in the standard model of secure point-to-point channels that are
known to be unsolvable.

All the primitives we present allow for efficient secure multi-party computation.

1.4. Organization of the Paper

We start in Section 2 with definitions of and notation for primitives of arbitrary cardi-
nality, the security model we use, and the notion of reducibility and completeness for
functionalities and primitives of different cardinality. Section 3 contains the reductions
of multi-party computation to primitives of the various cardinalities. In Section 3.1 we
revisit the case of cardinality 2 with a tight bound of t < n/3. In Section 3.2 we introduce
the two new primitives of cardinality 3, and show that they are complete for t < n/2,
which is a tight bound as it follows from Section 4; we also show in this section how
other primitives of cardinality 3 can be designed in such a way that the analysis required
by the reductions is less involved. In Section 3.3 we give a primitive of full cardinality
(k = n) that is complete for t < n. Section 4 contains the impossibility results, i.e.,
lower bounds on the required number of correct players for multi-party computation
with primitives of cardinality 2 ≤ k ≤ n − 1, together with the proofs that primitives
that are single-input or single-output cannot be complete for t ≥ �n/2�. We conclude in
Section 5 with open problems and directions for further research. In some of our proofs
we make use of Chernoff bounds; we include a succint description in the Appendix for
convenience.

2. Model and Definitions

In this paper we focus on secure function evaluation (SFE) [Ya] by a set P of n players,
where each player pi has an input value xi and obtains an output value fi (x1, x2, . . . , xn),
for a (probabilistic) function fi . We are interested in unconditional security against an
active adversary who may corrupt up to t of the players; i.e., the adversary may make
the corrupted players deviate from the protocol in an arbitrarily malicious way, and no
assumptions are made about his computational power.

In contrast to the treatment of two-party computation (e.g., [Ki2], [Ki3], and [BMM]),
where only one predefined player receives the final result of the computation, our model
allows every player to receive his own (in general, different) result—which corresponds
to the general notion of multi-party computation in [Ya], [CCD], and [BGW]. Similarly,
our definition of a primitive, as given in the next paragraph, also allows every involved
player to provide an input and get an output, as opposed to just one player. Nonetheless,
our constructions apply to the former model as well since for each of our complete
multiple-output primitives there is also a single-output primitive that is complete with
respect to single-output SFE.

2.1. Primitives of Arbitrary Cardinality

Our communication model is based on ideal primitives that can be accessed by k players,
2 ≤ k ≤ n, implementing the secure computation of some k-ary, possibly probabilistic
function; k is called the cardinality of the primitive. Besides this primitive, no other
means of communication is assumed among the players.

42 M. Fitzi, J. A. Garay, U. Maurer, and R. Ostrovsky

We view primitives as “black boxes” in the sense that all implementation details are
hidden from the players. Depending on the function being implemented, of the k players
accessing the primitive one or more may secretly enter an input to it, and one or more
may secretly receive the value(s) of the function.

We use gk[i, j] to denote the primitive implementing k-ary function g, in which i ≤ k
players provide an input, and where j ≤ k players receive the output of the function.3

We call [i, j] the type of the primitive. We drop the type when clear from the context.
We focus on the following types: [1, �], [�, 1], and [k, k] where 1 ≤ � ≤ k.4

Note that a primitive of a given cardinality can always be simulated (when applicable)
by the same primitive with a larger cardinality by “cutting” some of the “wires,” or
connecting them to the same player. More formally, the following domination relation
exists: let (k ′, i ′, j ′) ⊇ (k, i, j) (meaning k ′ ≥ k, i ′ ≥ i and j ′ ≥ j); then for every
primitive gk[i, j] there exists a primitive g′k ′ [i

′, j ′] that is as powerful as gk[i, j].
We assume that every subset S ⊂ P of k players shares k! instances of the primitive—

one for each permutation of the players; thus, we assume
(n

k

)
k! instances of the primitive

in total. However, we will show that there is always a (minimal complete) primitive such
that, overall, polynomially many instances (specifically, less than n3) of the primitive are
sufficient.

2.2. Security Model

Several formal definitions of secure function evaluation exist (e.g., [Be], [Ca], [Go2],
[GL], and [MR]). The process is assumed to be synchronous, a fact that simplifies the task
of reasoning about security. In [Ca] (and in a nutshell), the computation to be performed
among the n players is specified with respect to an incorruptible trusted party τ who
interacts securely with the players. For the special case of STE where a function on the
players’ inputs is to be computed and revealed, such a process can be defined by the
players first secretly handing their inputs to τ , τ computing the output corresponding
to the (possibly probabilistic) function, and then handing it back to the players. Such a
protocol among P ∪ {τ } is called an ideal process.

Of course, the goal of multi-party computation is to perform the same task without
the need for a trusted party; thus, a multi-party computation protocol for evaluating
a function is called secure if it emulates the ideal evaluation process of the function,
i.e., if for every strategy of the adversary in the real protocol there is a corresponding
adversary strategy that, with similar cost, achieves the same effect in the ideal process.
In particular, this means that whenever the ideal process satisfies some consistency or
privacy property with respect to the players (e.g., privately computes some specific
function on the players’ inputs), then the secure protocol also satisfies them. This notion
of security can then be refined further by distinguishing among the different types of
similarities between the global outputs in both the ideal and real-life computations. We

3 A complete specification of the primitive should include additional aspects, such as which i (j) out of the
k players provide an input (resp., receive an output), etc., but the simpler notation will be expressive enough
for the primitives we consider.

4 Note that, for n ≥ 2, no primitive of type [0, ∗] or [∗, 0] can be complete and thus these cases are ignored.
For the same reason, in the case of [1, 1], we always ignore the “reflexive” case (same player providing input
and receiving the output).

Minimal Complete Primitives for Secure Multi-Party Computation 43

are interested in unconditional security, which is obtained by requiring that these output
distributions be (statistically) indistinguishable, except for a negligible function of the
security parameter, independently of the adversary’s computational power. See [Ca] for
further details.

2.3. Reducibility and Completeness

A main theme in this paper is that of reductions “across” cardinalities. The notion of
reduction generalizes to the case of computation of an n-ary function (n-player protocol)5

invoking another k-ary function (primitive of cardinality k, resp.), with k ≤ n, in a natural
way [Go2]:

Definition 1 (Reductions). An n-player protocol unconditionally reduces fn to gk for
a given t < n, if it computes fn unconditionally t-securely just by black-box calls to gk

and local computation. In such a case we say that fn unconditionally reduces (for short,
reduces) to gk for that t .6

The notion of completeness also generalizes to the different cardinality setting in a
natural way: if gk is complete one can use gk to perform secure n-party computation.
More formally:

Definition 2 (Completeness). We say a primitive gk is unconditionally complete (for
short, complete) for a given t < n, if every n-ary function unconditionally reduces to gk

(for the same t).

Typically, the reduction step is applied more than once, by reducing a primitive already
known to be complete to another, perhaps simpler, primitive. For example, this is the case
in the two-party case, where protocols are given that implement oblivious transfer using
a different primitive (see, e.g., [Ki3]). This is also the approach we follow in this paper,
by showing how to implement, using our primitives, the “resources” that are known to
be required for SFE.

