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Abstract

The TROSY principle has been introduced into a HNCA experiment, which is designed for measurements of
the intraresidual and sequential Hα-Cα/HN-N dipole/dipole and Hα-Cα/N dipole/CSA cross-correlated relaxation
rates. In addition, the new experiment provides values of the 3,4JHαHN coupling constants measured in an E.COSY
manner. The conformational restraints for the ψ and φ angles are obtained through the use of the cross-correlated
relaxation rates together with the Karplus-type dependencies of the coupling constants. Improved signal-to-noise
is achieved through preservation of all coherence transfer pathways and application of the TROSY principle. The
application of the [15N,13C]-DQ/ZQ-[15N,1H]-TROSY-E.COSY experiment to the 16 kDa apo-form of the E. coli
Heme Chaperon protein CcmE is described. Overall good agreement is achieved between ψ and φ angles measured
with the new experiment and the average values determined from an ensemble of 20 NMR conformers.

Abbreviations: TROSY, transverse relaxation-optimized spectroscopy; DD, dipole-dipole coupling; CSA, chem-
ical shift anisotropy; 3D, three-dimensional; ZQ (DQ), zero (double) quantum manifold; CcmE, Cytochrome c
maturation heme chaperone protein E from E. Coli; E.COSY, exclusive correlation spectroscopy.

Introduction

In the pursuit of more precise solution structures of
proteins the usual sources of structural constraints
based on proton-proton NOE cross-relaxation and
scalar coupling constants (Wüthrich, 1986) are ef-
fectively complemented by dihedral angle estimates
derived from the effects of cross-correlated cross re-
laxation (Ernst and Ernst, 1994; Vincent et al., 1996;
Reif et al., 1997). The main focus of newly de-
veloped NMR experiments is the determination of
various dihedral angles in proteins by the use of quan-
tum interference between spin Hamiltonians, which
describe chemical shift anisotropy and dipolar inter-
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actions (Yang et al., 1997, 1998; Yang and Kay, 1998;
Pelupessy et al., 1999a; Chiarparin et al., 1999; Pelu-
pessy et al., 1999b; Pang et al., 1999; Reif et al., 2000;
Sprangers et al., 2000; Kloiber and Konrat, 2000a,b;
Kloiber et al., 2002). On the other hand, preserva-
tion of the spin state selectivity in NMR experiments
enables effective determination of the various scalar
coupling constants in an E.COSY manner (Griesinger
et al., 1987; Wagner et al., 1991; Weisemann et al.,
1994). The quality of spectra obtained with proteins of
larger molecular weight can be significantly improved
by the use of TROSY (Pervushin et al., 1997). TROSY
is a spectroscopic technique based on the constructive
use of interference effects without mixing of the re-
levant spin states. Thus, all these experiments share
the same physical basis and consequently, it is instruc-
tive to design a highly optimized experiment unifying
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these approaches, which enables direct determination
of the ψ and φ angles in larger proteins by the use of
the cross-correlated relaxation rates together with the
Karplus-type dependencies of the coupling constants.

In this paper we present a new TROSY-type ex-
periment where backbone ψ and φ angles are de-
termined using cross-correlated cross relaxation rates
between Hα-Cα and HN-N dipolar interactions and be-
tween Hα-Cα dipolar interaction and N chemical shift
anisotropy (CSA).

Simultaneously, the values of the 3,4JHαHN scalar
couplings are measured in an E.COSY manner.

In the case of the φ angle, the Karplus curve
for 3JHαHN yields an independent angle determination
(Karplus, 1959), whereas 4JHαHN might provide addi-
tional yet not parametrized constraints on the ψ angle
(Vuister and Bax, 1994).

Methods

We introduce two basic variants of the experimental
scheme of Figure 1, which are optimized for applica-
tions at lower (up to 600 MHz) and higher polarizing
magnetic field strength B0, respectively. In the follow-
ing, the coherence transfer pathways in each of the two
experiments are analyzed using the product operator
formalism (Sørensen et al., 1983).

The [15N,13C]-DQ/ZQ-[15N,1H]-TROSY-E. COSY
designed for use at lower B0 omits the double inver-
sion of the 1HN spins during MQ evolution making
full use of TROSY-type relaxation compensation. To
emphasize this fact, the symbol H (= inversion) is
added to the corresponding experiment names. The
four relevant coherence tranfer pathways are given by
Equation 1.

