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Abstract In cells the quality of newly synthesized pro-
teins is monitored in regard to proper folding and correct
assembly in the early secretory pathway, the cytosol and
the nucleoplasm. Proteins recognized as non-native in the
ER will be removed and degraded by a process termed
ERAD. ERAD of aberrant proteins is accompanied by vari-
ous changes of cellular organelles and results in protein
folding diseases. This review focuses on how the immuno-
cytochemical labeling and electron microscopic analyses
have helped to disclose the in situ subcellular distribution
pattern of some of the key machinery proteins of the cellu-
lar protein quality control, the organelle changes due to the

presence of misfolded proteins, and the eYciency of syn-
thetic chaperones to rescue disease-causing traYcking
defects of aberrant proteins.
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Introduction

Folding and assembly of proteins and their function depend
on each other. Like in industrial production lines, in cells
the quality of newly synthesized proteins is monitored in
regard to proper folding and correct assembly in the early
secretory pathway, the cytosol and the nucleoplasm (Ben-
nett et al. 2005; Bukau et al. 2006; Dobson 2003; Ellgaard
and Helenius 2003; Park et al. 2007; Ravid et al. 2006;
Roth 2002; Sitia and Braakman 2003; Zhang and Kaufman
2006). Protein quality control is a basic cellular phenomenon
through which aberrant proteins become eliminated.
Aberrant proteins can occur as waste products at a certain
rate during de novo synthesis, or are caused by cellular
stress, or due to disease-causing mutations (Aridor and
Hannan 2002; Gregersen et al. 2006; Kim and Arvan 1998;
Kopito 2000; Lukacs et al. 1994; Petäjä-Repo et al. 2000;
Schubert et al. 2000; Turner and Varshavsky 2000; Ward
and Kopito 1994). Once recognized as non-native or
incompletely assembled, those proteins will be removed
and degraded by a process generally termed ERAD, for ER-
associated degradation (Hirsch et al. 2004; Meusser et al.
2005).

For secretory and membrane proteins, the molecular
machinery involved in the recognition, retention and dislo-
cation of aberrant proteins has been identiWed to a certain
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detail (Carvalho et al. 2006; Denic et al. 2006; Hirsch et al.
2003; Ismail and Ng 2006; Katiyar et al. 2005; Li et al.
2006; Lilley and Ploegh 2004; Schuberth and Buchberger
2005; Tsai et al. 2002; Ye et al. 2003, 2004). The ensuing
Wnal step consists of polyubiquitination of aberrant proteins
condemning them for degradation by proteasomes (Eisele
et al. 2006; Hochstrasser 1996; Jarosch et al. 2002;
McCracken and Brodsky 2005; Wolf and Hilt 2004; Zwickl
et al. 2002). In addition to various chaperones aiding pro-
teins to achieve their proper conformation, various machin-
ery proteins are involved in the recognition and retention of
aberrant proteins. For glycoproteins, the importance of spe-
ciWc oligosaccharidic structures generated initially by trim-
ming glucosidase II and UDP-glucose:glycoprotein
glucosyltransferase and later on by ER-mannosidase I has
been recognized (Helenius and Aebi 2004; Parodi 2000;
Roth 2002; Roth et al. 2002). Glycoproteins bearing mono-
glucosylated oligosaccharides will be bound by calnexin or
calreticulin. If the aberrant glycoproteins are considered,
binding to calnexin or calreticulin will protect them tempo-
rarily from degradation. The complete deglucosylation by
glucosidase II will result in their exit from the calnexin/cal-
reticulin cycle. Subsequent trimming of mannose residue(s)
of the oligosaccharide B branch by ER-mannosidase I
opens the gate to dislocation and degradation of aberrant
proteins. The link between the calnexin/calreticulin cycle
and the dislocation process is apparently provided by two
lectin-like proteins: EDEM1 (yeast ortholog Htm1p/
Mnl1p) (Hosokawa et al. 2001; Jakob et al. 2001; Kanehara
et al. 2007; Nakatsukasa et al. 2001; Oda et al. 2003) and
Yos9p (mammalian orthologues OS-9 and XTP3-B) (Bha-
midipati et al. 2005; Buschhorn et al. 2004; Gauss et al.
2006; Kanehara et al. 2007; Kostova and Wolf 2005; Szath-
mary et al. 2005).

Depending on the type of protein and the location of the
lesion, diVerent ERAD dislocation pathways have been
identiWed (Carvalho et al. 2006; Denic et al. 2006; Ismail
and Ng 2006; Schuberth and Buchberger 2005). Aberrant
luminal proteins and membrane proteins with a defect in
their luminal domain undergo the ERAD-L pathway, which
is deWned by the E3 ubiquitin ligase Hrd1p complex. The
Hrd1p complex consists of several proteins including
Hrd3p, an E2 complex (Ubc7p and its membrane-anchoring
factor Cue1p), the Cdc48p complex (AAA-ATPase Cdc48p
or p97, the Ufd1 and Npl4 cofactors, and the Ubx2p mem-
brane anchor), Der1p, Yos9p, Kar2p (BiP) and Usa1p. It
should be noted that the actual function of some of those
proteins in the complex remains to be established. Aberrant
membrane proteins with lesions in their cytosolic domain
enter the ERAD-C pathway organized by the E3 ubiquitin
ligase Doa10p complex. This complex is comparably sim-
ple and consists in addition to Doa10p only of the E2 com-
plex and the Cdc48p complex. The ERAD-M pathway is