Furthermore, all our reductions will be unconditionally secure in a way that the sim-
ulation can fail with some negligible probability, but, in the non-failure case, it perfectly
provides the desired functionality; i.e., compared with an ideal implementation of the
functionality, the reductions leak no additional information and provide perfect correct-
ness. Hence, by estimating the overall error probability of the complete reduction from
the given SFE problem to the complete primitive as the probability that at least one single
implementation of a reduction step fails, we actually get an upper bound on the prob-
ability that the whole protocol does not provide perfect security. Since our reductions
keep this probability negligibly small, we achieve unconditional security according to
the definition above.

5 (Local) Computation can, of course, be randomized, and the requirement is that the function’s output is
produced with high probability.

6 Note that the definition of reduction also admits the opposite direction, i.e., from smaller cardinality to larger
cardinality. Occasionally in our constructions we will also use this direction (for example, by implementing
secure pairwise channels using a three-player primitive).

44 M. Fitzi, J. A. Garay, U. Maurer, and R. Ostrovsky

Finally, we note that all our reductions are efficient, i.e., polynomial in n and a security
parameter σ such that the overall error probability is smaller than 2−σ .

3. Complete Primitives

3.1. Primitives of Cardinality 2

It is well known that secure channels (SC2) are sufficient for unconditional SFE [BGW],
[CCD] with t < n/3. That is, in our parlance:

Proposition 3.1. For any n ≥ 2, there is a primitive of cardinality 2, the secure channel,
that is complete for t < n/3.

Since we are assuming that every permutation of the players share a primitive, the
type of a secure channel is [1, 1]; hence, for t < n/3, the complete primitive is of the
weakest type. For n > 2, no primitive of cardinality 2 can be complete for t ≥ �n/3�
(Corollary 4.2), therefore this bound is tight.

3.2. Primitives of Cardinality 3

Evidently, a primitive g3[1, 1] is equivalent to g2[1, 1] since in g3 one of the players
neither provides an input nor receives an output. Hence, in this section we consider
primitives (of cardinality 3) of type different from [1, 1]. In fact, it turns out that either
two inputs (and single output) or two outputs (and single input) is sufficient. For each
type we introduce a primitive and show it to be complete for t < n/2. Moreover, we
show (in Section 4) that no primitive of cardinality 3 can be complete for t ≥ �n/2�.

The approach to show that a primitive is complete is as follows. It follows from [RB]
and [CDD+] that pairwise secure channels and a global broadcast channel are sufficient
for SFE secure against t < n/2 active corruptions. Hence, it is sufficient to show that
the primitives introduced in this section imply both, unconditionally secure pairwise
channels and global broadcast.

The first primitive we introduce, oblivious cast, is of type [1, 2], and a generalization of
oblivious transfer to the multi-receiver (in our case, two) setting: a sender sends his input
bit to two receivers, who get it with probability 1

2 .7 The second primitive we introduce,
converge cast, with two senders and one receiver (i.e., of type [2, 1]), is the converse of
oblivious cast: each sender sends a value, and the receiver gets one value or the other with
probability 1

2 . Thus, converge cast can be viewed as a three-party version of Chaum’s
“anonymous channel” [Ch].

The main reasons for considering these two primitives of cardinality 3 are that

1. they constitute natural generalizations of existing primitives to a multi-party (“net-
work”) setting, and

2. their definition is simple and symmetric (e.g., the value from each of the senders
in converge cast gets through with 1

2 probability); this not only makes them easy to

7 See [Bl] for a specification for the general case—k receivers out of n.

Minimal Complete Primitives for Secure Multi-Party Computation 45

state, but also perhaps more amenable for realization by some other (e.g., physical)
means.

This, however, comes at a price, since as we describe in Section 3.2.3, other, less “natural,”
primitives can be designed in such a way that the implementation of the resources needed
for SFE is easy, and which do not have probabilities of error. However, minimality, in
particular, in the size of the input/output domains, is yet another desirable property for
these primitives, of both practical and theoretical interest, and the simpler-to-analyze
primitive presented there requires larger value domains than oblivious cast and converge
cast. Moreover, this primitive is not symmetric. Thus, simpler analysis trades off naturally
with symmetry and minimality (see Section 3.2.3).

3.2.1. Type [1, 2] Primitives: Oblivious Cast

Definition 3. Oblivious cast (OC3) is a primitive among three players: a sender s who
sends a bit b ∈ {0, 1} and two recipients r0 and r1, such that the following conditions are
satisfied:

(1) The bit b is received by exactly one of the recipients, r0 or r1, each with probability
1
2 .

(2) While both recipients learn who got the bit, the other recipient gets no information
about b. In case there are other players (apart from s, r0 and r1), they get no
information about b.

Implementing secure channels using oblivious cast. Secure pairwise channels can be
achieved by the simulation of authentic channels and the implementation of a pairwise
key-agreement protocol between every pair of players pi and pj . Players pi and pj

can then use the key (e.g., a one-time pad) to encrypt the messages to be sent over the
authentic channel.

Lemma 3.2. Let n ≥ 3. Then authentic channel reduces to oblivious cast for t < n/2.

Proof. An authentic channel between players pi and pj can be achieved from oblivious
cast among pi , pj , and some arbitrary third player pk ∈ P\{pi , pj }, by pi (or pj)
oblivious-casting his bit (or whole message) σ times. Finally, pj decides on the first bit
he has received in those oblivious casts.

Since it is sufficient to achieve authentic channels only between pairs of correct players
we can assume that the sender is correct. The invocation of this channel fails if pj does
not receive any of the bits being sent by oblivious cast, and this happens with a probability
of at most Prauth

err = 2−σ .

In order to generate a one-time pad (OTP) si j of one bit between two players pi and
pj , we can let pi generate some m random bits b1, . . . , bm and oblivious-cast them to
pj and some arbitrary third player pk , where m is chosen such that, with overwhelming
probability, pj receives at least one of those random bits (every bit bx is received by pj

with probability 1
2). Finally, pj uses his authentic channel to pi (Lemma 3.2) to send

to pi the index x ∈ {1, . . . ,m} of the first bit bx that pj received. Since pk gets no

46 M. Fitzi, J. A. Garay, U. Maurer, and R. Ostrovsky

information about the bit, bit bx can be used as an OTP-bit between pi and pj . In order
to get an OTP of length � > 1 this process can be repeated � times.8

In order to guarantee that the transmission of a bit through the secure channel thus
obtained fails with an error probability of at most Prerr = 2−σ , we can parameterize m
and the security parameter for the invocations of the authentic channel, σauth, as follows:

– Proc
err ≤ 2−σ−1—the probability that none of the m bits transmitted by oblivious cast

is received by player pj .
– Prauth

err ≤ 2−σ−1—the probability that at least one of the invocations of the authentic
channel fails.

So we can choose m = σ + 1. The number of invocations of the authentic channel
is � = �log m� + 1 (�log m� for the transmission of index x plus one for the final
transmission of the encrypted bit). Hence, σauth can be chosen as σauth = σ +�log ��+1.

Lemma 3.3. Let n ≥ 3. Then secure channel reduces to oblivious cast for t < n/2.

Proof. From Lemma 3.2 and the discussion above it follows that the secure channel
construction has an error probability of Prerr ≤ Prauth

err + Proc
err ≤ 2−σ .

