
Evolution of Cooperation and Coordination
in a Dynamically Networked Society

Enea Pestelacci
Marco Tomassini
Leslie Luthi
Information Systems Department
University of Lausanne
Switzerland
enea.pestelacci@unil.ch
Marco.Tomassini@unil.ch
lluthi@gmail.com

Abstract
Situations of conflict giving rise to social dilemmas are
widespread in society and game theory is one major way in
which they can be investigated. Starting from the observation
that individuals in society interact through networks of
acquaintances, we model the co-evolution of the agents’
strategies and of the social network itself using two proto-
typical games, the Prisoner’s Dilemma and the Stag-Hunt.
Allowing agents to dismiss ties and establish new ones,
we find that cooperation and coordination can be achieved
through the self-organization of the social network, a result
that is nontrivial, especially in the Prisoner’s Dilemma case.
The evolution and stability of cooperation implies the con-
densation of agents exploiting particular game strategies into
strong and stable clusters which are more densely connected,
even in the more difficult case of the Prisoner’s Dilemma.
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Evolution of Cooperation and Coordination in a Dynamically Networked Society

In this article we study the behavior of a population of agents
playing some simple two-person, one-shot noncooperative
game. Game theory (Meyerson 1991) deals with social in-
teractions where two or more individuals take decisions that
will mutually influence each other. It is thus a view of col-
lective systems in which global social outcomes emerge as a
result of the interaction of the individual decisions made by
each agent. Some extremely simple games lead to puzzles and
dilemmas that have a deep social meaning. The most widely
known among these games is the Prisoner’s Dilemma (PD), a
universal metaphor for the tension that exists between social
welfare and individual selfishness. It stipulates that, in situa-
tions where individuals may either cooperate or defect, they
will rationally choose the latter. However, cooperation would
be the preferred outcome when global welfare is considered.
Other simple games that give rise to social dilemmas are the
Hawk-Dove and the Stag-Hunt (SH) games.

In practice, however, cooperation and coordination on
common objectives is often seen in human and animal soci-
eties (Axelrod 1984; Skyrms 2004). Coordinated behavior,
such as having both players cooperating in the SH, is a bit less
problematic as this outcome, being a Nash equilibrium (as
explained below), is not ruled out by theory. For the PD, in
which cooperation is theoretically doomed between rational
agents, several mechanisms have been invoked to explain the
emergence of cooperative behavior. Among them, repeated
interaction, reputation, and belonging to a recognizable group
have often been mentioned (Axelrod 1984). Yet, Nowak and
May (1992) showed that the simple fact that players are
arranged according to a spatial structure and only interact with
neighbors is sufficient to sustain a certain amount of coopera-
tion even when the game is played anonymously and without
repetition. Nowak and May’s study and much of the following
work were based on regular structures such as two-dimensional
grids (see Nowak and Sigmund 2000 for a recent review).
Nevertheless, many actual social networks usually have a
topological structure that is neither regular nor random but
rather of the small-world type. Roughly speaking, small-world
networks are graphs in which any node is relatively close to
any other node. In this sense, they are similar to random graphs
but unlike regular lattices. However, in contrast to random
graphs, they also have a certain amount of local structure, as
measured, for instance, by a quantity called the clustering co-
efficient, which essentially represents the probability that two
neighbors of a given node are themselves connected (Newman
2003 offers an excellent review of the subject). Some work
has been done in recent years in the direction of using those
more realistic networks, including actual social networks.
In particular we mention Santos and Pacheco’s (2005) work
on scale-free networks, work on Watts–Strogatz small-world
graphs (Abramson and Kuperman 2001; Tomassini et al.
2006), and work on model and real social networks (Luthi

et al. 2008). A recent contribution focuses on repeated games
and learning (Wang et al. 2008); Szabó and Fáth (2007) have
published an excellent and complete review of work done
up to 2006. These investigations have convincingly shown
that a realistic structure of society, with interactions mainly
limited to neighbors in the network, is sufficient in allowing
cooperative and coordinated behavior to emerge without
making any particular assumptions about the rationality of
the actors or their computational and forecasting capabilities.

Most of the aforementioned studies have assumed a fixed
population size and structure, which amounts to dealing with
a closed system and ignoring any fluctuations in the system’s
size and internal interactions. However, real social networks,
such as friendship or collaboration networks, are not in an
equilibrium state, but are open systems that continually evolve
with new agents joining or leaving the network, and relation-
ships (i.e., links in network terms) being made or dismissed by
agents already in the network (Barabási et al. 2002; Kossinets
and Watts 2006; Tomassini and Luthi 2007). The motivation
for the present work is to reintroduce these coupled dynamics
into our model and to investigate under which conditions, if
any, cooperative and coordinated behavior may emerge and
be stable. In this article, we shall deal with networked popula-
tions in which the number of players remains constant whereas
the interaction structure, i.e., who interacts with whom, does
not stay fixed; on the contrary, it changes in time, and its
variation is dictated by the very games that are being played
by the agents. A related goal of the present work is to study
the topological structures of the emergent networks and their
relationships with the strategic choices of the agents.

