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At the example of Hamiltonian differential equations, geometric properties of 
the flow are discussed that are only preserved by special numerical integrators 
(such as symplectic and/or symmetric methods). In the 'non-stiff' situation the 
long-time behaviour of these methods is well-understood and can be explained 
with the help of a backward error analysis. In the highly oscillatory ('stiff') 
case this theory breaks down. Using a modulated Fourier expansion, much 
insight can be gained for methods applied to problems where the high oscilla- 
tions stem from a linear part of the vector field and where only one (or a few) 
high frequencies are present. This paper terminates with numerical experiments 
at space discretizations of the sine-Gordon equation, where a whole spectrum 
of frequencies is present. 

KEY WORDS: Geometric numerical integration; Hamiltonian systems; revers- 
ible differential equations; backward error analysis; energy conservation; mod- 
ulated Fourier expansion; adiabatic invariants; sine-Gordon equation. 

1. I N T R O D U C T I O N  

Af te r  the p ioneer ing  con t r ibu t ions  a round  the tu rn  f rom the 19th to the 
20th century,  and  af ter  the successful pe r iod  in the 70s and  80s on  stiff 
problems,  the numer ica l  so lu t ion  o f  o rd ina ry  different ial  equa t ions  is again  
an active field o f  research. One o f  the ma in  interests  is now the subject  
o f  geometr ic  numer ica l  in tegra t ion ,  which is synonymous  with  s t ructure-  
preserving in tegra t ion  o f  different ial  equat ions.  

This  survey concentra tes  on the s t ruc ture-preserving in tegra t ion  o f  

H a m i l t o n i a n  systems. A deta i led  p resen ta t ion  o f  fur ther  results on  this 
topic  can be found  in the recent m o n o g r a p h  [9]. 

] Section de Math6matiques, 2-4, rue du Li6vre, CH-1211 Gen~ve 24, Switzerland. E-mail: 
Ernst.Hairer@math.unige.ch 

67 

NR~-TATd./O~i/1 lflO.fh'lf;7/fl (~ 9N{)~; ~rwintye,r Nei~nee+Rn~ine~ IMt~din Ine  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159146377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


68 Hairer 

1.1. Geometric Structures in Hamiitonian Systems 

Hamiltonian systems are differential equations of the form: 

[a=-VqH(p,q),  gl=VpH(p,q), (1) 

where H: ~d x ~d ~ ~, and the dimension d is the number of degrees of 
freedom. In applications the Hamiltonian is often given in the form: 

H (p, q) = ~ pr M (q)-l p + U (q) (2) 

with a positive definite symmetric mass matrix M(q) and a potential U(q). 
In this situation, the function H(p, q) represents the total energy of the 
system. Such problems arise in mechanics, astrophysics, molecular dynam- 
ics, and many other sciences. 

Due to their special structure, Hamiltonian systems have several inter- 
esting properties (in the following we denote the flow of the system, map- 
ping an initial value y = (p, q) onto the solution at time t, by ~0t(y)): 

(P1) the group property ~Pt o ~os = ~Pt+s is satisfied by every differential 
equation; in particular, one has 

q9 t o qg_ t = ~0 0 = identity, (3) 

(P2) the Hamiltonian H(p,q) is constant along solutions of (1) 
which means that the total energy is a conserved quantity, 

(P3) the flow ~ot of (1) is a symplectic transformation, i.e. 

~o t y Jq)~(y)-=J for t~>0, J =  - I  ' (4) 

where the prime in ~o~(y) denotes the derivation with respect to 
y. Due to det~0~(y)= 1, this implies that the flow is volume- 
preserving, 

Iz(~ot(a))=Iz(a) for t~>O (5) 

and for systems with one degree of  freedom symplecticity turns 
out to be equivalent with area-preservation of the flow q)t, 

(P4) if H(-p ,  q) = H(p, q), the flow ~0t is p-reversible with respect to 
the reflection p(p, q) = ( -p ,  q), i.e. it satisfies 

(poq)t)(y)=(q)21 op)(y) for all t and all y. (6) 

It is natural to look for numerical methods that satisfy one or several of 
these properties. 
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1.2. Geometric Integrators 