followed by membrane proteins with a lesion in their trans-
membrane domain and involves only Hrd1p and Hrd3p.
These dislocation pathways were established for yeast cells
but most probably will apply to higher eukaryotes as well
because of the evolutionary conservation of the ERAD
pathways. The Doa10p complex also operates in the poly-
ubiquitination of aberrant cytosolic and nuclear proteins, in
addition to the ERAD-C pathway (Neuber et al. 2005;
Ravid et al. 2006; Swanson et al. 2001).

This review will focus on how immunocytochemical
labeling and electron microscopic analysis have helped to
disclose the in situ subcellular distribution pattern of some
of the key machinery proteins of the protein quality control,
the organelle changes due to the presence of misfolded pro-
teins, and the eYciency of synthetic chaperones to rescue
disease-causing traYcking defects of aberrant proteins.

Machinery proteins of the protein quality control 
reside beyond the ER

For the quality control of glycoprotein folding, glucosidase
II (Gls II) and UDP-glucose:glycoprotein glucosyltransfer-
ase (GT) in connection with the calnexin/calreticulin cycle
are of eminent importance (Helenius and Aebi 2004; Parodi
2000; Roth 2002). Gls II is a luminal glycoprotein, which
exists in two isoforms (Pelletier et al. 2000; Ziak et al.
2001) and does not contain known ER retention signals of
the C-terminal KDEL type, nor any hydrophobic region
characteristic of transmembrane proteins (Flura et al. 1997;
Trombetta et al. 1996). As depicted in Fig. 1a, Gls II acts
second to glucosidase I by removing the two inner �1,3-
linked glucose residues (Brada and Dubach 1984; Burns
and Touster 1982). The presence of three or two glucose
residues on oligosaccharides can be considered to represent
a trimming glyco-code whereas one glucose residue repre-
sents a trimming as well as folding glyco-code (Fig. 1b)
(Jakob et al. 1998b). The involvement of Gls II and of
mono-glucosylated oligosaccharides generated by the
enzyme in the protein quality control is well documented
(Hammond et al. 1994; Hebert et al. 1995; Jakob et al.
1998a, b). By confocal immunoXuorescence, Gls II not
unexpectedly exhibited a pattern typically observed for the
ER as shown in Fig. 2b (Roth et al. 2003; Zuber et al.
2001). By high-resolution immunoelectron microscopy, ER
localization of Gls II could be deWnitely established
(Lucocq et al. 1986; Zuber et al. 2000, 2001). In addition to
the rough ER including the nuclear envelope and the transi-
tional ER, the smooth ER was also positive for Gls II. How-
ever, with the superior resolution of electron microscopic
immunogold labeling, Gls II was additionally found in
tubulovesicular clusters between transitional ER and the cis
Golgi apparatus. They represent pre-Golgi intermediates
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involved in antero- and retrograde transport of cargo
(Appenzeller-Herzog and Hauri 2006; Bannykh and Balch
1997, 1998; Hammond and Glick 2000; Palade 1975; Sar-
aste et al. 1987; Schweizer et al. 1988).

Mono-glucosylated oligosaccharides of glycoproteins are
targeted by the calnexin/calreticulin cycle and after being
deglucosylated by Gls II, will be targeted by GT if not cor-
rectly folded (Fig. 1b). GT apparently senses exposed
patches of charged amino acids and reglucosylates the aber-
rant glycoproteins, which is followed by their re-entry in the

calnexin/calreticulin cycle (Parodi et al. 1983; Sousa and
Parodi 1995; Trombetta and Parodi 2003). When the subcel-
lular distribution of GT was studied by confocal immunoXu-
orescence, its labeling pattern (Fig. 2a) was alike that
observed for Gls II (Fig. 2b; Zuber et al. 2001). By immuno-
electron microscopy, GT was detectable in the rough ER
including the nuclear envelope and the transitional ER as
well as the smooth ER (Fig. 2d). Unlike Gls II, for which the
labeling intensity over rough and smooth ER was equal,
labeling intensity for GT over smooth ER was only 11% that
of the rough ER. GT immunolabeling was also discovered in
the pre-Golgi intermediates (Fig. 2d). Notably, the pre-Golgi
intermediate immunolabeling for GT was approximately
twice that of rough ER (Zuber et al. 2001). Double immuno-
gold labeling for GT combined with the pre-Golgi interme-
diate marker ERGIC-53 and the COPII component sec23p
(Hughes and Stephens 2008) proved the identity of the GT-
labeled structures. Interestingly, speciWc immunogold label-
ing for calreticulin was also observed in the pre-Golgi inter-
mediates (Zuber et al. 2000, 2001).