Some previous research has been done on evolutionary
games on dynamic networks (Skyrms and Pemantle 2000;
Zimmermann and Eguı́luz 2005; Luthi et al. 2006; Santos et al.
2006). Skyrms and Pemantle (2000) was recently brought to
our attention by a reviewer. It is one of the first important
attempts to study the kind of networks that form under a given
game and, as such, is closely related to the work we describe
here. The main ideas are similar to ours: agents start interacting
at random according to some game’s payoff matrix and, as they
evolve their game strategy according to their observed payoffs,
they also have a chance of breaking ties and forming new ones,
thus giving rise to a social network. The main differences with
the present work is that the number of agents Skyrms and
Pemantle used is low, of the order of 10 instead of the 103 used
here. This allows us to study the topological and statistical na-
ture of the evolving networks in a way that is not possible with
a few agents, while Skyrms’s and Pemantle’s work is more
quantitative in the study of the effects of the stochastic dynam-
ics on the strategy and network evolution process. The work of
Zimmermann and Eguı́luz (2005) is based on similar consider-
ations: A rather large population initially has a random struc-
ture. Agents in the population play the one-shot, two-person
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PD game against each other and change their strategy by
copying the strategy of the more successful agent in their
neighborhood. They also have the possibility of dismissing
interactions between defectors and of rewiring them randomly
in the population. The main differences with the present work
are the following. Instead of just considering symmetrical
undirected links, we have a concept of two directed, weighted
links between pairs of agents. In our model there is a finite
probability of breaking any link, not only links between de-
fectors, although defector–defector and cooperator–defector
links are much more likely to be dismissed than cooperator–
cooperator links. When a link is broken it is rewired randomly
in Zimmermann and Eguı́luz’s (2005) model, while we use
a link redirection process favoring neighbors with respect to
more relationally distant agents. Zimmermann and Eguı́luz
only study the PD using a reduced parameter space. We
study both the PD and the SH games covering a much larger
parameter space. Concerning timing of events, we use an
asynchronous update policy for the agents’ strategies, while
update is synchronous in Zimmermann and Eguı́luz (2005).
Finally, instead of a best-takes-over discrete rule, we use a
smoother strategy update rule, which changes an agent’s strat-
egy with a probability proportional to the payoff difference.
Santos et al. (2006) deal with similar issues in a more recent
paper. However, they use a different algorithm for severing
an undirected link between the two agents which, again, does
not include the concept of a link weight. Furthermore, the SH
game is only mentioned in passing, and their strategy update
rule is different. In particular, they do not analyze in detail the
statistical structure of the emerging networks, as we do here.
Other differences with the aforementioned related works will
be described in the discussion and analysis of results. Finally,
our own previous work (Luthi et al. 2006) also deals with the
co-evolution of strategy and structure in an initially random
network. However, it is very different from the one presented
here since we there used a semi-rational threshold decision
rule for a family of games similar to, but not identical to, the
PD. Furthermore, the idea of a bidirectional weighted link
between agents was absent, and link rewiring was random.

This article is structured as follows. In the next section, we
give a brief description of the games used in our study. This part
is intended to make the article self-contained. We then present
a detailed description of our model of co-evolving dynamical
networks and discuss the simulation results and their signifi-
cance for the social networks. In the final section, we offer our
conclusions and discuss possible extensions and future work.

Social Dilemmas

The two representative games studied here are the PD and the
SH, whose significance and main results we briefly summarize.
More detailed accounts can be found elsewhere, for instance

in Axelrod (1984) and Skyrms (2004). In their simplest form,
they are two-person, two-strategy, symmetric games with the
following payoff bi-matrix:

C D
C (R,R) (S, T )
D (T , S) (P,P )

In this matrix, R stands for the reward the two players
receive if they both cooperate (C), P is the punishment for
bilateral defection (D), and T is the temptation, i.e., the payoff
a player receives if it defects while the other player cooperates.
In this case, the cooperator gets the sucker’s payoff, S. In both
games, the condition 2R > T + S is imposed so that mutual
cooperation is preferred over an equal probability of unilateral
cooperation and defection. For the PD, the payoff values are
ordered numerically in the following way: T > R > P > S.
Defection is always the best rational individual choice in the
PD; (D, D) is the unique Nash equilibrium (NE) and also an
evolutionarily stable strategy (ESS) (Myerson 1991; Weibull
1995). Mutual cooperation would be preferable but it is a
strongly dominated strategy.

In the SH, the ordering is R > T > P > S, which means
that mutual cooperation (C, C) is the best outcome, Pareto-
superior, and an NE. An outcome of a game is Pareto-superior
when there is no outcome that will make all players better
off. However, there is a second equilibrium in which both
players defect (D, D) and which is somewhat “inferior” to
the previous one, although perfectly equivalent from a NE
point of view. The (D, D) equilibrium is less satisfactory, yet
“risk-dominant,” since playing it “safe” by choosing strategy
D guarantees at least a payoff of P , while playing C might
expose a player to a D response by her opponent, with the
ensuing minimum payoff S. Here the dilemma is represented
by the fact that the socially preferable coordinated equilibrium
(C, C) might be missed for “fear” that the other player will play
D instead. There is a third mixed-strategy NE in the game, but
it is commonly dismissed because of its inefficiency and also
because it is not an ESS (Weibull 1995). Although the PD
has received much more attention in the literature than the
SH, the latter is also very useful, especially as a metaphor of
coordinated social behavior for mutual benefit. These aspects
are nicely explained in Skyrms (2004).

Model Description

Our model is strictly local as no player uses information other
than the one concerning itself and the players it is directly
connected to. In particular, each agent knows its own current
strategy and payoff, and the current strategies and payoffs of
its immediate neighbors. Moreover, as the model is an evolu-
tionary one, no rationality—in the sense of game theory—is
needed (Weibull 1995). Players just adapt their behavior such
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fij

fji

ji

Figure 1.
Schematic representation of mutual trust between two agents through the
strengths of their links.

that they copy more successful strategies in their environment
with higher probability, a process commonly called imitation
in the literature (Hofbauer and Sigmund 1998). Furthermore,
they are able to locally assess the worth of an interaction and
possibly dismiss a relationship that does not pay off enough.
The model and its dynamics are described in detail in the
following sections.

Network and Interaction Structure
The network of agents will be represented as an undirected
graph G(V,E), where the set of vertices V represents the
agents, while the set of edges (or links) E represents their
symmetric interactions. The population size N is the cardinal-
ity of V . A neighbor of an agent i is any other agent j such that
there is an edge {ij} ∈ E. The set of neighbors of i is called Vi

and its cardinality is the degree ki of vertex i ∈ V . The average
degree of the network will be called k̄.

Although from the network structure point of view there is
a single undirected link between a player i and another player
j ∈ Vi , we shall maintain two links: one going from i to j and
another one in the reverse direction (see Figure 1). Each link
has a weight or “force” fij (respectively fji). This weight, say
fij , represents in an indirect way an abstract quality that could
be related to the “trust” player i attributes to player j ; it may
take any value in [0, 1] and its variation is dictated by the payoff
earned by i in each encounter with j , as explained below.