Hz → MQ
(
E
2 − HN

z

) (
E
2 ∓ H α

z

)
exp[−2RMQ

β/α TMQ

−i(
MQ ∓ πJHC − πJHN)t1]
→ N34+

(
E
2 ∓ H α

z

)
exp[−2R34TN − i
34t2]

→ H 24−
(
E
2 ∓ H α

z

)
exp[−R24t3 − i
24t3],

(1)

where MQ represents either one of the two double-
quantum operators (DQ), C±N±, or one of the
two zero-quantum operators (ZQ), C∓N±, and N34+
and H 24− are the single-transition basis operators
N+(E/2 − Hz) and N−(E/2 + Hz), respectively. The
chemical shifts relative to the carrier frequencies are

DQ = 
N + 
C,
ZQ = 
N − 
C , 
34 =

N − πJHN and 
24 = 
H + πJHN · JHN and JHC

are the scalar coupling constants between 1HN and 15N
spins and between 1Hα and 13Cα spins, respectively.

R34 and R24 are the relaxation rates of the correspond-
ing TROSY operators (Pervushin et al., 1997). The
MQ relaxation rates R

MQ
β/α are given by Equations 2–

5, where the indices α and β correspond to the spin
state operators E/2 +H α

z and E/2 −H α
z , respectively

(Korzhnev et al., 2001) and only terms proportional to
J(0) and J (
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(2–5)

The spectral density functions J (ω) of the spec-
tral frequency ω in an approximation of fast internal
motions and interaction constants for CSA of nu-
cleus k (ACSA(k)) and for dipole-dipole interaction of
a given 1H and a nucleus k (AD(Hk)) are given by
Equations 6–9. In addition we assume that various
auto- and cross-correlated relaxation spectral densities
encountered in the same spin system can be reason-
ably represented by the same functional form given by
Equation 6.

J (ω) = τcS
2

1 + ω2τ2
c

, (6)

ACSA(k) = −
√

3

10

1

2
γkδkz, (7)

AD(Hk) =
√

3

10

µ0

8π2 γkγHh
〈 1

r3
Hk

〉
, (8)

P(�) = 3(cos�)2 − 1

2
, (9)

where τc is the correlation time, S2 the generalized
order parameter, γk the gyromagnetic ratio of the
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Figure 1. The experimental scheme of the (a) [15N, 13C]-DQ/ZQ-[15N,1H]-TROSY and (b) [15N,13C]-DQ/ZQ- [15N,1H]-TROSY-E. COSY.
A variant of each experiment designed for use at polarizing magnetic field strengths Bo higher than 600 MHz (see Methods) is obtained by the
insertion of two 1HN inversion pulses indicated in brackets. Narrow (wide) black bars represent non-selective 90◦ (180◦) pulses on 1H, 13Cα ,
15N and 13C′ with carrier offsets placed at 4.7 ppm, 55.0 ppm, 118.7 ppm and 175.5 ppm, respectively. Black and open curved shapes indicate
selective 90◦ Gaussian pulses on the water 1H resonance with a duration of 1 ms and selective 90◦ E-Burp pulses on 1Hα and water 1H with a
duration of 1.5 ms, respectively (Geen and Freeman, 1991). The grey curved shapes represent 1HN-selective 180◦ I-Burp pulses. The boxes on
the line labeled PFG indicates sine-shaped pulsed magnetic field gradients along the z-axis with 1 ms duration except for G2 in (b), which has
a duration of 950 µs: G1, 30 G cm−1; G2 80 G cm−1; 60 G cm−1. The delays are: τ1 = 2.7 ms, τ2 = 18 ms and 34 ms for the determination
of the φ and ψ angles, respectively, TMQ = 10.8 ms, TN = τ2 in (a) and TN = τ2 − τ1 in (b). The 16 separately stored interferograms ci
(i = 1...16) are obtained by the following phases: φ1 = φ2 = {x, x, x, x, x, x, x, x, y, y, y, y, y, y, y, y}; φ3 = {x}; φ4 = {x, x, x, x, -x, -x, -x,
-x}; φ5 = {x, y, x, y, x, y, x, y, y, -x, y, -x, y, -x, y, -x}; φ6 = φ7 = {y, y, -y, -y}; φ8 = {-x, -x, x, x}; φrec = {x, y, x, -y, x, y, x, -y, -y, x, -y,
-x, -y, x, -y, -x}; x on all pulses without phase specification. The basic 4-step phase cycle is carried out for each of the 16 interferograms in the
following manner: φ1 = {u, -u, -u, u}; φ2 = {u, -u, u, -u}; φrec = {v, v, -v, -v}, where u and v stand for x or y. 13C′ decoupling is performed
using the SEDUCE phase modulation (McCoy and Mueller, 1992). Spectra are processed by a linear combination of the obtained set of the
interferograms as described in Methods.

nucleus k, δk
z the axial principal component of the

anti-symmetrical part of the chemical shift tensor for
nucleus k, which is assumed to be axially symmetric,
µ0 the permeability of free space, h Plancks constant,
rHk the distance between the spins 1H and k, and �

the projection angle between the indicated interactions
(Figure 2).