Together, these results provided new insight into the in
situ subcellular organization of some key elements of the
protein quality control machinery. Gls II, GT and calreticu-
lin were not only present in the rough ER, as expected, but
also in the smooth ER and unequivocally present in pre-
Golgi intermediates. This pattern was found in diVerent rat
cell lines and tissues as well as Drosophila tissue and cell
lines. The presence of three functionally closely associated
proteins is a strong evidence for the involvement of pre-
Golgi intermediates in protein quality control. Of course,
immunolocalization provides no direct evidence for the
functionality of the detected protein at a certain location.
However, there is no reason to assume that Gls II, GT and
calreticulin would be only functional in the ER. Studies in
yeast have provided strong evidence that multiple, sequen-
tially acting quality control checkpoints exist along the
secretory pathway extending as far as to the Golgi appara-
tus (Arvan et al. 2002; Caldwell et al. 2001; Sayeed and Ng
2005; Taxis et al. 2002; Vashist et al. 2001; Vashist and Ng

Fig. 1 Schematic presentation 
of the oligosaccharide trimming 
pathway by glucosidase I (Gls I), 
glucosidase II (Gls II), UDP-glu-
cose:glycoprotein glucosyltrans-
ferase (GT) and ER-
mannosidase I (ER-Man I)

Fig. 2 Double confocal immunoXuorescence for UDP-glucose:glyco-
protein glucosyltransferase (a) and glucosidase II (b) demonstrates co-
distribution (c) of the two protein quality control machinery proteins in
cultured clone 9 hepatocytes. Immunogold localization of UDP-glu-
cose:glycoprotein glucosyltransferase in an ultrathin frozen section of
clone 9 hepatocytes reveals immunoreactivity in the rough ER (ER)
including nuclear envelope and a pre-Golgi intermediate (pGI). The
cisternal stack of the Golgi apparatus (GA) is not labeled
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2004; Younger and Chen 2006). In mammalian and insect
cells, protein quality control is apparently not restricted to
the ER, and the pre-Golgi intermediates appear to be
involved in this fundamental cellular process as well. As
will be discussed later, pre-Golgi intermediates represent
not only a quality control checkpoint, but are also sites of
accumulation of aberrant proteins.

The ERAD factor EDEM1 deWnes a novel 
vesicular ER exit pathway

As mentioned in the “Introduction”, an impressive body of
molecular and functional data exists concerning the macro-
molecular assemblies involved in the various ERAD path-
ways. The current well-founded basic conception of ERAD
in yeast and higher eukaryotes is that the aberrant proteins
after being removed from folding cycles are dislocated to
the cytosol and eventually degraded by the 26S proteasome,
and that this occurs in the ER. It is not clear whether this is
a randomly occurring event or a more structured aVair.
Recent studies on EDEM1 in mammalian cells have pro-
vided preliminary evidence for a high level of subcellular
organization.

The discovery that the Man8 B isomer oligosaccharide
was actively involved in ERAD-L (Fig. 1c) in yeast (Jakob
et al. 1998a) and mammalian cells (Liu et al. 1999) paved
the way to the identiWcation of a lectin-like protein with
sequence similarity to class I �1,2-mannosidases in yeast
-Htm1p/Mnl1p- and mammalian cells -EDEM1- (Hosokawa
et al. 2001; Jakob et al. 2001; Nakatsukasa et al. 2001).
EDEM1 of mammalian cells is a soluble glycoprotein (Oli-
vari et al. 2005; Zuber et al. 2007), which is regulated by
the unfolded protein response (Hosokawa et al. 2001) and
seems to connect the calnexin/calreticulin cycle to the dis-
location process (Molinari et al. 2003; Oda et al. 2003).
EDEM1 appears to exist in complex with the dislocation
proteins Derlin-2 and -3, and the AAA ATPase p97 (Oda
et al. 2006). It is not fully understood how EDEM1 inter-
acts with aberrant proteins. However, there is evidence for
interaction with ER-mannosidase I-trimmed oligosaccha-
rides such as depicted in Fig. 1c (Hosokawa et al. 2003).
Overexpression of EDEM1 has been shown to prevent for-
mation of dimers of misfolded Null Hong Kong variant of
alpha1-antitrypsin (Hosokawa et al. 2006). Notably,
EDEM1 and ER-mannosidase I do not exist in complexes,
which can be immunoprecipitated (Hosokawa et al. 2003).