We point out that we do not believe that this model could
represent, however roughly, a situation of genetic relatedness
in a human or animal society. In this case, at the very least,
at the outset link strengths between close relatives should be
higher than the average forces in the whole network, and such
groups should form cliques of completely connected agents.
In contrast, we start our simulations from random relation-
ships and a constant average link strength (see below). Thus,
our simplified model is closer to one in which relationships
between agents are only of socioeconomic nature.

The idea behind the introduction of the forces fij is loosely
inspired by the potentiation/depotentiation of connections be-
tween neural networks, an effect known as the Hebb rule (Hebb
1949). In our context, it can be seen as a kind of “memory” of
previous encounters. However, it must be distinguished from
the memory used in iterated games, in which players “remem-
ber” a certain amount of previous moves and can thus conform
their future strategy on the analysis of those past encounters
(Myerson 1991). Our interactions are strictly one-shot, i.e.,

players “forget” the results of previous rounds and cannot rec-
ognize previous partners and their possible playing patterns.
However, a certain amount of past history is implicitly con-
tained in the numbers fij and this information may be used by
an agent when it will come to decide whether or not an inter-
action should be dismissed (see below).1 This bilateral view of
a relationship is, to our knowledge, new in evolutionary game
models on graphs.

We also define a quantity si , called satisfaction of an agent
i, which is the sum of all the weights of the links between i

and its neighbors Vi divided by the total number of links ki :

si =
∑

j ∈ Vifij

ki

.

We clearly have 0 ≤ si ≤ 1.

Initialization
The constant size of the network during the simulations is
N = 1000. The initial graph is generated randomly with a
mean degree comprised between k = 5 and k = 20. These
values of k are of the order of those actually found in many so-
cial networks (see, for instance, Newman 2001; Barabási et al.
2002; Kossinets and Watts 2006; Tomassini et al. 2007). Play-
ers are distributed uniformly at random over the graph vertices
with 50% cooperators. Forces between any pair of neighboring
players are initialized at 0.5. With k > 1 a random graph finds
itself past the percolation phase transition (Bollobás 1998) and
thus it has a giant connected component of size O(N ) while
all the other components are of size O(log(N )). We do not
assume that the whole graph is connected, as isolated nodes
will draw a random link during the dynamics (see below).

Before starting the simulations, another parameter, q, has
to be set. This is akin to a “temperature” or noise level; q is a
real number in [0, 1] and it represents the frequency with which
an agent wishes to dismiss a link with one of its neighbors. The
higher q, the faster the link reorganization in the network. This
parameter has a role analogous to Zimmermann and Eguı́luz’s
(2005) “plasticity”; it controls the speed at which topological
changes occur in the network. As social networks may struc-
turally evolve at widely different speeds, depending on the
kind of interaction between agents, this factor might play a
role in the model. For example, e-mail networks change their
structure at a faster pace than, say, scientific collaboration net-
works (Kossinets and Watts 2006; Tomassini and Luthi 2007).
A similar coupling of time scales between strategy update and
topological update also occurs in Skyrms and Pemantle (2000)
and Santos et al. (2006).

Timing of Events
Usually, agents systems such as the present one are updated
synchronously, especially in evolutionary game theory sim-
ulations (Nowak and May 1992; Santos and Pacheco 2005;

142 Biological Theory 3(2) 2008



Enea Pestelacci et al.

Zimmermann and Eguı́luz 2005; Luthi et al. 2008). However,
there are doubts about the physical signification of simulta-
neous update (Huberman and Glance 1993). For one thing,
it is physically unfeasible, strictly speaking, as it would re-
quire a global clock, while real extended systems in biology
and society in general have to take into account finite sig-
nal propagation speed. Furthermore, simultaneity may cause
some artificial effects in the dynamics that are not observed in
real systems (Huberman and Glance 1993; Luthi et al. 2006).
Fully asynchronous update, i.e., updating a randomly cho-
sen agent at a time with or without replacement also seems
a rather arbitrary extreme case that is not likely to repre-
sent reality very accurately. In view of these considerations,
we have chosen to update our population in a partially syn-
chronous manner. In practice, we define a fraction f = n/N

(with N = an, a ∈ N ) and, at each simulated discrete time
step, we update only n ≤ N agents randomly chosen with re-
placement. This is called a microstep. After N/n microsteps,
called a macrostep, N agents will have been updated, i.e., the
whole population will have been updated in the average. With
n = N we recover the fully synchronous update, while n = 1
gives the extreme case of the fully asynchronous update. Vary-
ing f thus allows one to investigate the role of the update
policy on the dynamics. We study several different values of
f , but we mainly focus on f = 0.01.

Strategy and Link Dynamics
Here we describe in detail how individual strategies, links, and
link weights are updated. Once a given node i is chosen to be
activated, i.e., belongs to the fraction f of nodes that are to
be updated in a given microstep, i goes through the following
steps:

• If the degree of agent i, ki = 0 then player i is an isolated
node. In this case a link with strength 0.5 is created from
i to a player j chosen uniformly at random among the
other N − 1 players in the network.

• Otherwise,
– either agent i updates its strategy according to a local

replicator dynamics rule with probability 1 − q or,
with probability q, agent i may delete a link with a
given neighbor j and creates a new 0.5 force link with
another node k;

– the forces between i and its neighbors Vi are updated.

Let us now describe each step in some more detail.

Strategy evolution We use a local version of replicator dy-
namics (RD) as described in Hauert and Doebeli (2004) and
modified in Luthi et al. (2008) to take into account the fact that
the number of neighbors in a degree-inhomogeneous network
can be different for different agents. The local dynamics of a

player i only depends on its own strategy and on the strate-
gies of the ki players in its neighborhood Vi . Let us call πij

the payoff player i receives when interacting with neighbor j .
This payoff is defined as

πij = σi(t)MσT
j (t),

where M is the payoff matrix of the game (see the next section)
and σi(t) and σj (t) are the strategies played by i and j at time
t . The quantity

�̂i(t) =
∑

j∈Vi

πij (t)

is the accumulated payoff collected by player i at time step t .
The rule according to which agents update their strategies is
the conventional RD in which strategies that do better than the
average increase their share in the population, while those that
fare worse than average decrease. To update the strategy of
player i, another player j is drawn at random from the neigh-
borhood Vi . It is assumed that the probability of switching
strategy is a function φ of the payoff difference, where φ is
a monotonically increasing function (Hofbauer and Sigmund
1998). Strategy σi is replaced by σj with probability

pi = φ(�̂j − �̂i).