A numerical method for solving ordinary differential equations is a 
mapping ~h defined on the phase space that approximates the time-h flow 
~Vh; it is of order r if ~h (Y) = ~Ph (Y) + O(h r+l). The numerical approxima- 
tion at time t =nh  is obtained by Yn =~h(Yn-1).  Motivated by the previ- 
ous section, the following properties are of interest: 

(S1) the method is symmetric if it satisfies 

t~) h o Of)_ h =ident i ty ,  

($2) it is energy-preserving if along numerical solutions of (1) 

(7) 

H (pn, qn) = eonst, (8) 

($3) it is called symplectic if ~ h  satisfies 

t T t 
~ h ( Y )  J ~ h ( Y ) =  J, (9)  

($4) it is o-reversible if, for H ( - p ,  q ) =  H(p,  q), 

(poCl)h)(y)=(CPhlop)(y) for all h and all y. (10) 

Note that by the property 

(p o Cbh)(y) = (~-h  o p)(y),  (11) 

which is satisfied by all standard methods, p-reversibility ($4) is equiva- 
lent to symmetry (S1). A numerical method that satisfies one or several of 
these properties is called a geometric integrator. 

The most important geometric integrator is the so-called St6rmer- 
Verlet method (cf. [10]). It is the composition of a half-step of the parti- 
tioned Euler method (explicit in q, implicit in p) with a half-step of its 
adjoint (explicit in p, implicit in q) and thus given by the formulae 

h 
Pn+l/2 = Pn - -~Vq H(pn+l/2, qn), 

h 
qn+l = qn + -~ ( V p H  (pn+l/2, qn) + VpH (pn+l/2, qn+l)), 

h 
Pn+ l = Pn+ l /2 - "~ Vq H (pn+ l /2, qn+l). 

(12) 

Direct verification shows that this method is symmetric (S1) and symplec- 
tic ($3). Since it satisfies (11), it is also o-reversible ($4). It does not sat- 
isfy ($2), even not for the harmonic oscillator H ( p , q ) =  l (p2+q2) ,  but it 
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approximately conserves the Hamiltonian over extremely long time inter- 
vals as we shall see in Sec. 2. 

The only disadvantage of the St6rmer-Verlet method (12) is its low 
order 2, and it is therefore inefficient for high-accuracy computations (as 
needed, for example, in planetary motion simulation). Much research of 
the last decade has been devoted to the construction and discussion of 
higher order geometric integrators (such a composition methods, implicit 
Runge-Kutta methods and symmetric multistep methods), (cf. [7,9]). 

1.3. Numerical Experiment 

It is of course a natural task to use numerical integrators ~h that 
share several geometric properties with the exact flow of the problem. But 
does this have any consequences on the global error of the method when 
it is applied over long time intervals? 

The following numerical experiment shows the essential difference 
between numerical solutions obtained by geometric and non-geometric 
integrators. We consider the Kepler problem which is Hamiltonian with 

1 2 , (13) 1 

and we take initial values q~(0)= 1 -  e, q2(0)= pl(0)= 0, p2(0)= 
v / ( l + e ) / ( 1 - e )  so that the solution is periodic with period 2zr. This 
Hamiltonian system has as further invariant the angular momentum 

L(pl, P2, ql, q2) =qlP2 --q2Pl. (14) 

We integrate this problem with e=0.2 over a time interval of 100000 peri- 
ods, and we use a classical explicit method on the one hand and a sym- 
plectic and symmetric integrator on the other hand. Both are of order 8 
and the (constant) step sizes are such that the numerical work is compara- 
ble. For this experiment it is of no importance if we consider composition, 
Runge-Kutta, or multistep methods. The result is plotted in Fig. 1. 

The upper picture shows the global error as a function of time. For 
the symplectic and/or symmetric method it behaves like O(th8)--linear 
error growth. For a non-symplectic and non-symmetric method of order 
8 the global error behaves like O(th8+ tZh9)-mtuadratic error growth for 
t > h -1. For a non-symplectic and non-symmetric method of odd order we 
would have observed the quadratic error growth already from the begin- 
ning of the integration. 

The lower picture of Fig. 1 shows the error in the two first inte- 
grals of the system. For the symplectic integrator, the angular momentum 
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Fig. 1. Long-time behaviour of geometric integrators compared to classical non-symplectic 
and non-symmetric methods. 

is exactly conserved (up to round-off), and the error in the Hamiltonian 
(total energy) behaves like O(h 8) and no drift can be observed. For the 
non-symplectic and non-symmetric method we have a linear drift in the 
error of the Hamiltonian as well as in that of the angular momentum. 