Implementing broadcast using oblivious cast. It is shown in [FM] that a three-party
primitive called weak 2-cast, defined below, yields global broadcast secure against
t < n/2 active corruptions. Thus, it is sufficient to show that, using oblivious cast,
an implementation of weak 2-cast in any set S ⊂ P , |S| = 3, and for any selection of
a sender among those players, is possible. We first recall the definition of weak 2-cast
from [FM].

Definition 4. Weak 2-cast is a primitive among three players: one sender and two
recipients. The sender sends an input bit b ∈ {0, 1} and both recipients get an output
(decision) value v ∈ {0, 1,⊥} such that the following conditions hold:

(1) If both recipients are correct and decide on different values, then one of them
decides on ⊥.

(2) If the sender is correct, then all correct recipients decide on his input bit.

The idea behind the implementation of weak 2-cast using oblivious cast is to have
the sender repeatedly oblivious-cast his bit a given number of times. Hence, a recipient
who receives two different bits reliably detects that the sender is faulty and may safely
decide on ⊥. On the other hand, in order to make the two recipients decide on different
bits, a corrupted sender must oblivious-cast 0’s and 1’s in such a way that each recipient
gets one value, but not the other one. However, since the sender cannot influence which
of the recipients gets a bit, he can enforce this situation only with exponentially small
probability. We now describe the implementation in more detail.

8 A more efficient way to generate an OTP of length � is to choose a larger m and have pj send to pi

the indices of the first � bits he received. For simplicity we restrict ourselves to the less efficient but simpler
method.

Minimal Complete Primitives for Secure Multi-Party Computation 47

Protocol Weak-2-Cast-Impl-1(s, {r0, r1}, σ)

1. Sender s oblivious-casts his bit (σ + 1) times to the recipients.

2. Recipients ri (i ∈ {0, 1}) decidevi =

0 if 0 received at least once, and no 1’s;
1 if 1 received at least once, and no 0’s;
⊥ otherwise.

Lemma 3.4. Protocol Weak-2-Cast-Impl-1 achieves weak 2-cast with an er-
ror probability of at most 2−σ , by only using oblivious cast and local computation.

Proof. If the sender is correct, the protocol can only fail if one of the recipients does
not receive any bit from the sender, because the sender always transmits the same bit.
This happens with probability Prerr1 = 2−σ .

If the sender is incorrect, the protocol may fail only if he manages to make one of
the recipients receive all 0’s and make the other one receive all 1’s. In order to achieve
this, after having transmitted the first bit, the sender must correctly guess in advance the
recipient of every subsequent bit. This happens with probability Prerr2 = 2−σ .

Hence, the error probability is Prerr ≤ max(Prerr1 ,Prerr2) = 2−σ .

Lemmas 3.2 and 3.4 together with the reduction of broadcast to weak 2-cast and
authentic channels in [FM] immediately yield

Lemma 3.5. Broadcast among n ≥ 3 players reduces to oblivious cast for t < n/2.

Lemmas 3.3 and 3.5 and the constructions of [RB] and [CDD+] yield

Theorem 1. Let n ≥ 3. Then there is a single-input two-output primitive of cardinality
3, oblivious cast, that is complete for t < n/2.

3.2.2. Type [2, 1] Primitives: Converge Cast

We now show that a cardinality-3 primitive with two inputs and a single output—i.e.,
the converse of oblivious cast—is also complete for t < n/2.

Definition 5. Converge cast (CC3) is a primitive among three players: two senders s0

and s1 and one recipient r . Each sender si , i ∈ {0, 1}, sends a value xi from a finite
domain D, |D| ≥ 3, such that the following conditions hold:

(1) The recipient r receives either x0 or x1, each with probability 1
2 .

(2) Neither sender learns the other sender’s input value, and none of the players learns
which of the senders was successful. In case there are other players (apart from
s0, s1, and r), they get no information about the input values or the successful
sender’s identity.

As in the previous section, we show how to implement secure channels and broadcast

(weak 2-cast). We use “pi , pj
?−→ pk : (xi , xj)” to denote an invocation of converge

cast with senders pi and pj sending values xi and xj , respectively, and recipient pk .

48 M. Fitzi, J. A. Garay, U. Maurer, and R. Ostrovsky

Furthermore, for two sequences sa and sb of elements in {0, 1, 2} of the same length, we
useH(sa, sb) to denote the Hamming distance (difference) between the sequences.

Implementing secure channels using converge cast. We now present a protocol to
implement a secure channel from p0 to p1 for the transmission of one bit x0. The idea
is as follows: first, p1 and some other player, say, p2, each choose two random keys of
an adequate length, one for 0 and for 1, and converge-cast them to p0. p0 stores the two
received keys (note that each received key may contain elements from both senders),
and uses the corresponding key as input to a converge cast with p1 as the recipient
to communicate the desired bit. We now describe the protocol in more detail. In what
follows, we assume that � is a large-enough positive integer.

Protocol Secure-Channel-Impl-2(p0, p1, �)

1. Player pi , i = 1, 2, computes random keys s(0)i and s(1)i of length � over {0, 1, 2}
2. p1, p2

?−→ p0: (s(0)1 , s(0)2); (s(1)1 , s(1)2) (elementwise) (p0 receives s(0)0 ; s(1)0)

3. p0, p2
?−→ p1: (σ0 = s(x0)

0 , σ2 = 0�) (elementwise; p2 always sends 0)
(p1 receives s ′1)

4. p1: ifH(s ′1, s(0)1) < 7
12� then y1 = 0, else y1 = 1 fi

Lemma 3.6. Consider protocol Secure-Channel-Impl-2. For s ∈ {0, 1, 2}�
and k ∈ {1, . . . , �} let s[k] denote the projection of s to its kth dimension, i.e., s =
(s[1], . . . , s[�]). If p0 and p1 are correct, then for every k ∈ {1, . . . , �},

(1) s ′1[k] = s(x0)
1 [k] with probability 1

2 , and

(2) s ′1[k] = s(1−x0)
1 [k] with probability 1

3 .

Proof. We have to show that this holds independently of p2’s strategy.
(1) We distinguish two cases:

(a) p2 enters the same input during steps 2 and 3, x2[k] := s(x0)
2 [k] = σ2[k]. Since

s(x0)
1 is random (and secret), we have x2[k] = s(x0)

1 [k] with probability P1 = 1
3

and x2[k] �= s(x0)
1 [k] with probability P2 = 2

3 . Hence the overall probability

that s ′1[k] = s(x0)
1 [k] is P = P1 · 1+ P2 · 1

4 = 1
2 .

(b) p2 enters two different inputs during steps 2 and 3, i.e., s(x0)
2 [k] �= σ2[k]. Since

s(x0)
1 is random (and secret), we have s(x0)

1 [k] �= s(x0)
2 [k] ∧ s(x0)

1 [k] �= σ2[k]
with probability P1 = 1

3 (in which case s ′1[k] = s(x0)
1 [k] holds with probability

1
4); s(x0)

1 [k] = s(x0)
2 [k] ∧ s(x0)

1 [k] �= σ2[k] with probability P2 = 1
3 (in which

case s ′1[k] = s(x0)
1 [k] holds with probability 1

2); and s(x0)
1 [k] �= s(x0)

2 [k] ∧
s(x0)

1 [k] = σ2[k] with probability P3 = 1
3 (in which case s ′1[k] = s(x0)

1 [k]

holds with probability 3
4). Hence the overall probability that s ′1[k] = s(x0)

1 [k]
is P = P1 · 1

4 + P2 · 1
2 + P3 · 3

4 = 1
2 .