The major differences with standard RD is that two-person
encounters between players are only possible among neigh-
bors, instead of being drawn from the whole population, and
the latter is finite in our case. Other commonly used strategy
update rules include imitating the best in the neighborhood
(Nowak and May 1992; Zimmermann and Eguı́luz 2005), or
replicating in proportion to the payoff (Hauert and Doebeli
2004; Tomassini et al. 2006). Although these rules are accept-
able alternatives, they do not lead to RD and will not be dealt
with here. We also note that the straight accumulated payoff �̂i

has a technical problem when used on degree-inhomogeneous
systems such as those studied here, where agents (i.e., nodes)
in the network may have different numbers of neighbors. In
fact, in this case �̂i does not induce invariance of the RD with
respect to affine transformations of the game’s payoff matrix
as it should (Weibull 1995), and makes the results depend
on the particular payoff values. Thus, we shall use a modi-
fied accumulated payoff � instead as defined in Luthi et al.
(2008). This payoff, which is the standard accumulated pay-
off corrected with a factor that takes into account the variable
number of neighbors an agent may have, does not suffer from
the standard accumulated payoff limitations.
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Link evolution The active agent i, which has ki �= 0 neigh-
bors, will, with probability q, attempt to dismiss an interaction
with one of its neighbors. This is done in the following way.
Player i will look at its satisfaction si . The higher si , the
more satisfied the player, since a high satisfaction is a conse-
quence of successful strategic interactions with the neighbors.
Thus, there should be a natural tendency to try to dismiss a
link when si is low. This is simulated by drawing a uniform
pseudo-random number r ∈ [0, 1] and breaking a link when
r ≥ si . Assuming that the decision is taken to cut a link, which
one, among the possible ki , should be chosen? Our solution
again relies on the strength of the relevant links. First a neigh-
bor j is chosen with probability proportional to 1 − fij , i.e.,
the stronger the link, the less likely it will be chosen. This in-
tuitively corresponds to i’s observation that it is preferable to
dismiss an interaction with a neighbor j that has contributed
little to i’s payoff over several rounds of play. However, in
our system dismissing a link is not free: j may “object” to
the decision. The intuitive idea is that, in real social situations,
it is seldom possible to take unilateral decisions: often there
is a cost associated, and we represent this hidden cost by a
probability 1 − (fij + fji)/2 with which j may refuse to be
cut away. In other words, the link is less likely to be deleted
if j appreciates i, i.e., when fij is high. A simpler solution
would be to try to cut the weakest link, which is what happens
most of the time anyway. However, with a finite probabil-
ity of cutting any link, our model introduces a small amount
of noise in the process which can be considered like “trem-
bles” or errors in game theory (Myerson 1991) and which
roughly reproduces decisions under uncertainty in the real
world.

Assuming that the {ij} link is finally cut, how is a new
link to be formed? The solution adopted here is inspired by the
observation that, in social networks, links are usually created
more easily between people who have a mutual acquaintance
than those who do not. First, a neighbor k is chosen in Vi\{j}
with probability proportional to fik , thus favoring neighbors i

trusts. Next, k in turn chooses player l in his neighborhood Vk

using the same principle, i.e., with probability proportional to
fkl . If i and l are not connected, a link {il} is created, otherwise
the process is repeated in Vl . Again, if the selected node, say
m, is not connected to i, a new link {im} is established. If
this also fails, a new link between i and a randomly chosen
node is created. In all cases the new link is initialized with
a strength of 0.5 in both directions. This rewiring process is
schematically depicted in Figure 2 for the case in which a link
can be successfully established between players i and l thanks
to their mutual acquaintance k.

At this point, we would like to stress several important
differences with previous work in which links can be dismissed
in evolutionary games on networks (Zimmermann and Eguı́luz
2005; Luthi et al. 2006; Santos et al. 2006). In Zimmermann

i

j

k

l

fik

fkl

fil

Figure 2.
Illustration of the rewiring of link {ij} to {il}. Agent k is chosen to introduce
player l to i (see text).

and Eguı́luz’s (2005) model, only links between defectors are
allowed to be cut unilaterally and the study is restricted to the
PD. Instead, in our case, any link has a finite probability to
be abandoned, even a profitable link between cooperators if it
is recent, although links that are more stable, i.e., have high
strengths, are less likely to be rewired. This smoother situation
is made possible thanks to our bilateral view of a link, which
is completely different from the undirected choice made in
Zimmermann and Eguı́luz (2005).

In Santos et al.’s (2006) model, links can be cut by an
unsatisfied player, where the concept of satisfaction is different
from ours, and simply means that a cooperator or a defector
will wish to break a link with a defector. The cut will be done
with a certain probability that depends on the strategies of the
two agents involved and their respective payoffs. Once a link
between i and j is actually cut and, among the two players,
i is the one selected to maintain the link, the link is rewired
to a random neighbor of j . If both i and j wish to cease their
interaction, the link is attributed to i or j probabilistically, as a
function of the respective payoffs of i and j , and rewiring takes
place from there. Thus, although both i’s and j ’s payoffs are
taken into consideration in the latter case, there is no analogon
of our “negotiation” process as the concept of link strength is
absent. In Luthi et al.’s (2006) model, links are cut according to
a threshold decision rule and are rewired randomly anywhere
in the network.

A final observation concerns the evolution of k̄ in the net-
work. While in Zimmermann and Eguı́luz’s (2005) and Santos
et al.’s (2006) models the initial mean degree is strictly main-
tained during network evolution through the rewiring process,
here it may increase slightly owing to the existence of isolated
agents which, when chosen to be updated, will create a new
link with another random agent. While this effect is of minor
importance and only causes small fluctuations of k̄, we point
out that in real evolving networks the mean connectivity fluc-
tuates too (Barabási et al. 2002; Kossinets and Watts 2006;
Tomassini and Luthi 2007).
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Updating the link strengths Once the chosen agents have
gone through their strategy or link update steps, the strengths
of the links are updated accordingly in the following way:

fij (t + 1) = fij (t) + πij − π̄ij

ki(πmax − πmin)
,

where πij is the payoff of i when interacting with j, π̄ij is
the payoff earned by i playing with j , if j were to play his
other strategy, and πmax(πmin) is the maximal (minimal) pos-
sible payoff obtainable in a single interaction. This update is
performed in both directions, i.e., both fij and fji are up-
dated ∀j ∈ Vi because both i and j get a payoff out of their
encounter.