All these statements on the long-time behaviour of geometric integra- 
tors can be explained with the help of a backward error analysis. The 
basic ideas of this theory will be sketched in the following section. 

2. BACKWARD E R R O R  A N A L Y S I S  

Backward error analysis is the most important tool for a deeper under- 
standing of the improved long-time behaviour of geometric integrators. 

2.1. Modified Equations 

We start with a general ordinary differential equation ~ = f ( y )  and 
an arbitrary numerical method Yn+l = ~h(Yn). The idea of backward error 
analysis consists in considering a modified differential equation 

= f (y)  + hf2(y) + h2f3(y) + . . . ,  (15) 
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such that the exact time-h flow ~h(Y) of (15) is formally equal to the 
numerical flow ~h(Y). We emphasize that equality has to be understood 
in the sense of formal power series of h, because the series in (15) is in 
general divergent for all h > 0. 

As an example, consider the pendulum equation 

q = p, p = - s i n q ,  

which is Hamiltonian with 

1 2 H(p,q)= Sp - c o s q .  

The numerical flow of the explicit Euler method Yn+l =Yn +hf(yn) is 
45h (y) = y + hf(y). Developing the exact solution ~h (Y) of (1 5) into powers 
of h and comparing it to ~h(Y), yields recurrence relations for the coeffi- 
cient functions fj  (y). For the special case of the pendulum equation this 
gives 

h ( sinq h 2 - 4 p c o s q  
( ~ . ) = ( _ s i P q ) + ~ k P C O S q ) + - ~ ( ( p 2 + 4 c o s q ) s i n q ) + . . .  (16) 

Figure 2 (left picture) shows several exact solutions of the truncated modi- 
fied equation (16) with h =0.4. Also included is the numerical solution of 
the explicit Euler method applied to the initial value that is indicated as a 
large black dot. We observe that this numerical solution agrees extremely 
well with the flow of (16). 

Next, consider the symplectic Euler (explicit in q, implicit in p) which, 
for the Hamiltonian system (1), is given by Pn+l =Pn-hVqH(pn+l,qn), 
qn+l =qn-}-hVpH(pn+l, qn). The modified equation of this method is 

h ( - s i n q  )+h~__~ ( (p 2 2p cosq 
( ~ ' ) = ( - s i P q ) + 2 k P c o s q  _ 2 c o s q ) s i n q ) + - . .  (17) 

_ _ ~ ~ symplectic Euler'-.. 

Fig. 2. Numerical solution compared to the exact solution of the truncated modified 
equation. 
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and, similar as before, the right picture of Fig. 2 shows exact solutions of 
(17) together with a numerical solution of the symplectic Euler method. 
The important observation is that the system (17) is Hamiltonian with 

1 2 h h 2 
if(p,  q) = ~p - cosq - ~p  sinq + ~ (p2 _ cosq) cosq +- . -  (18) 

This explains why the solution curves are closed. We again observe the 
excellent agreement of the numerical solution with the flow of (17). Later 
in this section we shall see that the numerical solution stays close to the 
level set of (18) for exponentially long times. 

2.2. Hamiltonian Systems 

The observation of the previous numerical experiment is true in gen- 
eral. If one applies any symplectic integrator of order r to a Hamiltonian 
system (1), then the corresponding modified differential equation is (for- 
mally) Hamiltonian with 

i ( p ,q )=H(p ,q )+hrHr+l (p ,q )+hr+lHr+2(p ,q )+ . . .  (19) 

The original proof of this result (c.f. [2,15]) is based on the integrability 
lemma, and the existence of the functions Hj(p,q) is therefore only of 
local nature. However, for all symplectic methods of interest (such as the 
symplectic Euler method, the St6rmer-Verlet scheme, and all partitioned 
Runge-Kutta methods) one can find explicit recurrence relations for the 
Hj (p, q) which show that they are composed of derivatives of H(p, q) and 
therefore globally defined (mentioned in [2, t3], and discussed in detail in 
Section IX.3.2 of [9]). This has an important consequence for the numer- 
ical solution of such symplectic integrators. 