Recently, the subcellular distribution of endogenous
EDEM1 in various mammalian cell types was established
with a speciWc anti-peptide antibody (Zuber et al. 2007).
Unexpectedly, its immunoXuorescence pattern did not cor-
relate with that of calnexin and other ER marker proteins.
Rather, an unusual pattern of well distributed punctate struc-

tures along with some localized Wnger-like structures was
revealed (Fig. 3a–c). The distribution patterns of endoge-
nous EDEM1 and that of overexpressed tagged EDEM1
were dramatically diVerent: instead of a punctate, non-ER
pattern, a typical reticular ER pattern plus punctate staining
was observed (Zuber et al. 2007). This striking diVerence in
subcellular distribution between endogenous EDEM1 and
overexpressed tagged EDEM1 was conWrmed by Optiprep
density gradients. Endogenous EDEM1 was restricted to the
densest fractions, whereas tagged EDEM1 showed the same
broad distribution as observed for calnexin, sec61�, and
Derlin-1 and -2 (Zuber et al. 2007). In this context, it needs
to be emphasized that previous biochemical analyses of
EDEM1 interaction with quality control machinery proteins
and ERAD substrates were performed with cells transiently
overexpressing tagged EDEM1 (Hosokawa et al. 2003;
Molinari et al. 2003; Oda et al. 2003). The nature of the
EDEM1 immunoXuorescence pattern was clariWed by
immunogold labeling and serial section analysis (Fig. 3d–
h). It revealed the presence of EDEM1-reactive buds along
rough ER cisternae which apparently gave raise to »150 nm
vesicles. These buds and vesicles were devoid of a COPII
coat, formed outside the canonical ER exit sites of the tran-
sitional ER and were not found in the tubulovesicular clus-
ters of pre-Golgi intermediates (Fig. 3i). Occasionally,
EDEM1 luminal immunolabeling in limited parts of dis-
tended ER cisternae was observed, which accounted for
approximately 11% of the immunogold labeling for GT.
Double confocal immunoXuorescence for endogenous
EDEM1 in rat hepatoma clone 9 cells stably expressing the
Null Hong Kong variant alpha 1-antitrypsin showed co-dis-
tribution of the two proteins (Zuber et al. 2007). Together,
these data revealed the existence of a vesicular transport
pathway out of the rough ER through which the ERAD fac-
tor EDEM1 and an ERAD substrate became sequestered
from the early secretory pathway. Through this pathway
potentially harmful aberrant luminal proteins can be
removed. These Wndings also indicate that the Gls II and GT
containing pre-Golgi intermediates appear to be not
involved in the dislocation of an ERAD-L substrate.

Endomannosidase assigns glucose trimming 
function to the Golgi apparatus

It is generally assumed the glucose trimming occurs exclu-
sively by Gls I and II and, therefore, is limited to the ER and
pre-Golgi intermediates. However, under conditions of inhi-
bition of trimming glucosidases, formation of mature oligo-
saccharides has been observed. This apparent paradox could
be explained by the existence of an alternate glucose-trim-
ming pathway by neutral endo-alpha-mannosidase (Lubas
and Spiro 1987, 1988; Moore and Spiro 1990, 1992; Spiro
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2000). Endomannosidase is currently the only known endo-
glycosidase. In contrast to the trimming Gls I and II, it
cleaves internally between the glucose-substituted mannose
and the remaining oligosaccharide (Fig. 4a). Its substrate
speciWcity (Fig. 4a) is basically that of Gls I and II (Moore
and Spiro 1990, 1992; Rabouille and Spiro 1992). However,
unlike Gls I and II, ER-mannosidase I trimmed mono-glu-
cosylated oligosaccharides are a substrate of endomannosi-
dase. The resulting Man8–5 GlcNAc isomer A is the speciWc
product of endomannosidase. It should be noted that this oligo-
saccharide is no more a substrate for reglucosylation by
GT. Biochemically, activity for endomannosidase was found
to be enriched in Golgi membranes (Lubas and Spiro 1987).
By immunoXuorescence (Dong et al. 2000; Zuber et al.
2000), endomannosidase exhibited a crescent-shaped peri-
nuclear staining and Wne punctate staining throughout the
cytoplasm which partially overlapped with immunoXuores-
cence for Gls Golgi mannosidase II (Fig. 4b–d). High-reso-
lution immunoelectron microscopy demonstrated
endomannosidase in the peripheral and Golgi-associated
pre-Golgi intermediates as well as cis and medial cisternae
of the Golgi apparatus (Fig. 4e) (Zuber et al. 2000). Trans
cisternae of the Golgi apparatus and the trans Golgi network
were unreactive. QuantiWcation revealed »85% of the
immunogold labeling for endomannosidase in the Golgi
apparatus and »15% in pre-Golgi intermediates. Although,
both endomannosidase and Gls II could be detected in pre-

Golgi intermediates by double immunogold labeling, they
labeled diVerent elements of the vesiculotubular clusters
(Fig. 4e). Thus, endomannosidase and Gls I and II exhibited
non-overlapping subcellular distributions (Roth et al. 2003;
Zuber et al. 2000). Functionally, the presence of endoman-
nosidase in the ER would interfere with the action of gluco-
syltransferase by preventing the reglucosylation of
misfolded glycoproteins. Together, these Wndings demon-
strating a predominantly Golgi apparatus localization of
endomannosidase strongly indicated that glucose trimming
of N-linked oligosaccharides is not limited to the ER.