The following algorithms schematically describe the
whole co-evolution process for one microstep:

Algorithm 1: Simulation of a Microstep of the Population
Evolution

Data: V is a set of players; I is a subset of n randomly
selected players in V ; Vi is the set of first neighbors of
player i; fij is the strength of the oriented arc { �ij}; r is a
pseudo-random number ∈ [0, 1)

for all players i ∈ I do
for each j ∈ Vi do

i plays with j and updates its payoff
fij (t + 1) = fij (t) + �fij (t)
fji(t + 1) = fji(t) + �fji(t)

end
if ki = 0 then

i is isolated and creates a new link to a
randomly selected j ∈ V

else
if r < q then

Link Evolution(i)
else

Strategy Evolution(i)
end

end
end

Algorithm 2: Link Evolution (i)

Data: r1 and r2 are pseudo-random numbers ∈ [0, 1); si

is the satisfaction of player i

If r1 > si then

j ∈ Vi selected proportionally to 1 − fij

if r2 > (fij + fji)/2 then
remove the link {ij}
k ∈ Vi selected proportionally to fik

l ∈ Vk selected proportionally to fkl

if {il} link doesn’t exist then
create the link {il}

else
m ∈ Vl selected proportionally to flm

if {im} link doesn’t exist then
create the link {im}

else
i creates a new link to a randomly
selected
j ∈ V/Vi

end
end

end
end

Algorithm 3: Strategy Evolution (i)

Data: r is a pseudo-random number ∈ [0, 1); �k is the
aggregated payoff of player k; φ is a monotonically
increasing function

j ∈ Vi randomly selected
pi = φ(�j − �i)
if r > pi then

i imitate the strategy of j

end

Simulation Results

Simulation Parameters
We simulate on our networks the two games previously men-
tioned in the opening section. For each game, we can explore
the entire game space by limiting our study to the variation of
only two parameters per game. This is possible without loss
of generality owing to the invariance of Nash equilibria and
RD under positive affine transformations of the payoff matrix
using our payoff scheme (Weibull 1995). In the case of the PD,
we set R = 1 and S = 0, and vary 1 ≤ T ≤ 2 and 0 ≤ P ≤ 1.
For the SH, we decided to fix R = 1 and S = 0 and vary
0 ≤ T ≤ 1 and 0 ≤ P ≤ T . The reason we choose to set T

and S in both the PD and the SH is to simply provide natural
bounds on the values to explore for the remaining two parame-
ters. In the PD case, P is limited between R = 1 and S = 0 in
order to respect the ordering of the payoffs (T > R > P > S)
and T ’s upper bound is equal to 2 due to the 2R > T + S

constraint. Had we fixed R = 1 and P = 0 instead, T could
be as big as desired, provided S ≤ 0 is small enough. In the
SH, setting R = 1 and S = 0 determines the range of T and P

(since this time R > T > P > S). Note however, that for this
game the only valid value pairs of (T , P ) are those that satisfy
the T > P constraint.

As stated in the opening section, we used networks of
size N = 1000, randomly generated with an average degree
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Figure 3.
Cooperation level for the PD in the game’s configuration space. Darker gray means more defection.

k̄ ∈ {5, 10, 20} and randomly initialized with 50% cooperators
and 50% defectors. In all cases, the parameters are varied
between their two bounds in steps of 0.1. For each set of
values, we carry out 50 runs of at most 20,000 macrosteps
each, using a fresh graph realization in each run. A run is
stopped when all agents are using the same strategy, in order
to be able to measure statistics for the population and for the
structural parameters of the graphs. The system is considered
to have reached a pseudo-equilibrium strategy state when the
strategy of the agents (C or D) does not change over 150
further macrosteps, which means 15 × 10 individual updates.

We speak of pseudo-equilibria or steady states and not of
true evolutionary equilibria because, as we shall see below,
the system never quite reaches a totally stable state in the
dynamical systems sense in our simulations but only transient
states that persist for a long time.

Cooperation and Stability
Cooperation results for the PD in contour plot form are shown
in Figure 3. We remark that, as observed in other structured
populations, cooperation may thrive in a small but nonnegli-
gible part of the parameter space. Thus, the added degree of
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Figure 4.
Cooperation level for the PD starting with different fractions of cooperators increasing from 20% to 80% from left to right. Only the lower left quarter of the
parameter space is shown. Results are the average of 50 independent runs.

freedom represented by the possibility of refusing a partner and
choosing a new one does indeed help to find player’s arrange-
ments that help cooperation. This finding is in line with the
results of Santos et al. (2006) and Zimmermann and Eguı́luz
(2005). Furthermore, the fact that our artificial society model
differs from the latter two in several important ways also shows
that the result is a rather robust one. When considering the de-
pendence on the fluidity parameter q, one sees in Figure 3 that
the higher q, the higher the cooperation level. This was ex-
pected since being able to break ties more often clearly gives
cooperators more possibilities for finding and keeping fellow
cooperators to interact with. This effect has been previously
observed also in the works of the aforementioned authors and,
as such, seems to be a robust finding, relatively independent
of the other details of the models. The third parameter consid-
ered in Figure 3 is the mean degree k̄. For a given value of q,
cooperation becomes weaker as k̄ increases. We believe that,
as far as k̄ is concerned, a realistic average characterization
of actual social networks is represented by k̄ = 10 (middle
row in Figure 3) as seen, for instance, in the simulations of
Newman (2001), Barabási et al. (2002), Kossinets and Watts
(2006), and Tomassini et al. (2007). Higher average degrees
do exist, but they are found either in web-based pseudo-social
networks or in fairly special collaboration networks like the
particle physics community, where it is customary to include
as coauthors tens or even hundreds of authors (Newman 2001).
Clearly, there is a limit to the number of real acquaintances a
given agent may manage.