Minimal Complete Primitives for Secure Multi-Party Computation 49

(2) Since s(1−x0)
1 is chosen randomly and p2 does not get any information about it, the

probability that s ′1[k] = s(1−x0)
1 is P = 1

3 .

Lemma 3.7. Let n ≥ 3. Then secure channel reduces to converge cast for t < n/2.

Proof. Consider protocol Secure-Channels-Impl-2. First, it is easy to see
that p2 gets no information about bit x0. We now show that the channel also provides
authenticity. The only ways in which the protocol can fail are that either x0 = 0 and
H(s ′1, s(0)1) ≥ 7

12� (call the probability of this event Pr0), or that x0 = 1 andH(s ′1, s(0)1) <
7
12� (probability Pr1). These probabilities can be estimated by Chernoff bounds (see the
Appendix):

– Pr0: By Lemma 3.6(1), s ′1[k] = s(0)1 [k] with probability 1
2 . Hence, Pr0 is the proba-

bility that out of N = � trials with expected valueµ = 1
2 , at most 5

12� = �/2−�/12
are successful. Applying the lower tail bound, we get Pr0 = C↓(1

2 , �, �/12− 1) ≤
e−2ε2/� = e−�/72+1/3−2/� ≤ e−�/72+1.

– Pr1: By Lemma 3.6(2), s ′1[k] = s(0)1 [k] holds with probability 1
3 . Hence, Pr1 is

the probability that out of N = � trials with expected value µ = 1
3 , more than

(1 − 7
12)� = 5

12� = �/3 + �/12 are successful. Applying the upper tail bound we
get Pr1 = C↑(1

3 , �, �/12) ≤ e−�/72.

Thus, the overall error probability is Prauth
err ≤ max(Pr0,Pr1) = e−�/72+1.

Implementing broadcast using converge cast. We now show how weak 2-cast of a bit
x0 from p0 to p1 and p2 can be simulated using CC3. The idea is as follows: First,
p1 and p2 choose two random keys of an adequate length, one for 0 and for 1, and
converge-cast them to p0. p0 stores the two received (mixed) keys. p0 then sends his
input bit to p1 and p2 using secure channels. Additionally, p0 sends to p1 the (received)
key corresponding to his input bit. This key can then be used by p1 to “prove” to
p2 which value he received from p0. If things “look” consistent to p2 (see protocol
below), he adopts this value; otherwise, he outputs the value received directly from

p0. Let “pi
!−→ pj ” denote the secure channel from pi to pj (by means of protocol

Secure-Channels-Impl-2). The protocol in more detail is as follows:

Protocol Weak-2-Cast-Impl-2(p0, {p1, p2}, �)
1. Player pi , i = 1, 2, computes random keys s(0)i and s(1)i of length 2� over {0, 1, 2}
2. p1, p2

?−→ p0: (s(0)1 , s(0)2); (s(1)1 , s(1)2) (elementwise) (p0 receives s(0)0 ; s(1)0)

3. p0
!−→ pi (i = 1, 2): x0 ∈ {0, 1} (pi receives xi ∈ {0, 1})

4. p0
!−→ p1: s(x0)

0 (p1 receives s ′1)
5. p1: ifH(s ′1, s(x1)

1) ≤ 5
6� then y1 = x1, else y1 =⊥ fi

6. p1
!−→ p2: y1; s ′1 (p2 receives y2; s ′2)

7. p2: if (y2 =⊥) ∨ (H(s ′2, s(y2)

2) ≥ 7
6�) then y2 = x2 fi

50 M. Fitzi, J. A. Garay, U. Maurer, and R. Ostrovsky

Lemma 3.8. Given a pair (x, y) ∈ {0, 1, 2}2 such that x and y are the senders’ inputs
for an invocation of CC3. If x is chosen uniformly at random from {0, 1, 2}, then the
receiver’s output is x with probability Pr2 = 2

3 .

Proof. By the definition of converge cast, the probability that x is received is Pr2 =
1
2 · 1+ 1

2 · 1
3 = 2

3 .

Lemma 3.9. Let n ≥ 3. Then weak 2-cast reduces to converge cast for t < n/2.

Proof. Consider protocol Weak-2-Cast-Impl-2. We neglect the error proba-
bilities of the secure channel invocations (protocolSecure-Channels-Impl-2)
until the end of the proof. Since the conditions for weak 2-cast are trivially satisfied if
more than one player is corrupted, we can distinguish three cases.

All players correct or at most p2 corrupted. The only way the protocol can fail is if
p1 decides on ⊥ (H(s ′1, s(x1)

1) > 5
6�); i.e., that s ′1 and p1’s key differ in more than 5

6�

elements. By Lemma 3.8, since p1 is correct, for each invocation of converge cast during
step 2 of the protocol it holds that p0 does not receive the value s(∗)1 with probability
1 − Pr2 = 1

3 . Since all invocations are independent, the failure probability Pr3 can be
estimated by a Chernoff bound (see the Appendix) with parameters µ = 1

3 , N = 2�,
and ε = 5

6�− µN = 5
6�− 2

3� = �/6:

Pr3 ≤ C↑
(

1

3
, 2�,

�

6

)
≤ e−2ε2/2� = e−�/36.

p1 corrupted. In order to achieve that p2 decides on a wrong output it must hold that
y2 = 1 − x0 and H(s ′2, s(y2)

2) < 7
6� before step 7 of the protocol; i.e., that less than 7

6�

elements of s ′2 do not match p2’s key. Since p1 does not learn anything about the elements
in s(y2)

2 , he must guess more than 5
6� out of the 2� elements correctly, as otherwise p2

would decide on x0. For each single element the probability of guessing correctly is 1
3 .

Hence the probability of this event can again be estimated by a Chernoff bound with
parameters µ = 1

3 , N = 2�, and ε = 5
6�− µN = 5

6�− 2
3� = �

6 :

Pr4 ≤ C↑
(

1

3
, 2�,

�

6

)
≤ e−2ε2/2� = e−�/36.

p0 corrupted. In order to make the protocol fail, p0 must select x1 ∈ {0, 1} and x2 =
1− x1, and achieve that p1 decides on y1 = x1. In this case, since p1 and p2 are correct,

we get s ′1 = s ′2
def= s ′ and x1 = y1 = y2

def= y after step 6. In particular, p0 must achieve
that H(s ′, s(y)1) ≤ 5

6� and H(s ′, s(y)2) ≥ 7
6�, which implies that s ′ must be formed such

that it matches s(y)1 in at least 2
6� = 1

3�more elements than it matches s(y)2 . For each single

element s ′[k], no matter how p0 chooses it, the probability that s ′[k] = s(y)1 [k] �= s(y)2 [k]
is the same as the probability that s ′[k] = s(y)2 [k] �= s(y)1 [k], since converge cast is
symmetric with respect to p1 and p2, who both choose their keys uniformly at random.

Minimal Complete Primitives for Secure Multi-Party Computation 51

Let Xk be a random variable that takes on values in {0, 1
2 , 1}, with

Xk =

0 if s ′[k] = s(y)1 [k] �= s(y)2 [k];
1
2 if s(y)1 [k] = s(y)2 [k]; and
1 if s ′[k] = s(y)2 [k] �= s(y)1 [k].