For glycine residues, a set of equations similar to
Equations 2–5 have been derived in closed form. In
brief, each the of Equations 2–5 is replaced by two
equations corresponding to the up or down state of
the second proton directly attached to the Cα atom.
In the right hand expression of each modified equa-
tion, the terms containing AD(HC) are replaced by two
terms corresponding to the spin states of the 1Hα1

and 1Hα2 spins. In addition, a term describing the
Hα1-Cα/Hα2-Cα dipole/dipole interaction is added.

The initial 1H polarization is transfered by an
INEPT step to N34+ at time point a, followed by
a pulse segment which creates double- and zero-
quantum coherence between 15N and 13C at time
point b (Figure 1a). The MQ operators are repre-
sented as a linear combination of two single transi-
tion operators with respect to the single transitions
of the 1HN and 1Hα spins, MQ(E/2 − HN

z )(E/2 − Hα
z

and MQ(E/2 − HN
z )(E/2 + Hα

z ). During the constant
time period TMQ between the time points b and c,
these operators evolve due to the MQ chemical shifts

DQ and 
ZQ and the scalar couplings of 1JHN and
1JHC. Between time points c and e, the MQ co-
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Table 1. The subspectra �1 − �16 obtained by linear combination of the interferograms c1-c16 and the resulting
spectral terms used to reconstruct phase sensitive 3D [15N,13C]-DQ/ZQ-[15N,1H]-TROSY-E. COSY subspectra

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16 Spectra terms

�1 − − − − − + − + − − + + + − − + cos(ωZQt1) sin(ω12t2)H
24y

�2 + + + + − + − + + + − − + − − + sin(ωZQt1) cos(ω12t2)H
24y

�3 − − + + + − − − + + + + + − + − sin(ωZQt1) sin(ω12t2)H
24x

�4 − − + + − + + − − − − − + − + − cos(ωZQt1) cos(ω12t2)H
24x

�5 − − − − − + − + + + − − − + + − cos(ωDQt1) sin(ω34t2)H
13y

�6 + + + + − + − + − − + + − + + − sin(ωDQt1) cos(ω34t2)H
13y

�7 + + − − − + + − − − − − − + − + sin(ωDQt1) sin(ω34t2)H
13x

�8 + + − − + − − + − − − − + − + − cos(ωDQt1) cos(ω34t2)H
13x

�9 − + − + − − − − − + + − + + − − cos(ωDQt1) sin(ω12t2)H
24y

�10 + − + − − − − − + − − + + + − − sin(ωDQt1) cos(ω12t2)H
24y

�11 − + + − + + + − − + − + − − − − sin(ωDQt1) sin(ω12t2)H
24x

�12 − + + − − − + + − + − + + + + + cos(ωDQt1) cos(ω12t2)H
24x

�13 − + − + − − − − + − − + − − + + cos(ωZQt1) sin(ω34t2)H
13y

�14 + − + − − − − − − + + − − − + + sin(ωZQt1) cos(ω34t2)H
13y

�15 − + + − + + − − + − + − + + + + sin(ωZQt1) sin(ω34t2)H
13x

�16 + − − + + + − − − + − + + + + + cos(ωZQt1) cos(ω34t2)H
13x

Figure 2. Schematic representation of the protein backbone ge-
ometry. The arrows indicate the vectors on which the measured
relaxation rates depend. δN

Z is the axial principal component of the

anti-symmetrical part of the 15N chemical shift tensor, ψ and φ are
the dihedral angles defining the backbone conformation. Small vari-
ations of the 15N chemical shift tensor principal components and
thier directions throughout the polypeptide chain can be expected
(see for review Pervushin, 2000).

herence is transfered back to the 15N spins via the
single-transition TROSY operator N34+ followed by the
standard ST2-PT element, which transfers N34+ to H24−
(Pervushin et al., 1998). For the experiment of Fig-
ure 1b the (E/2 − Hα

z ) and (E/2 + Hα
z ) spin states

are not mixed during the ST2-PT element, so that
the peaks of the resulting doublets (or triplets in the

case of glycines) shown in Figure 4 are shifted by
3,4JHαHN relative to each other in the 
H -dimension.
The inclusion of a water-flip-back as implemented in
the experimental scheme of Figure 1a, results in par-
tial mixing of the (E/2 − Hα

z ) and (E/2 + Hα
z ) spin

states for 1Hα excited by the selective pulses, which
prevents quantitative measurements of the 3,4JHαHN
coupling constants but not cross correlated relaxation
rates. Thus, if sensitivity losses due to the water satu-
ration is not a question, the water flip back trick should
be avoided.