We have also performed many simulations starting from
different proportions of randomly distributed cooperators and
defectors to investigate the effect of this parameter on the
evolution of cooperation. In Figure 4 we show five different
cases, the central image corresponding to the 50% situation.
The images correspond to the lower left quarter of the right
image in the middle row of Figure 3 with k̄ = 10, q = 0.8,
1 < T < 1.5, and 0 < P < 0.5.

Compared with the level of cooperation observed in sim-
ulations in static networks, we can say that results are consis-
tently better for co-evolving networks. For example, the typical
cases with k̄ = 10 and q = 0.5 and q = 0.8 show significantly
more cooperation than what was found in model and real social

networks in previous work (Luthi et al. 2008). Even when there
is a much lower rewiring frequency, i.e., with q = 0.2, the co-
operation levels are approximately as good as those observed
in our previous study in which exactly the same RD scheme
was used to update the agents’ strategies, and the networks
were of comparable size. The reason for this behavior is to be
found in the added constraints imposed by the invariant net-
work structure. The seemingly contradictory fact that an even
higher cooperation level may be reached in static scale-free
networks (Santos and Pacheco 1985) is theoretically interest-
ing but easily dismissed as those graphs are unlikely models
for social networks, which often show fat-tailed degree dis-
tribution functions but not pure power-laws (see, for instance,
Amaral et al. 2000; Newman 2001). As a further indication of
the latter, we shall see in the next section that indeed, emerging
networks do not have a power-law degree distribution.

From the point of view of the evolutionary dynamics, it
is interesting to point out that any given simulation run either
ends up in full cooperation or full defection. When the full
cooperation state of the population is attained, there is no way
to switch back to defection by the intrinsic agent dynamics. In
fact, all players are satisfied and have strong links with their co-
operating neighbors. Even though a small amount of noise may
still be present when deciding whether or not to rewire a link,
since there are only cooperators around to imitate, there can
be no strategy change and only very little link rewiring. On the
other hand, well before this stable state is reached and there are
still many defectors around, the system may experience some
random drift that may drive it to full defection. The converse
may also happen, but when the full defection state is reached,
the situation is qualitatively different. In this case agents are
unsatisfied, they will often try to rewire their links. However,
all the other players around being also defectors, there will
be constant changes of the local network structure. Thus the
system will find itself in a fluctuating state, but this matters
little for the bulk statistical properties of the population and
of the network. To be assured that this is indeed the case, we
have conducted some very long runs with all-defect end states.
Global statistics do not change, except that the mean degree
tends to increase slightly with time and the degree distribution
function continues to evolve (see the next section).
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Figure 5.
Cooperation level for the SH game.

Cooperation percentages as a function of the payoff matrix
parameters for the SH game are shown in Figure 5 for k̄ = 10
and q = 0.2, 0.5, and 0.8. Note that in this case only the upper
left triangle of the configuration space is meaningful. The SH
is different from the PD since there are two evolutionarily
stable strategies, which are therefore also NEs: one population
state in which everybody defects and the opposite one in which
everybody cooperates (see the previous section). Therefore, it
is expected, and absolutely normal, that some runs will end up
with all defect, while others will witness the emergence of full
cooperation. In contrast, in the PD the only theoretically stable
state is all-defect and cooperating states may emerge and be
stable only by exploiting the graph structure and creating more
favorable neighborhoods by breaking and forming ties. The
value of the SH is in making manifest the tension that exists
between the socially desirable state of full cooperation and
the socially inferior but less risky state of defection (Skyrms
2004). The final outcome of a given simulation run depends on
the size of the basin of attraction of either state, which is in turn
a function of the relative values of the payoff matrix entries. To
appreciate the usefulness of making and breaking ties in this
game we can compare our results with what is prescribed by
the standard RD solution. Referring to the payoff table of the
previous section, let us assume that the column player plays C
with probability α and D with probability 1 − α. In this case,
the expected payoffs of the row player are:

Er [C] = αR + (1 − α) S

and

Er [D] = αT + (1 − α) P.

Since the game is symmetric, the result for the column
player is the same and (αC, (1 − α)D) is a NE in mixed strate-
gies. We have numerically solved the equation for all the sam-

Figure 6.
Probabilities of cooperation for the mixed strategy NE as a function of the
game’s parameters for the Stag Hunt.

pled points in the game’s parameter space, which gives the
results shown in Figure 6. Let us now use the following pay-
off values in order to bring them within the explored game
space (remember that NEs are invariant with respect to such a
transformation; Weibull 1995):

C D
C (1, 1) (0, 2/3)
D (2/3, 0) (1/3, 1/3)

Substituting in (1) gives α = 1/2, i.e., the (unstable) polymor-
phic population should be composed by about half coopera-
tors and half defectors. Now, if one looks at Figure 5 at the
points where P = 1/3 and T = 2/3, one can see that this is
approximately the case for the first image, within the limits
of the approximations caused by the finite population size,
the symmetry-breaking caused by the nonhomogeneous graph
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Figure 7.
Clustering coefficient level for the PD game. Lighter gray means more clustering.

structure, and the local nature of the RD. On the other hand,
in the middle image and, to a greater extent, in the rightmost
image, this point in the game space corresponds to pure cooper-
ation. In other words, the nonhomogeneity of the network and
an increased level of tie rewiring has allowed the cooperation
basin to be enhanced with respect to the theoretical predictions
of standard RD. Skyrms and Pemantle (2000) found the same
qualitative result for very small populations of agents when
both topology and strategy updates are allowed. It is reassur-
ing that coordination on the payoff-dominant equilibrium can
still be achieved in large populations as seen here.