Since glucose trimming is indispensable for the synthesis
of mature oligosaccharide side chains, deglucosylation by
endomannosidase in the Golgi apparatus ensures that this
important process is not blocked. Further biochemical and
morphological analyses demonstrated that Golgi apparatus
localized endomannosidase-processed oligosaccharides of
alpha 1-antitrypsin irrespective of their folding state (Torossi
et al. 2006). From the literature, it is well known that disease-
causing misfolded glycoproteins to a certain extent might
escape the protein quality control and become secreted (Cox
2001; Desnick et al. 2001). As a case in point, in humans
suVering from alpha1-antitrypsin deWciency, the Z-variant of
alpha1-antitrypsin not only becomes partially secreted, but
also is active as serine protease inhibitor (Cabral et al. 2002;
Teckman and Perlmutter 1996). As experimentally shown for
the Z-variant of alpha1-antitrypsin (Torossi et al. 2006),

Fig. 3 Double confocal immunoXuorescence for endogenous EDEM1
(a) and calnexin (b) reveals diVerent distribution patterns for the two
proteins (c) in human HepG2 cells. Detection of endogenous EDEM1
by immunogold labeling of ultrathin frozen sections (e) or pre-embed-
ding immunoperoxidase labeling (d, f–h) reveals sparse labeling in the
lumen of ER cisternae (arrowheads in e and f) and intense labeling
over ER buds and vesicles pinching-oV the ER (from Zuber et al.

2007). The subcellular distribution pattern of endogenous EDEM1 is
schematically depicted in (i). In contrast to COPII-coated buds, which
are formed at the transitional ER (TE) and give raise to COPII-coated
vesicles present in pre-Goli intermediates (pre GI), EDEM1-positive
buds occur outside the transitional ER and EDEM1-positive COPII-
unreactive vesicles form clusters in the cytoplasm
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endomannosidase provided a back-up mechanism for its de-
glucosylation en route through the Golgi apparatus. Process-
ing of its oligosaccharides to mature ones is apparently
important for their proper traYcking and correct functioning.

Organelle changes due to intracellular accumulation 
of misfolded proteins

As a general rule, misfolded proteins become targeted by
the protein quality control and following polyubiquitination

will be degraded by proteasomes (Eisele et al. 2006;
Hochstrasser 1996; Jarosch et al. 2002; McCracken and
Brodsky 2005; Wolf and Hilt 2004; Zwickl et al. 2002).
Depending on various factors such as the eYciency of the
ubiquitin–proteasome system, the intracellular amounts of
misfolded glycoproteins and their biophysical properties as
well as interactions with other proteins, a whole spectrum
of organelle changes can be observed in protein folding
diseases.

For some protein folding diseases, no signiWcant struc-
tural aberrations of the early secretory pathways could be

Fig. 4 The various oligosaccha-
ridic substrates of endomannosi-
dase are depicted in (a). Like 
trimming glucosidases, endo-
mannosidase trimms Gls1–

3Man9GlcNAc2, and unlike trim-
ming glucosidase II, monoglu-
cosylated oligosaccharides with 
mannose-trimmed B and C 
branches. Double confocal 
immunoXuorescence for endo-
mannosidase (b) and Golgi man-
nosidase II (c) reveals co-
distribution of the two enzymes 
(d) in clone 9 hepatocytes. Dou-
ble immunogold labeling for en-
domannosidase (small gold 
particles, arrowheads) and glu-
cosidase II (large gold particles, 
arrows) reveals endomannosi-
dase localization in cis and mid-
dle Golgi apparatus cisternae 
(g), whereas glucosidase II is ob-
servd in rough ER including nu-
clear envelope. Non-
overlapping immunogold label-
ing for both enzymes exists in 
pre-Golgi intermediates. N: nu-
cleus, PM: plasma membrane. 
Micrographs b–e are from Zuber 
et al. (2000)
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observed. An example is Fabry’s disease, an inherited deW-
ciency of lysosomal alpha-galactosidase A (alpha-Gal A),
which causes progressive lysosomal glycosphingolipid
accumulation (mainly globotriosylceramide Gb3) (Desnick
et al. 2001). Disease-causing mutant alpha-Gal A could be
shown by immunoXuorescence to be retained in the ER
where it existed in complexes with the chaperone BiP (Yam
et al. 2005, 2006). From this, we concluded that recognition
and ER-retention of the mutant alpha-Gal A by the protein
quality control machinery constituted the mechanism lead-
ing to lysosomal deWciency in alpha-Gal A. Electron micro-
scopic analysis of cultured Wbroblast from Fabry patients
harboring diVerent mutations did not reveal signiWcant
changes of the morphology of the ER and the pre-Golgi
intermediates. As expected, the Wbroblasts contained
numerous large lysosomes with characteristic multilamellar
inclusions. Thus, the intracellularly retained mutant alpha-
Gal A apparently became dislocated and was eYciently
degraded by the ubiquitin–proteasome system. A similar
situation was observed for a polytope membrane protein,
aquaporin-2, whose folding mutants can cause renal diabe-
tes insipidus (CanWeld et al. 1997; Morello and Bichet
2001). The T126M mutant aquaporin-2 was found to be
retained in the ER and eYciently degraded by proteasomes
without causing ER dilatation (Hirano et al. 2003). ER
retention and rapid proteasomal degradation are also hall-
marks of the pulmonary form of alpha 1-antitrypsin deW-
ciency (Lomas and Parfrey 2004; Sifers et al. 1988).
However, other types of protein folding diseases have been
shown to result in the distention of the ER cisternae. One
example is the congenital hypothyroid goiter in which the
mutant thyroglobulin is misfolded (Kim et al. 1996; Kim
and Arvan 1998; Kim et al. 1998, 2000; Medeiros Neto
et al. 1996). In disorders of procollagen biosynthesis, dis-
tended ER cisternae were also observed (Bogaert et al.