In order to maximize the spectral sensitivity, all
coherence transfer pathways are retained. The in-
dividual phase sensitive subspectra such as the 3D
TROSY-ZQ-HNCA and the 3D TROSY-DQ-HNCA
are then obtained from linear combinations of 16
separately stored interferograms measured for each
(t1, t2)-pair (Figure 1). Table 1 summarizes the lin-
ear combinations employed to obtain each subspec-
trum. In Table 1 the column ci represents the sign
of the contribution of the i-th interferogram given
in Figure 1 to the j-th subspectrum �j , where both
i and j range from 1 to 16. The complex expo-
nents exp(−
MQt1) exp(−
12/34t2) required for the
complex Fourier transformation are obtained by com-
bining four of the cosine and sine modulated terms.
For example, exp(−
MQt1) exp(−
12/34t2) is built
up with the subspectra �5-�8. Finally, only spec-
tra showing the slowly relaxing TROSY components
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in the [1H,15N]-plane (Pervushin et al., 1997) are
retained for further analysis. Neglecting transverse re-
laxation one quarter of the initially combined 1HN and
15N Boltzmann steady state magnetizations contribute
to the individual TROSY-DQ-HNCA or TROSY-ZQ-
HNCA spectra. The losses stem from the TROSY
selection and the States-TPPI quadrature detection of
the MQ frequencies.

In order to obtain structural information, the four
relaxation rates of the doublet peaks in the DQ- and
ZQ-spectra are linearly combined resulting in cancela-
tion of all terms except for the dipole(HC)/dipole(HN)
and dipole(HC)/CSA(N)-cross-correlated terms given
by Equation 10.

[AD(C)AD(N)P (�D(C)D(N)) − 2AD(C)ACSA(N)B0

P(�D(C)CSA(N))] 4
3J (0) = (R

DQ
β − R

DQ
α − R

ZQ
β

+R
ZQ
α ) 1

4 .

(10)

To be able to derive the expressions for the ψ and φ

angles in a closed form, we further assume that the
difference in contribution of the passive scalar cou-
plings to ZQ and DQ coherences is neglegible. In that
case, the linear combination of the relaxation rates
on the right side of Equation 10 can be expressed
via the experimentally measured intensities of the 3D
cross-peaks in the DQ and ZQ spectra:

(R
DQ
β − R

DQ
α − R

ZQ
β + R

ZQ
α ) 1

4 =
1

TMQ
ln

I
DQ
α I

ZQ
β

I
DQ
β

I
ZQ
α

.
(11)

A combination of (10) and (11) yields:

[AD(C)AD(N)P (�D(C)D(N)) − 2AD(C)ACSA(N)B0

P(�D(C)CSA(N))] 4
3J (0) = 1

TMQ
ln

I
DQ
α I

ZQ
β

I
DQ
β

I
ZQ
α

,
(12)

which indicates the relationship between the intensi-
ties of the MQ peak components and the projection
angles resulting from cross-correlated relaxation of
both the dipole-dipole and dipole-CSA interactions
involving Cα and N spins.

A similar relationship for Gly residues is provided
by Equation 13, where only the outer components of
the MQ triplets corresponding to both 1Hα1 and 1Hα2

spins in αα or ββ state are used.

[AD(C)AD(N)(P (�1
D(C)D(N)) + P(�2

D(C)D(N))) −
2AD(C)ACSA(N)B0(P (�1

D(C)CSA(N)) +
P(�2

D(C)CSA(N)))] 4
3J (0) = 1

TMQ
ln

I
DQ
αα I

ZQ
ββ

I
DQ
ββ

I
ZQ
αα

.