Assume for the moment that (15) and (19) are not only formal series 
but that they are convergent. In this case the flow ~t(P, q) of the modified 
differential equation would be well defined, and we would have (Pn, qn)= 
~h(Pn-l, q . - l )  = ~nh(PO, qo) as well as H(pn, q.) = const. This, together 
with (19), would then imply that 

H (pn, qn) = const + O(h r) (20) 

as long as the numerical solution (Pn, qn) stays in a compact set, and the 
numerical observations of the lower picture of Fig. 1 and of the right pic- 
ture of Fig. 2 would be completely explained. Unfortunately, the series 
defining the modified differential equations converges only in exceptional 
cases and a more subtle analysis is necessary. 
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2.3. Rigorous Estimates of the Local Error 

To make the above analysis rigorous we have to truncate the modified 
differential equation 

= f(y)  --k hf2(y) -k h2f3(y) + ' "  q- h N-1 fN(Y), (21) 

SO that its flow, denoted by ~'N,t (Y), becomes well defined. This truncation 
causes an error in the approximation of the numerical flow and we only 
have 

Ilq~h (Y) - ~N,h(Y)ll <~ CN(y) hN+l. (22) 

We still have the freedom in choosing the truncation index N. In the fol- 
lowing we only outline the essential ideas. The details are very technical 
and can be found in [2, 14], and in Chapter IX of [9]. 

Without any further assumptions on the vector field f (y )  and on 
the coefficient functions of the h-expansion of ~h (Y), it is not possible to 
get practical estimates for CN(y) in (22). It is convenient to assume these 
functions to be analytic so that Cauchy's estimates can be used. Choosing 
N proportional to (wh) -1 (where w is a measure of the Lipschitz constant 
of f(y)) makes the bound in (22) minimal and yields 

II~h(y)--'~N,h(y)ll <~ C ( y ) h e x p ( - - ~ )  (23) 

as long as the step size h is small enough, i.e. wh <<. y. This is the funda- 
mental estimate in rigorous backward error analysis and is the basic ingre- 
dient of many results on the long-time behaviour of numerical integrators. 

For example, the near-conservation of the Hamiltonian (see the end 
of Sec. 2.2) can now be proved rigorously. For a symplectic integrator the 
truncated modified equation is Hamiltonian with 

HN(p, q) = H(p, q) + hr Hr+l (p, q) + ' "  + h N-I HN (p, q). 

Since HN(P,q) is exactly constant along the flow ~ON,t(p, q), we have by 
(23) that IIHN(Pn, qn) -- HN(Pn-1, qn-1)l] ~< C1 (Pn-l, qn-1)h exp(-  ~h) and, 
summing up, yields IlHN(Pn'qn)- HN(PO,qO)II <~ C l n h e x p ( - ~ ) .  This 
then proves (20) on exponentially long time intervals t=nh ~<exP(2~-~). 

3. LARGE LIPSCHITZ CONSTANTS 

In the same way as classical convergence results do not yield any 
insight into the numerical solution of stiff differential equations, the the- 
ory of Sec. 2 is useless as soon as ogh (product of the Lipschitz constant 
with the step size) is not sufficiently small. We consider the problem 
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+ X22q = - V U ( q ) ,  (24) 

where the large Lipschitz constant stems from the linear part in the differ- 
ential equation�9 It is Hamiltonian with 

�9 l l lqll2+~ H(q, q) = ~ II~qll 2 + U(q). (25) 

We assume that ~2 is a positive definite symmetric matrix with larg- 
est eigenvalue o)>> 1, and that the derivatives of  the potential U(q) are 
bounded independently of w. Written as a first order system in the vari- 
ables (S2q, q), the Lipschitz constant of the resulting system is close to o). 

In the following we consider two situations. First, we treat the case 
where the eigenvalues of  X? are all clustered around w and 0. For this 
case we shortly present the idea of  an alternative theory which gives much 
insight into the long-time behaviour of  numerical solutions. Second, we 
consider space discretizations of  nonlinear wave equations (partial differ- 
ential equations) which lead to systems with a large range of  frequencies. 
We present some numerical experiments with a pseudo-spectral discretiza- 
tion of the sine-Gordon equation. 