Then, independently of p0’s strategy, a failure of the protocol corresponds to the prob-
ability that for N = 2� independent trials with respect to random variable Xk (with
expected value 1

2), it holds that

N=2�∑
k=1

Xk ≥ µN + 1
2 (

7
6�− 5

6�) = µN + 1
6�.

This probability can be estimated by a Chernoff bound with parameters µ = 1
2 , N = 2�,

and ε = �/6− 1:

Pr5 ≤ C↑
(

1

2
, 2�,

�

6
− 1

)
≤ e−2ε2/2� = e−�/36+1/3−36/� ≤ e−�/36+1.

Since the error probability of protocol Secure-Channels-Impl-2 can be
made negligibly small, it can be parameterized such that the overall probability that at
least one invocation fails satisfies PrSC ≤ e−�/36. Thus, the overall error probability of
the weak 2-cast construction based on converge cast is at most

Prerr ≤ PrSC +max(Pr3,Pr4,Pr5) ≤ e−�/36 + e−�/36+1 ≤ 2e−�/36+1 < e−�/36+2.

For security parameter σ , we let � ≥ 36(σ + 2), and hence Prerr ≤ e−σ .

As before, Lemmas 3.7 and 3.9 and the constructions of [RB], [CDD+], and [FM]
yield

Theorem 2. Let n ≥ 3. Then there is a two-input, single-output primitive of cardinality
3, converge cast, that is complete for t < n/2.

We note that allowing the inputs of converge cast to be from a larger domain (than
{0, 1, 2}) considerably improves the efficiency of our reductions.

3.2.3. Other Cardinality-3 Primitives

We note that other primitives of the types considered in this section can be designed with
the resources needed to obtain SFE in mind, in such a way that the analysis required
by the reductions is less involved. Consider, for example, the following (deterministic)
primitive of type [1, 2]: The sender s has two input bits, b0 (the selection bit) and b1 (the
actual input), and one of the receivers, say, r0, always gets b1, regardless of the value of
b0. If b0 = 0, then r1 also gets b1; however, if b0 = 1, then r1 does not receive anything
(alternatively, it gets ⊥). This primitive readily simulates a secure channel (between s

52 M. Fitzi, J. A. Garay, U. Maurer, and R. Ostrovsky

and r0), and a 2-cast, but has a more convoluted, less “natural” formulation than oblivious
cast, and requires a larger input domain, as well as two instances (an additional instance
for secure communication between s and r1).

Also the cardinality of the input and output domains as well as the internal structure
of the primitive are measures that are worth minimizing. One criterion for structural
simplicity is symmetry among the senders in the sense that the outputs are invariant
under any permutation of the senders’ inputs, and symmetry among the recipients in the
sense that, for each possible output assignment to the recipients, any permutation of it
is also a possible output assignment. Note that oblivious cast and converge cast are both
symmetric in this sense and require ternary input and output domains. Asymmetry or
non-minimality with respect to the value domains come as a natural trade-off for simpler
analysis as mentioned above. For instance, it can be proven that a deterministic primitive
of type [1, 2] can only be complete for t < n/2 if the cardinality of the input or output
domains is larger than 3, or if the primitive is asymmetric. The main reason for this is
that, for a primitive of type [1, 2], there must be two different inputs such that one of the
recipient’s (say, r0’s) output stays invariant while the other recipient’s output changes,
since otherwise secret communication would be impossible; and, by symmetry, that the
same holds with respect to recipient r1. However, this implies that broadcast cannot be
simulated for the case n = 3 and t = 1.

We leave a full characterization of complete primitives with respect to determinism,
symmetry, and minimality of the domain sizes as a subject for future research.

3.3. Primitives of Full Cardinality

We now introduce the universal black box (UBBn), a complete primitive for t < n. At
first, it might seem trivial to build a complete primitive for arbitrary t by just implementing
the functionality of a trusted party. However, computations by trusted parties are generally
based on the fact that the trusted party already knows the function to be computed. Since
the primitive must be universally applicable, it cannot have any prior information about
what is to be computed, i.e., what step of what computation is to be executed. Hence,
the specification of the computation step to be performed by the black box must be
entered by the players at every invocation of the black box. Although there seems to be
no apparent solution to this problem since a dishonest majority might always overrule
the honest players’ specification, we now describe how the UBBn effectively overcomes
this problem.

For the description, we find it convenient to assume first that the function to be com-
puted has a single output, and present the extension to the general case (multiple outputs,
multiple functions) later, i.e., assume that the function to be computed receives inputs
from all the players, but exactly one player, say, p0, is to learn the result of the compu-
tation. (Note that this does not contradict Theorem 7.)

The main idea behind a UBBn for this case is simple: It contains a universal circuit [Va],
and has two inputs per player:

– the function input, where the player specifies the function to be computed on all
argument inputs, and

– the argument input, where the player inputs his argument to the function.

Minimal Complete Primitives for Secure Multi-Party Computation 53

The UBBn now computes the function specified by player p0, but for every player
that does not input the same function as p0, it replaces his argument input by some fixed
default value. Finally, the function is computed by evaluating the universal circuit on p0’s
function and all argument inputs, and its output is sent to player p0. Note that only one
invocation of the UBBn is required. Intuitively, privacy holds since no player other than
p0 receives any output and therefore learns anything, and p0 gets no more information
from the other players’ arguments than he would from an ideal process involving a trusted
party. Correctness follows since the function to be computed is selected by p0 himself.

The single-output primitive above can now be turned into a UBBn to compute multi-
output functions by the following modification. Instead of one function, the function
input specifies n functions to be computed on the inputs—one function per player. The
function fi , 1 ≤ i ≤ n, to be computed and output to player pi is determined by player
pi himself, and for the computation of fi the argument inputs of only those players
who agree on the same n functions f1, . . . , fn with pi (i.e., players whose function
input matches pi ’s) are considered by the UBBn . The following theorem formalizes and
extends the argument above.

Theorem 3. For every n ≥ 2 there is a primitive of cardinality n, the UBBn , that is
complete for t < n.

Proof. We argue that privacy and correctness hold for arbitrary t .
Privacy: For 1 ≤ i ≤ n, a player pi ’s output can give information about other player

pj ’s argument input only if pj entered the same function input as pi , which means that
pj had “agreed” on exactly this computation. Hence, pi gets the same information about
pj ’s argument as in an ideal process involving a trusted party. If pi is corrupted and
inputs a wrong function input, no argument from a correct player will be used by the
UBBn for this computation.

Correctness: The functions to be computed and output to the correct players are
selected by the correct players themselves. Corrupted players that input a different set of
functions only achieve that their inputs be replaced by a default value—a strategy that
is also (easily) achievable in an ideal process involving a trusted party.

The above has the following implication for computations involving a TTP:

Corollary 3.10 (Oblivious TTPs). Computations involving a TTP do not require the
trusted party to have any prior knowledge of the task to be completed by the players.

3.4. Number of Primitive Instances

Originally (Section 2.1), we assumed that one primitive instance was available for every
permutation of every k-player tuple, for a total of

(n
k

)
k! instances. However, as the

following theorem shows, fewer instances are required.