(13)

All elements of the described experiment are opti-
mized for TROSY relaxation. A graphical represen-
tation of Equations 12 and 13 given by Figure 3 shows

Figure 3. The left-hand sides of Equations 12 and 14 as functions
F of the dihedral φ and ψ angles at 900 MHz (solid curves) and
600 MHz (broken curves) fields. The assumptions mentioned in the
Results part are made. The modification H yields a doubled variation
of the relaxation rates.

that the most effective use of the experiment can be
achieved at polarizing magnetic fields up to 600 MHz.
Since the second terms on the left side of both Equa-
tions 12 and 13 depend linearly on B0, the right side
becomes smaller at higher fields. To circumvent this
reduction, we propose the use of the same experimen-
tal scheme supplemented with H . Due to the inter-
change of the single-transition operators in the middle
of the MQ-evolution period the relaxation term de-
scribing the dipole(HC)/dipole(HN) cross-correlation
is canceled out, whereas the term stemming from
the dipole(HC)/CSA(N) cross-correlation remains un-
changed as it is described by Equations 14 and 15.

−2AD(C)ACSA(N)B0P(�D(C)CSA(N))
4
3J (0) =

1
TMQ

ln
I
DQ
α I

ZQ
β

I
DQ
β

I
ZQ
α

,
(14)

−2AD(C)ACSA(N)B0P(�1
D(C)CSA(N)) +

P(�2
D(C)CSA(N)))

4
3J (0) = 1

TMQ
ln

I
DQ
αα I

ZQ
ββ

I
DQ
ββ I

ZQ
αα

.
(15)
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Figure 4. [1H,15N/13C-MQ] planes of selected cross-peaks from
the 3D [15N,13C]-DQ/ZQ-[15N,1H]-TROSY-E. COSY spectra of
a sample of 15N/13C-labeled apo-CcmE30-159-H6 (Enggist et al.,
2002, accepted) used for the φ angle determination. Spectra of
the experiment employing selective 90◦ E-Burp pulses with H are
shown in (a) and (b). The peak doublets of Gln72 result from the
JHαCα splitting in the ωMQ dimension. Due to the E. COSY effect

the peaks are shifted in the ωH dimension by 3JHαHN = 9.3 Hz and
3JHαHN = 8.2 Hz in (a) and (b), respectively. Spectra of the ex-
periment using selective 90◦ Gaussian pulses without H are shown
in (c) and (d). The peak triplet of Gly113 results from the JHα1Cα

and JHα2Cα splittings in the ωMQ dimension. For the relaxation
calculations the intensities of the outer peaks corresponding to the
αα and ββ states are used. The inner peaks are superpositions of
the peaks corresponding to the βα and αβ states. The experiments
were performed on a Bruker Avance 600 MHz spectrometer. The 16
complex interferograms consisting of 60 × 30 × 512 data points
along the ω1, ω2 and ω3 dimensions are collected and processed
with PROSA (Güntert et al., 1992) as described in Methods. The
experiments using selective Gaussian pulses (E-Burp pulses) were
acquired with an interscan delay of 850 ms (800 ms) and 16 (4)
scans per datapoint resulting in a total acquisition time of 130 (31)
hours. (e) shows 1D [15N13C]ZQ (ω1) slices taken at the positions
of the maximum intensity of the cross-peaks in (a) to demonstrate
the quality of the acquired spectra.

Figure 4. Continued.

The right-hand sides of Equations 12 and 14 are com-
pared as functions F of the dihedral angles φ and ψ

at 600 MHz (dotted curves) and 900 MHz 1H fields
(solid curves) in Figure 3. The double inversion of
1HN at 900 MHz achieved in the experimental scheme
of Figure 1 results in a twofold increase in the range of
relaxation rates observed for different dihedral angles
in comparison with the full TROSY version. In addi-
tion, the redundancy of possible dihedral angles de-
duced from the relaxation rates is reduced to two from
four possible angles. Pure dipole(HC)/dipole(HN)
crosscorrelated relaxation terms can be obtained by
subtracting Equation 14 from Equations 12 and 15
from Equation 13, respectively, whereas H increases
the amplitude of the variation of the relaxation rates
measured at 900 MHz fields. No such benefit is
derived at 600 MHz fields so that H can be omitted.