Structure of the Emerging Networks
In this section we present a statistical analysis of the global
and local properties of the networks that emerge when the
pseudo-equilibrium states of the dynamics are attained. Let
us start by considering the evolution of the average degree k̄.
Although there is nothing in our model to prevent a change in
the initial mean degree, the steady-state average connectivity
tends to increase only slightly. For example, in the PD with
q = 0.8 and k̄init = 5 and k̄init = 10, the average steady-state
(ss) values are k̄ss ≈ 7 and k̄ss ≈ 10.5, respectively. Thus we
see that, without imposing a constant k̄ as in Zimmermann and
Eguı́luz (2005) and Santos et al. (2006), k̄ nonetheless tends to
increase only slightly, which nicely agrees with observations
of real social networks (Barabási et al. 2002; Kossinets and
Watts 2006; Tomassini and Luthi 2007). There is a special
case when the steady state is all-defect and the simulation is
allowed to run for a very long time (2 × 104 macrosteps); in
this case the link structure never really settles down, since
players are unsatisfied, and k̄ may reach a value of about 12
when starting with k̄ = 10 and q = 0.8.

Another important global network statistics is the aver-
age clustering coefficient C. The clustering coefficient Ci of
a node i is defined as Ci = 2Ei/ki(ki − 1), where Ei is the
number of edges in the neighborhood of i. Thus Ci measures
the amount of “cliquishness” of the neighborhood of node i

and it characterizes the extent to which nodes adjacent to node
i are connected to each other. The clustering coefficient of the
graph is simply the average over all nodes: C = 1

N

∑N
i=1 Ci

(Newman 2003). Random graphs are locally homogeneous
and for them C is simply equal to the probability of having an
edge between any pair of nodes independently. In contrast, real
networks have local structures and thus higher values of C. Fig-
ure 7 gives the average clustering coefficient C̄ = 1

50

∑50
i=1 C

for each sampled point in the PD configuration space, where 50
is the number of network realizations used for each simulation.
It is apparent that the networks self-organize and acquire local
structure in the interesting, cooperative parts of the parameter
space, since the clustering coefficients there are higher than
that of the random graph with the same number of edges and
nodes, which is k̄/N = 10/1000 = 0.01. Conversely, where
defection predominates C is smaller, witnessing of a lower
amount of graph local restructuring. These impressions are
confirmed by the study of the degree distribution functions
(see below). The correlation between clustering and coop-
eration also holds through increasing values of q: C tends
to increase from left to right in Figure 7, a trend similar to
that observed in the middle row of Figure 3 for cooperation.
This correlation is maintained also for k̄ = 5 and k̄ = 20 (not
shown).

As far as the clustering coefficient is concerned, the same
qualitative phenomenon is observed for the SH, namely, the
graph develops local structures and the more so the higher the
value of q for a given k̄ (see Figure 8). Thus, it seems that
evolution toward cooperation and coordination passes through
a rearrangement of the neighborhood of the agents with re-
spect to the homogeneous random initial situation, something
that is made possible through the higher probability given to
neighbors when rewiring a link, a stylized manifestation of the
commonly occurring social choice of partners.

The degree distribution function (DDF) p(k) of a graph
represents the probability that a randomly chosen node has de-
gree k (Newman 2003). Random graphs are characterized by
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Figure 8.
Clustering coefficient level for the SH game.

DDF of Poissonian form, while social and technological real
networks often show long tails to the right, i.e., there are nodes
that have an unusually large number of neighbors (Newman
2003). In some extreme cases the DDF has a power-law form
p(k) ∝ k−γ ; the tail is particularly extended and there is no
characteristic degree. The cumulative degree distribution func-
tion (CDDF) is just the probability that the degree is greater
than or equal to k and has the advantage of being less noisy for
high degrees. Figure 9(a) shows the CDDFs for the PD for three
cases of which two are in the cooperative region and the third
falls in the defecting region (see Figure 3). The dotted curve
refers to a region of the configuration space in which there
is cooperation in the average but it is more difficult to reach,
as the temptation parameter is high (T = 1.8, P = 0.1). The
curve has a rather long tail and is thus broad-scale in the sense
that there is no typical degree for the agents. Therefore, in the
corresponding network there are cooperators that are linked
to many other cooperators. On the other hand, if one consid-
ers the dotted-dashed curve, which corresponds to a defecting
region (T = 1.1, P = 0.4), it is clear that the distribution is
much closer to normal, with a well-defined typical value of
the degree. Finally, the third thick curve, which corresponds to
a region where cooperation is more easily attained (T = 1.1,
P = 0.1), also shows a rather faster decay of the tail than the
dotted line and a narrower scale for the degree. Nevertheless, it
is right-skewed, indicating that the network is no longer a pure
random graph. Since we use linear-log scales, the dotted curve
has an approximately exponential or slower decay, given that a
pure exponential would appear as a straight line in the plot. The
tail of the thick curve decays faster than an exponential, while
the dashed-dotted curve decays even faster. Almost the same
observations also apply to the SH case, shown in Figure 9(b).
These are quite typical behaviors and we can conclude that,
when cooperation is more difficult to reach, agents must better
exploit the link-redirection degree of freedom in order for co-
operators to stick together in sufficient quantities and protect
themselves from exploiting defectors during the co-evolution.
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Figure 9.
Cumulative degree distributions. Average values over 50 runs. (a): PD, (b): SH.
q = 0.8, k̄ = 10. Linear-log scales.

When the situation is either more favorable for cooperation,
or defection easily prevails, network rearrangement is less
radical. In the limit of long simulation times, the defection
case leads to networks that have degree distribution close to
Poissonian and are thus almost random. Figure 10 shows such
a case for the PD. The dashed curve is the CDDF at some
intermediate time, when full defection has just been reached
but the network is still strongly reorganizing itself. Clearly,
the distribution has a long tail. However, if the simulation is

150 Biological Theory 3(2) 2008



Enea Pestelacci et al.

0 20 40 60 80 100
k

0.00001

0.0001

0.001

0.01

0.1

1

p(
k)

PD 0.4 1.1 defect not stable
PD 0.4 1.1 defect steady state

Figure 10.
Cumulative degree distributions for the PD in case of defection before (dotted
line) and after (thick line) reaching a steady state. Linear-log scales.
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Figure 11.
Cumulative degree distribution functions for three values of q, for the same
point in the PD configuration space in the cooperating region.

continued until the topology is quite stable at the mesoscopic
level, the distribution becomes close to normal (thick curve).