Theorem 4. For any n ≥ 2, each cardinality k, 2 ≤ k ≤ n, and each primitive
type, there is a complete primitive such that at most 3

(n
3

)
instances are sufficient for

unconditional SFE.

54 M. Fitzi, J. A. Garay, U. Maurer, and R. Ostrovsky

Proof. The theorem follows from Proposition 3.1, the constructions for the proofs of
Theorems 1–3, and from the symmetry of the according primitives.

4. Impossibility Results

We first show that the resilience achieved by the primitives given in Sections 3.1 and 3.2
is tight, and that cardinality k = n is necessary for arbitrary resilience; in other words, no
primitive of cardinality 2 can do better than t < n/3, no primitive of cardinality 3 can do
better than t < n/2, and no primitive of cardinality k < n can do better than t < n − 2.
Then we show that even cardinality n does not help if the primitive is restricted, in the
sense of having either a single input (type [1, ∗]) or a single output (type [∗, 1]). Such a
primitive is no more powerful than a primitive of cardinality 3 (Section 3.2).

4.1. Maximal Resilience

We now prove that no primitive of cardinality k = 2 can be complete for t ≥ n/3 (if
n > 2), no primitive of cardinality k = 3 can be complete for t ≥ n/2 (if n > 3), and
that, for general n, no primitive of cardinality k = n − 1 can be complete for t ≥ n − 2.
This is done by showing that there is a problem, namely broadcast (aka Byzantine
agreement) [PSL], that cannot be solved in a model where players are connected by “gk

channels,” for any k-party primitive gk . We first recall the definition of broadcast.

Definition 6. Broadcast is a primitive among n players, one sender and n−1 recipients.
The sender sends an input bit b ∈ {0, 1} and the recipients get an output (decision) value
v ∈ {0, 1} such that the following conditions hold:

Agreement: All correct recipients decide on the same value v ∈ {0, 1}.
Validity: For all b ∈ {0, 1}, if the sender is correct and has input b, then all correct

recipients decide on the sender’s input, v = b.

In order to give a basic idea of the general impossibility proof (and not to burden the reader
with all the counting and parameters required by the general case), we first consider the
special case k = n − 1 and t ≥ n − 2, and later generalize the proof to the case k ≥ 2
and t ≥ �((k − 1)/(k + 1)) n� (which subsumes the special case), thus covering all the
impossibility results announced at the beginning of the section. Both proofs are based
on the impossibility proof in [FLM], where it is shown that broadcast for t ≥ �n/3�
is not achievable in a model with pairwise authenticated channels. In the new model,
however, every subset of k ≥ 2 players can perform secure multi-party computation.
The idea in the proof is to assume that there exists an unconditionally secure broadcast
protocol involving all players—interconnected by such “gk channels”—which can then
be used to build a different system with contradictory behavior, hence proving that such
a protocol cannot exist.

Lemma 4.1. For all n ≥ 2 and k < n, there is no primitive gk that is complete for
t < n.

Minimal Complete Primitives for Secure Multi-Party Computation 55

Proof. First note that for every k-player primitive with k < n, there is an (n − 1)-
player primitive that provides exactly the same functionality by simply ignoring some
of the players (see Section 2.1). Hence it is sufficient to show that there is no complete
(n − 1)-player primitive for t < n.

Suppose, for the sake of contradiction, that there is an (n− 1)-player primitive BBn−1

such that broadcast among the n players p0, . . . , pn−1 is reducible to BBn−1 for t < n—
and hence also for t = n − 2.9 For simplicity, let BBn−1 denote the primitive among
n − 1 players that captures (implements) the functionality of all possible instances of
BBn−1 that may be shared among n − 1 players—in general up to (n − 1)! instances,
since we allow one instance for each permutation of the players. We now assume that
each set of n − 1 players shares exactly one instance of BBn−1.

Let� = {π0, . . . , πn−1} denote the players’ processors with their local programs and,
for each i ∈ {0, . . . , n − 1}, let πi+n be an identical copy of processor πi . For every
processor πk , k ∈ {0, . . . , 2n − 1}, let the number (k mod n) be called the type of pk .

Instead of connecting the n original processors as required for the broadcast setting,
we build a network involving all 2n processors (i.e., the original ones together with
their copies) by connecting them with instances of BBn−1 such that for every pair of
adjacent processors πi and π(i+1)mod 2n in the new system and without the presence of
an adversary, their common view is indistinguishable from their view as two adjacent
processors πi mod n and π(i+1)mod n in the original system with an adversary that corrupts
the processors in �\{πi mod n, π(i+1)mod n} in an admissible way.

In order to guarantee that the view of every processor pair πi and π(i+1)mod 2n is
consistent with their view in the original system, the following two conditions must be
satisfied:

1. For every processor πi , i ∈ {0, . . . , 2n − 1}, and for every selection of n − 2
processors of types different from (i mod n), πi shares exactly one BBn−1 with
these processors (as it does in the original system).

2. If processor πi , i ∈ {0, . . . , 2n− 1}, shares an instance of BBn−1 with a processor
of type π(i±1)mod n (i.e., an adjacent type in the original system), then it shares it
with the concrete processor π(i±1)mod 2n (i.e., its adjacent processor of this type in
the new system).

This can be achieved by applying the following rule: For each BBn−1 that originally
connects all processors except πi , i ∈ {0, . . . , n − 1}, there are now two BBn−1’s,
one connecting the processors {πi+1, . . . , πi+n−1} and one connecting the processors
{π(i+1+n)mod 2n, . . . , π(i+n−1+n)mod 2n}. This principle is depicted in Fig. 1 for the special
case of n = 4 and BB3.

The new system involves two processors of the type corresponding to the sender,
namely, π0 and πn , and these are the only processors that enter an input. Let now π0 and
πn be initialized with different inputs, i.e., we assume that π0 has input v0 ∈ {0, 1} and
that πn has input vn = 1− v0.

We now show that there are at least two pairs of adjacent processors in the new
system (i.e., a fraction 1/n of all pairs), for which the broadcast conditions are not

9 Since, by definition, broadcast is trivial if strictly less than two players are correct, this is the non-trivial
case that involves the least number of correct players.

56 M. Fitzi, J. A. Garay, U. Maurer, and R. Ostrovsky

(a) (b)

Fig. 1. Reconnection of processors in the proof of Lemma 4.1: special case n = 4.

satisfied despite being completely consistent with two correct processors in the original
system.

First, suppose that the Agreement holds for every pair of processors on, without loss
of generality, the value v0. Then the Validity condition is violated in both pairs involving
processor πn , since vn �= v0. On the other hand, suppose that the Agreement condition
is violated in at least one pair. Then there must exist at least two such pairs because the
processors are arranged in a circle. Hence, on inputs v0 ∈ {0, 1} and vn = 1− v0, there
must be some pair of adjacent processors (α, β) = (πi , π(i+1)mod 2n) that fails to achieve
broadcast with probability at least 1/n. Otherwise, strictly less than two pairs would fail
per such invocation of the new system. The view of pair (α, β) is consistent with the
view of the pair (α0, β0) = (πi , π(i+1)mod n) in the original system for one of the cases
where the sender inputs either v0 = 0 or v0 = 1. Hence, in the original system, for some
input value v0 ∈ {0, 1}, the adversary can force the pair (α0, β0) to decide on different
values with a probability of at least 1/n. This contradicts the assumption that broadcast
is possible with an arbitrarily small error probability.