Results and discussion

The experimental schemes of Figure 1 were applied
to the 16 kDa uniformly 13C, 15N labeled cytochrome
c maturation heme chaperone protein E from E. coli
(CcmE). The NMR sample contained 350 µl of 1 mM
protein solution in 20 mM sodium phosphate buffer at
pH = 6.0 containing in addition 300 mM NaCl. The
CcmE family of proteins exhibits no significant amino
acid sequence homology to any protein of a known
3D structure (Enggist et al., 2002, accepted). The high
resolution 3D structure of CcmE determined by solu-
tion NMR techniques (PDB code 1LIZ) serves as a
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Figure 5. Experimental values of F = ln
(
I
DQ
α(α)

I
ZQ
β(β)

/
I
DQ
β(β)

I
ZQ
α(α)

)
measured at B0 = 600 MHz vs. mean angles derived from the set
of the 20 conformers representing the solution structure of CcmE
(Enggist et al., 2002, accepted). (a) F vs. φ or all amino acids
except for Gly, (b) F vs. ψ for all amino acids except for Gly, (c) F
vs. φ for Gly, (d) F vs. ψ for Gly, (e) F vs. φ for all amino acids
except for Gly with H (see Methods section), (f) 3JHαHN vs. φ. The
solid curves represent theoretical values. The error bars show the
distribution of the angle within the 20 NMR conformers.

representative for this class of proteins. 15N relaxation
rates were used to estimate the product of the averaged
generalized order parameter and the rotational corre-
lation time of the protein, τcS

2 = 10 ± 1 ns (Enggist
et al., 2002, accepted).

In order to maximize the spectral sensitivity and
facilitate data evaluation, the experiments of Figure 1
were run separately for the φk and ψk−1 angle esti-
mations using either τ2 = 18 ms or τ2 = 34 ms
yielding mostly transfer from 15Nk to 13Cα

k or 15Nk

to 13Cα
k−1, respectively. Figure 2 shows the geome-

try of a fragment of the polypeptide backbone with
the nomenclature indicated for atoms and angles in-
volved in the analysis. We assume that for any given
polypeptide fragment relaxation of the correspond-
ing multiple quantum coherences excited between the
15Nk and 13Cα

k−1 and 15Nk and 13Cα
k−1 spins depends

only on the values of the φk and ψk−1 angles. The
following projection angles and distances were as-
sumed to be identical for all peptide groups: Hα

k-Cα
k =

108.4◦ and Hα1/2
k − Cα

k − Nk = 111◦ for glycines,
HN

k − Nk − Cα
k = 116◦, Cα

k−1 − C′
k−1 − Nk = 116◦,

C′
k−1 − Nk − HN

k = 116, 5◦, Hα
k − Cα

k − C′
k = 107.2◦,

rHN = 1.04 × 1010 m (Roberts et al., 1987), rHC =
1.09 × 1010 m (Case, 1999). The main axis of the
15N CSA tensor is located in the peptide plane de-
viating from the HN bond by 20◦ (Oas et al., 1987)
with the main eigenvalue $δ(15N CSA) = 170 ppm
(Tjandra et al., 1996). The dihedral angles φk and
ψk−1 are related to the projection angles between the
interactions by geometrical considerations. The ra-
tios of the MQ relaxation rates as functions of the
φ and ψ angles are listed in the Tables 2a-c. The
functions are given in units of S2τc × 108 s−1 and
therefore are independent of τc. The Tables 2a and
2b show the functions of Equations 12–15 calculated
for B0 = 600 MHz without and with H. Table 2c re-
ports the corresponding functions for B0 = 900 MHz,
where H is important due to the significantly reduced
strength of the combined HC/HN dipole/dipole and
HC/N dipole/CSA interactions observed in TROSY
spectra recorded without H.

The logarithms of the ratio of the measured MQ re-

laxation rates, F = ln
(
I
DQ
α(α)I

ZQ
β(β)

/
I
DQ
β(β) I

ZQ
α(α)

)
, for the

φ and ψ angles were obtained from the 3D [15N,13C]-
DQ/ZQ-[15N,1H]-TROSY-E.COSY spectra. In the H
experiment, both the ratio of the relaxation rates and
the experimental 3JHαHN scalar coupling constants
are extracted from the same data set measured with
the experimental scheme of Figures 2b. Figures 4a
and 4b show the 2D doublet corresponding to the
backbone moiety of Gln72 measured with the exper-
iment [15N,13C]-DQ/ZQ-[15N,1H]-TROSY-E.COSY-
H in the ZQ- and DQ-spectra, respectively. An ex-
ample of a glycine 2D triplet is given in Figures 4c
and 4d. The 2D triplet of Gly113 is obtained from the
[15N,13C]-DQ/ZQ-[15N,1H]-TROSY-E.COSY experi-
ment.

Figures 5a–e show the logarithms of the ratio of the
measured MQ relaxation rates, F, versus the values of
the φ angles averaged over 20 NMR conformers of the
structurally well defined core of CcmE (residues 34–
132) along with the theoretical curves calculated with
Equations 12–15.