1992). Other examples are represented by LDL receptor
class 2 mutants (Lehrman et al. 1987; Pathak et al. 1988).

There are protein folding diseases associated with both
distended ER cisternae and enlarged pre-Golgi intermedi-
ates. A misssense mutation of the insulin 2 gene
(Cys96Tyr) in Akita mice disrupting one of the two inter-
chain disulWde bonds is associated with intracellular accu-
mulation of misfolded proinsulin (Wang et al. 1999). This
resulted in a signiWcant increase of the volume density of
dilated ER proWles and of the pre-Golgi intermediates
(Fig. 5a, b) (Fan et al. 2007; Zuber et al. 2004). For the lat-
ter, a signiWcant increase of the tubular elements was
observed. Although the mutant proinsulin was degraded
through proteasomes (Wang et al. 1999), its accumulation
in the early secretory pathway caused an activation of the
unfolded protein response and induced apoptosis (Oyado-
mari et al. 2002a; Oyadomari et al. 2002b). Other mutant
proteins such as the cystic Wbrosis (Kopito 1999; Riordan
1999) causing delta F508 variant of the chloride channel
(Gilbert et al. 1998) and misfolded major histocompatibil-
ity complex class I protein (Hsu et al. 1991; Raposo et al.
1995), have been shown to accumulate in the expanded pre-
Golgi intermediates.

Certain other misfolded proteins are accompanied by the
formation of insoluble aggregates in the lumen of the ER,
which physically precludes dislocation to the cytosol and
exposure to proteasomes. The stress-induced so-called intra-
cisternal granules in the pancreas of starved guinea pigs
(Palade 1956), which are composed of aggregated proen-
zymes (Fig. 6a) (Geuze and Slot 1980; Pavelka and Roth
2005), form a classical example. For the liver-disease-caus-
ing alpha 1-antitrypsin Z variant, about 15% of the non-
secreted mutant protein is polymerogenic and thus forms
insoluble aggregates in the ER lumen, which cannot be
degraded (Lomas et al. 1992, 2004) The Glu342Lys substi-

Fig. 5 Details of an insulin-pro-
ducing pancreatic beta cell from 
Akita mice. The presence of 
misfolded proinsulin results in 
the local distention of rough ER 
cisternae (RER*). Arrows point 
to regions of transition of non-
distended ER (RER) to distended 
ER (RER*). In addition, the pre-
Golgi intermediates (pGI) are 
greatly enlarged. G: Golgi appa-
ratus, TE: transitional ER. In 
(B), the organelle changes in 
terms of diVerences of their vol-
ume density (Vv) and diVer-
ences in proinsulin distribution 
pattern (LI) are schematically 
shown (from (Zuber et al. (2004)
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tution of the Z-variant results in a spontaneous loop-sheet
polymerization of the protein. In contrast to the above-men-
tioned protein folding diseases, which all have in common a
loss-of-function pathogenesis, the Z-variant-caused alpha
1-antitrypsin deWciency seems to involve a pathologic gain-
of-function pathogenesis (Hidvegi et al. 2005). The ER inclu-
sions described above belong to the category of Russell bod-
ies. Russell bodies represent subregions of the rough ER in
which insoluble proteins accumulate (Fig. 6b) (Alanen et al.
1985; Kopito and Sitia 2000; Valetti et al. 1991). They are
typically found in cells synthesizing mutant immunoglobu-
lins (Alanen et al. 1985; Kopito and Sitia 2000; Mattioli
et al. 2006; Valetti et al. 1991) but also in cells synthesizing,
for instance, mutant myocilin. Mutations of the myocilin
gene are associated with primary open-angle glaucoma
(Tamm 2002). Mutant myocilins are secretion-incompetent
and have been shown biochemically to form intracellular
detergent-insoluble complexes (Gobeil et al. 2004; Jacobson
et al. 2001; Sohn et al. 2002). In cultured cells transfected to
express both mutant and wild-type myocilin, heteromeric,
detergent–insoluble protein complexes were formed which
were segregated into typical Russell bodies (Yam et al.
2007c). Thus, myocilin-caused open-angle glaucoma repre-
sents a protein folding disease. Its pathogenesis involves a
pathological gain-of-function mechanism because of the
interaction and complex formation of mutant with wild-type
myocilin (Gobeil et al. 2004; Joe et al. 2003; Sohn et al.
2002; Yam et al. 2007c). As a consequence, unfolded pro-
tein response factors and pro-apoptotic factors were up-reg-
ulated and cells underwent apoptosis (Yam et al. 2007c) as
detected by the appearance of lobulated nuclei and the
TUNEL assay (Taatjes et al. 2008).