Theorem 5. Let n ≥ 3, k < n, and t be integers. If t ≥ �((k − 1)/(k + 1)) n�, then
there is no primitive gk complete for t .

Proof. As in the proof of Lemma 4.1, let BBk capture the whole functionality of all
possible instances of BBk that may be shared by the same k players.

Suppose, for the sake of contradiction, that for some k ≥ 2 and n > k there is a broad-
cast protocol P for t ≥ �((k − 1)/(k + 1))n�. Let� = {π0, . . . , πn−1} be the set of the
players’ corresponding processors with their local programs and let�0∪̇�1∪̇ · · · ∪̇�k =
� be a partition of� into k+ 1 sets of cardinalities |�i | ∈ {�n/(k + 1)�, �n/(k + 1)�}.
In other words, � = n mod (k + 1) sets of cardinality �n/(k + 1)� and k + 1 − � sets
of cardinality �n/(k + 1)�, with the additional property that if � ≥ (k + 1)/2, then, of
any two adjacent sets �i and �(i+1)mod (k+1), at least one is of cardinality �n/(k + 1)�.
Furthermore, for each i ∈ {0, . . . , n − 1}, let πi+n be an identical copy of processor πi .
Finally, for each i ∈ {0, . . . , k}, let �i+n = {πk+n | πk ∈ �i } form an identical copy of
set �i .

Minimal Complete Primitives for Secure Multi-Party Computation 57

We now proceed as in the proof of Lemma 4.1. Instead of connecting the original
processors as required for the broadcast setting, we build a network involving all 2n
processors by connecting them with instances of BBk such that for every set �i ∪
�(i+1)mod (2k+2) of processors in the new system, and without the presence of an adversary,
their common view is indistinguishable from their view as processors in �i mod (k+1) ∪
�(i+1)mod (k+1) in the original system with an adversary that corrupts the processors in
�\(�i mod (k+1) ∪�(i+1)mod (k+1)) in an admissible way.

Note that for every BBk in the original system there is a set�i such that no processor
in �i is connected to it. This is because there are k + 1 different sets �i . The BBk’s
are now reconnected in the following way: For each BBk that originally connects a set
S of k processors in �\�i (i ∈ {0, . . . , k}), there are now two BBk’s, one connecting
processors {πj ∈ �i+1 ∪ . . . ∪�i+n−1 | πj mod (k+1) ∈ S } and one connecting processors
{πj ∈ �i+1+n ∪ . . . ∪�i+n−1+n | πj mod (k+1) ∈ S }.

We now show that every set�i ∪�(i+1)mod (2k+2) of processors contains at least n− t
processors, implying that protocol P satisfies the broadcast conditions with respect to
all processors in the union of two such adjacent processor sets. We have two cases:

� <
k + 1

2
:

|�i ∪�(i+1)mod (2k+2)| ≥ 2

⌊
n

k + 1

⌋
=
⌊

2n

k + 1

⌋
= n +

⌊
2n − (k + 1)n

k + 1

⌋

= n −
⌊

k − 1

k + 1
n

⌋
≥ n −

⌈
k − 1

k + 1
n

⌉
≥ n − t;

and

� ≥ k + 1

2
: |�i ∪�(i+1)mod (2k+2)| ≥

⌊
n

k + 1

⌋
+
⌈

n

k + 1

⌉
≥
⌊

2n

k + 1

⌋
≥ n − t.

The proof now proceeds in exactly the same way as the proof of Lemma 4.1. By
assigning different input values to both senders, π0 and πn , we obtain a non-negligible
error probability of at least 1/(k + 1), which contradicts the assumption of broadcast
being possible with an arbitrarily small error probability.

The following corollary makes the relevant cases explicit:

Corollary 4.2.

– Let n ≥ 3. Then there is no primitive g2 complete for t ≥ �n/3�.
– Let n ≥ 4. Then there is no primitive g3 complete for t ≥ �n/2�.
– Let n > k. Then there is no primitive gk complete for t ≥ n − 2.

Moreover, there is some evidence that no primitive of cardinality k < n can be complete
even for t ≥ �n/2�: Since k < n, then, evidently, there are computations (e.g., the logical
AND over all players’ inputs) that would require more than one primitive invocation, but,
on the other hand, secret sharing is not possible if t ≥ �n/2� and thus it seems impossible
to securely convey non-trivial output information from one primitive invocation to the
input of the next one. So we put forward the following:

58 M. Fitzi, J. A. Garay, U. Maurer, and R. Ostrovsky

Conjecture 4.3. For all n ≥ 2 and any k < n, there is no primitive gk complete for
t ≥ �n/2�.

4.2. Limitation of Multicast and Convergecast

We now take a closer look at primitives that are restricted to either one single input (i.e.,
type [1, ∗], or “multicast”) or one single output (i.e., type [∗, 1]), or “convergecast”). We
show that any such primitive, even with full cardinality (k = n), cannot be complete for
any t ≥ �n/2�, implying that the examples for primitives of types [1, 2] and [2, 1] given
in Section 3.2 are as powerful as any primitive of type [1, n] or [n, 1]. Since, for k ≤ n,
any primitive of type [1, k] (or [k, 1]) can be simulated by a primitive of type [1, n] (or
[n, 1], respectively), it is sufficient to show the impossibility for primitives of type [1, n]
(or [n, 1]).

Theorem 6. For all n ≥ 2, there is no primitive of type [1, n] complete for t ≥ �n/2�.

Proof. The proof is by contradiction. Assume that there exists a primitive of type [1, n],
Mn , that is complete for multi-party computation among players P = {p1, . . . , pn} for
t ≥ �n/2�. Then, in particular, for every function f there is a protocol� f which allows
the players in P to compute this function privately in the presence of up to t passively
corrupted players, and which only makes use of Mn .

We now show that � f can be simulated in the standard model with secure pairwise
channels. Since each invocation of Mn involves the input of at most one player, say input
xi from player pi , and produces outputs, call them m1(xi), . . . ,mn(xi), one for each
player in P , this invocation can be simulated in the standard model by player pi himself
computing each output mj (xi), 1 ≤ j ≤ n, and secretly sending them to each player.

As a result, in the secure channels model, the players in P can securely compute any
function in the presence of a passive adversary that corrupts t ≥ �n/2� of the players.
However, as shown in [BGW], this is not possible.

We now show a similar result for convergecast primitives of arbitrary cardinality.

Theorem 7. For all n ≥ 2, there is no primitive of type [n, 1] complete for t ≥ �n/2�.

Proof. The proof is by reduction to a two-party problem known to have no solution.
Assume that there exists a primitive of type [n, 1], Cn , that is complete for multi-party
computation among players P = {p1, . . . , pn} for t ≥ �n/2�. We show that the existence
of Cn implies the existence of a complete primitive of type [2, 1] for secure two-party
computation where both parties learn the result of the computation.

For this, consider some function f (x1, x2) (i.e., a function of players p1 and p2’s
inputs) that is to be computed by players in P , and let� f denote the protocol that allows
all correct players to learn f (x1, x2) in the presence of t ≥ �n/2� actively corrupted
players, while only making use of primitive Cn . Consider now the two-party setting,
with players q1 and q2, one of which might be actively corrupted. We show how, based
on the assumed solution for the multi-party setting, q1 and q2 are able to compute f .