In general, a satisfactory correlation between the
experimental relaxation data and the angle values cal-
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Table 2. Logarithm of the ratio of peak amplitudes in 3D [15N,13C]-DQ/ZQ-[15N,1H]-TROSY-E. COSY subspec-
tra as a function of the φ and ψ dihedral angles measured at B0 = 600 MHz (a and b) and B0 = 900 Mhz (c). The
functions in (a) correspond to the experimental scheme of Figure 1 applied without H and the functions in (b) and
(c) correspond to the scheme applied with H during DQ and ZQ evolution

(a) ln

(
I
DQ
α(α)

I
ZQ
β(β)

I
DQ
β(β)

I
ZQ
α(α)

)
[τc × 108] s−1

φ 0.696 + 0.234 cos(φ − 60) − 2.327 cos2(φ − 60)

ψ 0.677 + 0.410 cos(ψ − 120) − 2.252 cos2(ψ − 120)

φGly 1.416 + 0.251 cos(φ − 60) − 2.283 cos2(φ − 60) + 0.251 cos(φ + 60) − 2.283 cos2(φ + 60)

ψGly 1.354 + 0.410 cos(ψ − 120) − 2.252 cos2(ψ − 120) + 0.410 cos(ψ + 120) − 2.252 cos2(ψ + 120)

(b)

φ −0.927 + 0.985 cos(φ − 60) + 1.429 cos2(φ − 60)

ψ −0.918 + 0.902 cos(ψ − 120) + 1.138 cos2(ψ − 120)

φGly −1.795 + 1.057 cos(φ − 60) − 1.402 cos2(φ − 60) − 1.057 cos(φ + 60) + 1.402 cos2(φ + 60)

ψGly −1.836 + 0.902 cos(ψ − 120) + 1.138 cos2(ψ − 120) + 0.902 cos(ψ + 120) + 1.138 cos2(ψ + 120)

(c)

φ −1.390 − 1.477 cos(φ − 60) + 2.144 cos2(φ − 60)

ψ −1.377 + 1.352 cos(ψ − 120) + 1.707 cos2(ψ − 120)

φGly −2.692 − 1.585 cos(φ − 60) + 2.103 cos2(φ − 60) − 1.585 cos(φ + 60) + 2.103 cos2(φ + 60)

ψGly −2.754 + 1.352 cos(ψ − 120) + 1.707 cos2(ψ − 120) + 1.352 cos(ψ + 120) + 1.707 cos2(ψ + 120)

culated from the NMR structure of CcmE is observed.
The error propagation of the signal to noise ratio in the
[15N,13C]-DQ/ZQ-[15N,1H]-TROSY-E.COSY spectra
used to estimate the φ angles typically yields an er-
ror of 6% for the F values. Statistically significant
deviations of the experimental values of F from the
theoretical curves of Equations 12–15 are attributed to
an absence of traditional structural constraints which
restrain the corresponding φ and ψ angles in the pro-
cess of NMR structure calculations. This situation was
detected for the φ angle of the residues 40, 44, 56,
58, 70, 76, 78, 88, 109, 120, 128, 134, 135 and 142
and for the ψ angle of the residues 45, 55, 61, 70,
81, 88, 102, 110, 113, 119 and 126. Structural re-
finement using cross-correlated relaxation data serves
as a useful complementary tool to the conventional
NOEs based constraints in loop regions of the protein
structure (Sprangers et al., 2000).

The values of the 3,4JHαHN can be independently
obtained from both ZQ- and DQ- subspectra of the
[15N,13C]-DQ/ZQ-[15N,1H]-TROSY-E. COSY exper-
iment. This fact can be used to reduce the effects of
spectral artifacts or peak overlap and in order to cal-
culate statistical uncertainties. In the case of glycine,
only the sum of 3,4JHα1HN and 3,4JHα2HN can be

measured, since the inner peak of the triplet is a su-
perposition of the peaks corresponding to the αβ and
βα states slightly shifted relatively to each one an-
other by 2 × (3,4JHα1HN − 3,4JHα2HN). The values
of the 3JHαHN coupling constants are usually analysed
solely as a function of the φ angle using the Karplus-
type dependencies while a structural parametrization
for the 4JHαHN coupling constants is not yet avail-
able (Vuister and Bax, 1994). Figure 5f correlates
measured 3JHαHN scalar coupling constants with the
theoretical Karplus-type curve (Wüthrich, 1986). Due
to transverse relaxation of the 1Hα spins in the ST2-
PT element, the apparant values of the 3,4JHαHN scalar
couplings smaller than 2 Hz are significantly biased
by cross-talk between the α and β states of the 1Hα