All the mutant proteins discussed above are luminal or
membrane proteins. What happens to aberrant cytosolic and
nuclear proteins? Same like ER proteins, one extreme situa-

tion is that they become eYciently degraded by cytosolic
and nuclear proteasomes subsequent to polyubiquitination
(Schubert et al. 2000; Turner and Varshavsky 2000). Thus,
cytosolic and nuclear quality control in normal cells sup-
presses the formation of aggregates of aberrant proteins by
degrading them. The other extreme is represented by the
formation of cytosolic and nuclear inclusion bodies due to
ineYcient degradation of aberrant proteins by the ubiqui-
tin–proteasome system. Cytosolic, non-membrane bounded
inclusion bodies are generally called aggresomes (Corboy
et al. 2005; Kopito and Sitia 2000). They consist of peri-
centriolar protein aggregates surrounded by a cage of inter-
mediate (vimentin) Wlaments that are the most consistent
component of aggresomes in addition to ubiquitin, protea-
somes and molecular chaperones. Aggresomes can be
induced experimentally by forced overexpression of aggre-
gation-prone mutant proteins or by experimentally inhibiting
proteasomes (Fig. 7) (Anton et al. 1999; Fan et al.
2007; Johnston et al. 1998; Wigley et al. 1999). On the
other hand, it has been shown that protein aggregates can
directly impair the function of the ubiquitin–proteasome
system (Bence et al. 2001). The formation of aggresomes is
a multi-step process, which depends on the intact micro-
tubules. Aggresomes are formed by the coalescence of small
protein aggregates transported from the cell’s periphery
along microtubules to centrioles (Garcia-Mata et al. 1999;
Johnston et al. 1998; Kawaguchi et al. 2003; Vidair et al.
1966; Wigley et al. 1999; Wojcik et al. 1996). In the
nucleus, the inclusion bodies can be found in association
with the promyelocytic leukemia oncogenic domains
(Anton et al. 1999).

Inclusion bodies have been observed in association with
a number of chronic neurodegenerative diseases such as
Parkinson’s disease, Huntington’s disease, Alzheimer’s
disease and amyotrophic lateral sclerosis (Johnston et al.
2000; Kabashi and Durham 2006; Rubinsztein 2006; Sel-
koe 2003; Shults 2006; Soto 2003). Inclusion bodies named
Lewy bodies are a morphological hallmark of Parkinson’s
disease and other neurodegenerative disorders (McNaught
et al. 2002b; Olanow et al. 2004; Shults 2006). Lewy bod-
ies in the dopaminergic neurons resemble aggresomes and
represent spherical bodies commonly composed of a core
of granular material and peripheral radiating Wlaments.
They contain a variety of proteins such as alpha-synuclein,
the alpha-synuclein-binding protein synphilin-1 torsin A,
neuroWlaments, ubiquitin, proteasomal subunits and various
heat shock proteins as well as ubiquitin-activating enzyme,
ubiquitin-conjugating enzyme, ubiquitin ligase enzymes
and proteasome activators. Furthermore, they contain cen-
trosome-related gamma-tubulin and pericentrin. Thus, it
has been proposed that the formation of Lewy bodies repre-
sents an aggresome-like response in dopaminergic neurons
(McNaught et al. 2002c). Considering the observed impair-

Fig. 6 a Intracisternal granules (asterisks) in the rough ER of exocrine
rat pancreatic cells induced by puromycin treatment. These granules
correspond to mini Russell bodies and are composed of aggregated
proenzymes. b Russell bodies (RB) induced by heat shock in CHO
cells. They represent distended parts of rough ER cisternae Wlled with
protein aggregates. Note the structurally normal appearing rough ER
cisternae in their neighborhood
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ment of the ubiquitin–proteasome system in patients with
Parkinson’s disease (McNaught et al., 2001, 2002a, 2006),
it is assumed that Lewy bodies, by segregating increasing
levels of aberrant and potentially cytotoxic proteins, might
protect the neurons (Olanow et al. 2004). It should be
stressed, however, that the mechanism leading to selective
neuronal death in Parkinson’s disease is not fully under-
stood and the role Lewy bodies might be playing needs to
be studied further studies (Lindholm et al. 2006).

Synthetic chaperones for treatment of protein folding 
disease

The various protein folding diseases mentioned above can be
classiWed based on the pathogenetic mechanism. EYcient
proteasomal degradation of the misfolded protein is charac-
teristic of the loss-of-function pathogenesis. This is the case
in protein folding diseases such as cystic Wbrosis, the lung
form of alpha 1-antitrypsin deWciency, aquaporin 2-caused
renal diabetes insipidus, Gaucher’s disease and Fabry’s dis-
ease. Here, the missing function of the degraded protein
alone can be the cause of the clinical symptoms, or second-
ary eVects due to substrate accumulation like in lysosomal
storage diseases. Intracellular accumulation due to ineYcient
proteasomal degradation of misfolded proteins is representa-
tive of a pathological gain-of-function mechanism, which is
combined with a loss of function. Intracellular accumulation
of misfolded proteins associated or not with protein aggrega-
tion can result in the activation of the unfolded protein
response leading to ER stress and apoptosis. A pathological
gain-of-function mechanism can be also the cause of a domi-
nant clinical course when the wild-type protein in complexes
with the mutant protein is retained inside the cells. Examples
for pathological gain-of-function pathogenesis-associated
protein folding diseases are myocilin-caused open-angle
glaucoma, familial hypophyseal diabetes insipidus, Parkin-
son’s disease and Huntington’s disease.