Minimal Complete Primitives for Secure Multi-Party Computation 59

The construction goes as follows. We partition the set P into two sets, P1 and P2, such
that |P1| = t , |P2| = n − t (≤ t), and with p1 ∈ P1 and p2 ∈ P2. Player q1 simulates all
players in P1 with p1’s input as his own input, and player q2 simulates all players in Q2

with p2’s input as his input. Furthermore, every input and output of each Cn primitive
used in P is reconnected to the respective simulating player, q1 and q2; as a result, each
instance of Cn in the original setting can be replaced by a primitive of type [2, 1]. By
assumption, since each player simulates at most t players in P , the resulting protocol
securely computes and delivers output f (x1, x2) to both players.

Thus, there is a two-player primitive with a single output that is complete for secure
two-party computation where both players learn the same result. This is a direct con-
tradiction to the “one-sidedness” observation in [BMM], that a protocol based on an
asymmetric (i.e., single-output) two-player primitive cannot guarantee that both players
learn the result of the computation.

5. Summary and Open Problems

In this paper we have put forward the concept of minimal cardinality of primitives that
are complete for SFE. Since this is a new line of research, several questions remain open.

We completely characterized the cases of types [1, 1], [1, k], and [k, 1], for all cardi-
nalities k ≤ n. In particular, for t < n/3 there is a complete primitive, SC2[1, 1], and
no g2 can do any better; and, for t < n/2, there are two complete primitives, OC3[1, 2]
and CC3[2, 1], and no gk , k ≤ n, can do any better. For the case of type [k, k] it remains
to prove Conjecture 4.3, that no gn−1[n − 1, n − 1] is complete for t ≥ �n/2�. This
would partition the whole hierarchy into three equivalence classes of cardinalities k = 2
(t < n/3), 2 < k < n (t < n/2), and k = n (t < n).

It would also be interesting to analyze the completeness of primitives as a function
of the size of the input and output domains. We took some initial steps for the case of
cardinality 3 in Section 3.2.3. Also the completeness of the UBBn for t < n relies on
the fact that inputs of large size are allowed.

Acknowledgments

We thank the anonymous referees for their many valuable comments; in particular, the
example of an asymmetric deterministic primitive in Section 3.2.3 was suggested by one
of the referees. The work of Matthias Fitzi was partly done while visiting Bell Labs and
DIMACS.

Appendix. Chernoff Bounds

In the analysis of our protocols we apply Chernoff bounds in order to estimate upper
bounds on their error probabilities. We present a succinct description of these bounds
here for convenience.

Let Xi ∈ [0, 1] (1 ≤ i ≤ N) be a sequence of independent random variables with
expected value µ. The Chernoff bound gives an upper bound on the probability that the

60 M. Fitzi, J. A. Garay, U. Maurer, and R. Ostrovsky

sum
∑N

i=1 Xi deviates from the expected value µN by a given distance ε > 0:

C↓(µ, N , ε) = Prob

(
N∑

i=1

Xi < µN − ε
)
≤ e−2ε2/N ,

C↑(µ, N , ε) = Prob

(
N∑

i=1

Xi > µN + ε
)
≤ e−2ε2/N .

(1)

References

[Be] D. Beaver. Foundations of secure interactive computation. In Advances in Cryptology — CRYPTO
’91, LNCS, pp. 377–391. Springer-Verlag, Berlin, 1992.

[BGW] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In Proc. 20th ACM Symp. on the Theory of Computing, pp. 1–10,
1988.

[Bl] M. Blaze. Oblivious key escrow. In R. Anderson, editor, Proc. First Infohiding, volume 1174 of
LNCS, pp. 335–343, Springer-Verlag, Berlin, 1996.

[BMM] A. Beimel, T. Malkin, and S. Micali. The all-or-nothing nature of two-party secure computation.
In Advances in Cryptology — CRYPTO ’99, volume 1666 of LNCS, pp. 80–97. Springer-Verlag,
Berlin, 1999.

[Ca] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
13(1):143–202, 2000.

[CCD] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols (extended
abstract). In Proc. 20th ACM Symp. on the Theory of Computing, pp. 11–19, 1988.

[CDD+] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty computations
secure against an adaptive adversary. In Advances in Cryptology — EUROCRYPT ’99, volume 1592
of LNCS, pp. 311–326. Springer-Verlag, Berlin, 1999.

[Ch] D. Chaum. The dining cryptographers problem: unconditional sender and recipient untraceability.
Journal of Cryptology, 1(1):65–75, 1988.

[DDWY] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission. Journal of
the ACM, 40(1):17–47, Jan. 1993.

[FLM] M. J. Fischer, N. A. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus
problems. Distributed Computing, 1:26–39, 1986.

[FM] M. Fitzi and U. Maurer. From partial consistency to global broadcast. In Proc. 32nd Annual Symp.
on the Theory of Computing, pp. 494–503, 2000.

[GL] S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral majority.
In Advances in Cryptology — CRYPTO ’90, volume 537 of LNCS, pp. 77–93. Springer-Verlag,
Berlin, 1990.

[GMW] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proc. 19th ACM
Symp. on the Theory of Computing, pp. 218–229, 1987.

[Go1] O. Goldreich. Preface. Journal of Cryptology, Special issue on General Secure Multiparty Compu-
tation, 13(1):1–8, 2000.

[Go2] O. Goldreich. Secure multi-party computation, Working draft, version 1.2, Mar. 2000.
[Ki1] J. Kilian. Founding cryptography on oblivious transfer. In Proc. 20th Annual ACM Symp. on the

Theory of Computing, pp. 20–31, 1988.
[Ki2] J. Kilian. A general completeness theorem for two-party games. In Proc. 23rd Annual ACM Symp.

on the Theory of Computing, pp. 553–560, 1991.
[Ki3] J. Kilian. More general completeness theorems for secure two-party computation. In Proc. 32nd

Annual ACM Symp. on the Theory of Computing, pp. 316–324, 2000.
[KKMO] J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and completeness in private

computations. SIAM Journal on Computing, 29:1189–1208, 1999.

Minimal Complete Primitives for Secure Multi-Party Computation 61

[KMO] E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and completeness in multi-party private
computations. In Proc. 35th Annual IEEE Symp. on the Foundations of Computer Science,
pp. 478–491, 1994.

[MR] S. Micali and P. Rogaway. Secure computation. In Advances in Cryptology — CRYPTO ’91, volume
576 of LNCS, pp. 392–404. Springer-Verlag, Berlin, 1992.

[PSL] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal of
the ACM, 27(2):228–234, Apr. 1980.

[Ra] M. O. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard
Aiken Computation Laboratory, 1981.

[RB] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority.
In Proc. 21st ACM Symp. on the Theory of Computing, pp. 73–85, 1989.

[Va] L. G. Valiant. Universal circuits. In Proc. ACM Symp. on Theory of Computing (STOC ’76),
pp. 196–203. ACM Press, New York, 1976.

[Ya] A. C. Yao. Protocols for secure computations. In Proc. 23rd IEEE Symp. on the Foundations of
Computer Science, pp. 160–164, 1982.