spin (Wang and Bax, 1996). As a result only 3JHαHN
scalar couplings stronger than 3 Hz match well with
the angular restraints derived from the relaxation data.
We attempted to minimize mixing of the α and β states
of the 1Hα spin in the ST2-PT by introducing 1Hα band
selective 90◦ pulses, which in combination with the
subsequent non-selective 90◦ 1H hard pulses quantita-
tively flip the 1Hα magnetization to the +z axis (Fig-
ure 1b). Nonetheless, the experimental values of the
scalar coupling constants smaller than 2–4 Hz tend to



299

be systematically underestimated. With the increased
transverse relaxation of 1Hα spins usually found in
larger proteins, the systematic errors stemming from
the cross-talk problem result in an underestimation of
even larger scalar couplings. The positive and negative
values of the φ angles can be most effectively dis-
criminated by combining cross correlated relaxation
rates obtained from the [15N,13C]-DQ/ZQ-[15N,1H]-
TROSY-E. COSY experiment run with and without
the H element (see Figures 3 and 5e). The obtained
values of the φ angles can be than cross validated using
the 3JHαHN scalar coupling constants.

Thus, the TROSY principle has been introduced
into a modified MQ-E. COSY-HNCA experiment de-
signed for measurements of the intraresidual and
sequential Hα-Cα/HN-N dipole/dipole and Hα-Cα/N
dipole/CSA cross-correlated relaxation rates, which
in addition provides values of the 3,4JHαHN coupling
constants measured in an E. COSY manner. The re-
straints for backbone ψ and φ angles are derived from
a ratio of the relaxation rates of ZQ and DQ coher-
ences excited between the 13Cα and 15N spins and the
Karplus-type dependencies of the coupling constants
measured from the corresponding 1Hα spin state se-
lective [15N,13C]-DQ/ZQ-[15N,1H]-TROSY-E. COSY
spectra reconstructed from a single data set. A com-
parison of the measured values of the ψ and φ an-
gles of the 16 kDa CcmE protein with the average
values determined from the NMR solution structure
by traditional methods reveals an overall match be-
tween directly measured ψ and φ angles with the
corresponding angles found in the set of 20 NMR
conformers.

We conclude that the values of dihedral angles
calculated from the relaxation data are more reliable
than the ones derived from the scalar coupling alone.
In addition, the comparison indicates a necessity to
refine NMR structures by including cross-correlated
relaxation-based constraints in structure determination
protocol.

Acknowledgements

We thank Dr Fred Damberger for careful reading of
the manuscript. We are grateful to Dr Elisabeth En-
ngist and Prof Linda Thony-Meier for the CCME
sample. This work was supported by an ETH internal
grant to K.P.

Appendix A

The relaxation rate during t1 is calculated for the four-
spin system HC-C-N-HN using the following basis in
the master equation (Abragam, 1961):


ZQ1
ZQ2
ZQ3
ZQ4
ZQ5
ZQ6
ZQ7
ZQ8
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8




=




C−N+(E − 2HC
z )(E − 2HN

z )

C+N−(E − 2HC
z )(E − 2HN

z )

C−N+(E + 2HC
z )(E − 2HN

z )

C+N−(E + 2HC
z )(E − 2HN

z )

C−N+(E − 2HC
z )(E + 2HN

z )

C+N−(E − 2HC
z )(E + 2HN

z )

C−N+(E + 2HC
z )(E + 2HN

z )

C+N−(E + 2HC
z )(E + 2HN

z )

C+N+(E − 2HC
z )(E − 2HN

z )

C−N−(E − 2HC
z )(E − 2HN

z )

C+N+(E + 2HC
z )(E − 2HN

z )

C−N−(E + 2HC
z )(E − 2HN

z )

C+N+(E − 2HC
z )(E + 2HN

z )

C−N−(E − 2HC
z )(E + 2HN

z )

C+N+(E + 2HC
z )(E + 2HN

z )

C−N−(E + 2HC
z )(E + 2HN

z )




.

The relaxation matrix has a pure diagonal form. The
DD interactions of the Hα-Cα, HN-N, N-Cα and HN-
Hα spin pairs, the CSA of the Hα, C, N and HN spins,
and all cross-correlation terms are taken into account.
In the slow tumbling regime we retain terms in J(0)
only, the exception are terms in the difference and sum
of two proton frequencies.
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