Many attempts have been made to at least partially cor-
rect the protein misfolding in order to overcome their
traYcking defect and to alleviate ER stress. Among other
approaches, small molecule synthetic chaperones have been
used in order to shift the folding equilibrium of mutant pro-
teins towards a more native state (Arakawa et al. 2006;
Chaudhuri and Paul 2006; Cohen and Kelly 2003; Papp and
Csermely 2006; Perlmutter 2002). Chemical chaperones
include osmotically active substances such as DMSO,
glycerol, polyols or deuterated water, and other compounds
such as 4-phenylbutyric acid (Burrows et al. 2000; Lim
et al. 2004; Liu et al. 2004; Pedemonte et al. 2005; Ruben-
stein and Zeitlin 2000; Tamarappoo and Verkman 1998;
Tveten et al. 2007; Welch and Brown 1996). Other sub-
stances such as enzyme inhibitors (Fan et al. 1999; Matsuda
et al. 2003; Sawkar et al. 2002) and receptor ligands or
antagonists {Petäjä-Repo, 2002 #16211;Egan, 2002
#12283} have been shown to function as pharmacological
chaperones.

Here, we have chosen two examples from our work to
demonstrate how immunocytochemistry and microscopy in
combination with biochemical analyses can be applied to
demonstrate the functionality of a chemical and a pharma-
cological chaperone in rescuing the consequence of dis-
ease-causing protein misfolding. It has been mentioned
above that open-angle glaucoma-causing mutant myocilin
forms insoluble protein aggregates in the ER lumen (Russel
bodies), which result in ER stress and apoptotic cell death
(Yam et al. 2007b). Among the other tested chemical
chaperones, treatment with sodium 4-phenylbutyrate signiW-
cantly reduced the amount of intracellular detergent–
insoluble myocilin aggregates and thereby the number of
Russel bodies in the cells (Fig. 8a–c), diminished mutant
myocilin interaction with calreticulin and restored the
secretion of mutant myocilin. As a consequence, the ER
stress was released and most interesting, the apoptosis rate
was reduced close to levels observed in control cells
expressing wild-type myocilin (Fig. 8d). Thus, sodium

Fig. 7 Formation of pericentri-
olar aggresomes following pro-
teasome inhibition by lactacystin 
in CHO cells stably expressing 
misfolded proinsulin. Irregularly 
shaped, electron dense Xoccu-
lent material is present in the 
cytoplasm and surrounded by 
intermediate Wlaments (a). At 
higher magniWcation, the spatial 
relationship between the protein 
aggregates and a centriole can be 
seen (b). Micrographs from Fan 
et al. (2007)
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4-phenylbutyrate exerts a beneWcial eVect by protecting the
cells from the deleterious eVects of mutant myocilin. Since
sodium 4-phenylbutyrate is a tissue and cell-permeable
molecule, it holds the potential for topical administration in
the treatment of myocilin-caused primary open-angle glau-
coma.

The second example concerns Fabry’s disease, a lyso-
somal storage disorder caused by a deWciency of alpha-Gal
A activity in lysosomes that results in the accumulation of
glycosphingolipid globotriosylceramide (Gb3). The lyso-
somal traYcking of mutant alpha Gal A is impaired
because the enzyme is retained in the ER by the protein
quality control (Yam et al. 2005). Others had demonstrated
that the activity of mutant alpha-Gal A in vitro at neutral
pH could be stabilized with the competitive enzyme inhibi-
tor 1-deoxygalactonorijimycin (DGJ) (Fan et al. 1999).
Treatment of cells expressing mutant alpha-Gal A with a
non-inhibitory dose of DGJ enhanced the intracellular
enzyme activity (Yam et al. 2005, 2006). In addition, we
could demonstrate by immunoXuorescence and quantitative
immunogold labeling that the mutant enzyme was redistributed

from the ER to lysosomes and that this traYcking was
mannose 6-phosphate-dependent. The DGJ treatment
resulted in release of mutant alpha-Gal A from the chaper-
one BiP and in its conversion in the mature lysosomal form.
Double confocal immunoXuorescence and immunogold
labeling demonstrated that the lysosomal Gb3 storage was
cleared and that the size of the lysosomes became normalized
(Yam et al. 2005, 2006). Together, this demonstrated
that DGJ exhibited a chaperone-like eVect and induced the
traYcking of ER-retained mutant alpha Gal A to lysosomes
where the enzyme was catalytically active. Therefore, the
pharmacological chaperone DGJ potentially oVers a conve-
nient and cost-eYcient therapeutic alternative to enzyme
replacement therapy.
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