Finally, it is interesting to observe the influence of the q

parameter on the shape of the degree distribution functions
for cooperating networks. Figure 11 reports average curves
for three values of q. For high q, the cooperating steady state
is reached faster, which gives the network less time to rear-
range its links. For lower values of q the distributions become
broader, despite the fact that rewiring occurs less often, be-
cause cooperation in this region is harder to attain and more
simulation time is needed.

Influence of timing Figure 12 depicts a particular cut in
the configuration space as a function of the synchronicity pa-
rameter f . The main remark is that asynchronous updates
give similar results, in spite of the difference in the number of
agents that are activated in a single microstep. In contrast, fully
synchronous update (f = 1) appears to lead to a slightly less
favorable situation for cooperation. Since fully synchronous
update is physically unrealistic and can give spurious results
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Figure 12.
Cooperation levels in the PD for P = 0.1 and 1 ≤ T ≤ 2 as a function of the
synchronicity parameter f .

Figure 13.
Example of a tightly packed cluster of cooperators for PD networks. T = 1.8,
P = 0.1, and q = 0.8.

due to symmetry, we suggest using fully or partially asyn-
chronous update for agent’s simulation of artificial societies.

Clusters
We have seen in the previous section that, when cooperation is
attained in both games as a quasi-equilibrium state, the system
remains stable through the formation of clusters of players
using the same strategy. In Figure 13 one such typical cluster
corresponding to a situation in which global cooperation has
been reached in the PD is shown. Although all links toward
the “exterior” have been suppressed for clarity, one can clearly
see that the central cooperator is a highly connected node and
there are many links also between the other neighbors. Such
a tightly packed structure has emerged to protect cooperators
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(a)

(b)

Figure 14.
Example of defector clusters for PD networks, for T = 1.8, P = 0.3, and
q = 0.8. Clusters like (a) exist only just after the all-defect state is reached.
When a steady state is reached only clusters like (b) are present in a network
of defectors.

from defectors that, at earlier times, were trying to link to
cooperators to exploit them. These observations explain why
the degree distributions are long-tailed (see previous section),
and also the higher values of the clustering coefficient in this
case (see section “Structure of the Emerging Networks”).

When the history of the stochastic process is such that
defection prevails in the end, the situation is totally different.
Figure 14(a) and 14(b) show two typical examples of cluster
structures found during a simulation. Figure 14(a) refers to a
stage in which the society is composed solely by defectors.
However, the forces of the links between them are low, and so

many defectors try to dismiss some of their links. This situation
lasts for a long simulated time (actually, the system is never at
rest, as far as the links are concerned) but the dense clusters
tend to dissolve, giving rise to structures such as the one shown
in Figure 14(b). If one looks at the degree distribution at this
stage (Figure 10) it is easy to see that the whole population
graph tends to become random.

The SH case is very similar, which is a relatively surprising
result. In fact, when cooperation finally takes over in regions
of the configuration space where defection would have been an
almost equally, likely final state, players are highly clustered
and there are many highly connected individuals, while in less
conflicting situations the clusters are less dense and the degree
distribution shows a faster decay of the tail. On the other hand,
when defection is the final quasi-stable state, the population
graphs lose a large part of their structure. Thus, the same topo-
logical mechanisms seem to be responsible for the emergence
of cooperation in the PD and in the SH. The only previous
study that investigates the structure of the resulting networks
in a dynamical setting is, to our knowledge, Zimmermann and
Eguı́luz (2005), where only the PD is studied. It is difficult to
meaningfully compare our results with theirs, as their model
differs from ours in many ways. Thus they use a deterministic
hard-limit rule for strategy update which is less smooth than
our stochastic local RD. Moreover, they study the PD in a re-
duced configuration space, only links between defectors can
be broken, and links are rewired at random. They concentrate
on the study of the stability of the cooperating steady states
against perturbations, but do not describe the topological struc-
tures of the pseudo-equilibrium states in detail. Nevertheless,
it is worthy to note that the degree distribution functions for
cooperators and defectors follow qualitatively the same trend,
i.e., cooperator networks have distributions with fatter tails to
the right than defector networks.

Conclusions and Future Work

Using two well-known games that represent conflicting
decision situations commonly found in animal and human
societies, we have studied by computer simulation the
role of the dynamically networked society’s structure in
the establishment of global cooperative and coordinated
behaviors, which are desirable outcomes for the society’s
welfare. Starting from randomly connected players which only
interact locally in a restricted neighborhood, and allowing
agents to probabilistically and bilaterally dismiss unprofitable
relations and create new ones, the stochastic dynamics lead
to pseudo-equilibria of either cooperating or defecting agents.
With respect to standard RD results for mixing populations,
we find that there is a sizeable configuration space region
in which cooperation may emerge and be stable for the PD,
whereas the classical result predicts total defection. For the
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SH, where both all-cooperate and all-defect steady states are
theoretically possible, we show that the basin of attraction for
cooperation is enhanced. Thus, the possibility of dismissing
a relationship and creating a new one does indeed increase
the potential for cooperation and coordination in our artificial
society. The self-organizing mechanism consists in both
games in forming dense clusters of cooperators which are
more difficult to dissolve by exploiting defectors. While the
beneficial effect of relational or geographical static population
structures on cooperation was already known from previous
studies, here we have shown that more realistic dynamic social
networks may also allow cooperation to thrive. Future work
will deal with the stability of the cooperating states against
stronger perturbations than merely the implicit noise of the
stochastic dynamics. We also intend to study more fully the
structure of the emerging clusters and their relationships, and
we plan to extend the model to other important paradigmatic
games such as Hawks-Doves and coordination games.
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Note
1. A further refinement of the concept could take obsolescence phenomena
into account. For instance, in the same way that pheromone trails laid down by
ants evaporate with time, we could introduce a progressive loss of strength of
the links proportional to the time during which there is no interaction between
the concerned agents. For the sake of simplicity, we prefer to stick with the
basic model in this article.
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Amaral LAN, Scala A, Barthélemy M, Stanley HE (2000) Classes of small-
world networks. Proceedings of the National Academy of Sciences USA
97: 11149–11152.

Axelrod R (1984) The Evolution of Cooperation. New York: Basic Books.
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