3.1. F P U - T y p e  Problems 

As a simplified model for molecular dynamics simulations we consider 
a chain of alternating stiff harmonic and soft non-linear springs (Fermi- 
Pasta-Ulam (FPU) type problem, see [8] and Chapter XIII of [9]). This 
leads to a differential equation of the form: 

CJl = - - V q l  U (ql, q2), 
r + o)2q2 = --Vq2 U(ql, q2), 

(26) 

which is of  the form (24) where ~ is diagonal with entries 0 and o)>> 1. 
Here, the components of  ql denote the displacements from the position of 
rest of  the stiff springs (slow variables), and those of q2 denote the expan- 
sion/compression of  the stiff springs (fast variables). 

Besides the Hamiltonian (25) we also consider the oscillatory energy 
of the individual stiff springs 

_ I  2 2  Ik(q,c))= q22k-t-~o3 q2,k, k = l  . . . . .  K. (27) 

Here, q2A is the kth component of q2 and K is the number of stiff springs. 
The interesting fact is (see [1,3]) that the sum of the oscillatory energies 
corresponding to the same large frequency 

I (q, gl) = I1 (q, il) + . . .  + IK(q, il) (28) 
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is an adiabatic invariant, which means that along solutions of  (26) we have 
I(q(t),  O(t))= const + 0(09 -1) on time intervals of length O(e•176 This can 
be observed in the left picture of  Fig. 3, where for K = 3 ,  09= 100, initial 
values satisfying 11 = 1, I2 = 13 = 0, and potential as in [8], the oscillatory 
energies and the Hamiltonian are plotted along the exact solution. 

For the numerical solution of  (24) one can in principle apply the 
St6rmer-Verlet method (12). However, the step size is restricted to 09h < 2 
by stability requirements. A possibility for avoiding such stability restric- 
tions is to consider Gautschi-type methods 

qn+l - 2 cos(h~2)qn + qn-1 = -h2qtVU (Clgqn). (29) 

Here, q~ = ~p(hI2), q~ = ~0(hl2) with functions satisfying ~ (0 )=~0(0 )=  1. 
Notice that the recurrence (29) produces the exact solution when U(q)= 
const. Methods of this type have been originally introduced by Gautschi 
[6] with ~o(~)= 1 and ~p(~)=sinc2(~/2) (we use the notation s i n e ( t ) =  
sin ~/~). Renewed interest on them comes from the article by Garcia- 
Archilla et al. [5], where such long-time-step methods are considered in 
view of applications in molecular dynamics simulations. They treat mainly 
the case where ~0 (~) is arbitrary and 7t (~) = sin c (~)q9 (~) so that the method 
is symplectic. 

The right picture of Fig. 3 shows the oscillatory and total energies 
along the numerical solution of (29) with ~p(~)=sinc(~), ~o(~)= 1, 09= 100 
and large step size h = 2/o9. The Hamiltonian and the sum (28) are well 
conserved over long time intervals. 

To explain the excellent long-time behaviour of this method, back- 
ward error analysis (Sec. 2) is not useful because 09h is not small. The idea 
is to write the numerical solution obtained by (29) in the form (for t =nh) 

qn =- Yh (t) -]- Z eik~~ zk (t) (30) 
kr 

H 

I 

0 
50 I00 150 2)oo 30uu 7)ou iuuoo 

Fig, 3. Oscillatory and total energies along the exact solution (left) and along the numerical 
solution obtained by a Gautschi-type method with large step size h = 2/0) (right). 
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with smooth coefficient functions. Such an expansion has been proposed 
in [8] and is called modulated Fourier expansion in [9]. Inserting (30) into 
the method (29) and comparing the coefficients of  e ik~ yields differential 
equations for yh(t) and Zkh(t) which are of singular perturbation type. The 
coefficient functions of  (30) are then the smooth (i.e. non-oscillating) solu- 
tions of  this system. A detailed study (see Chapter XIII of [9]) shows that 
the Zkh(t) decay like co-lkl as Ikl ~ cr and that the differential equation 
for these functions has two formal first integrals (corresponding to H and 
to I). This allows one to prove the following result. 

Under suitable assumptions on the differential equation (analyticity of  
U(q),  initial values satisfying �89 �89 ~< E with E independent 
of co), on the method (conditions on ap(~) and ~0(~)), and on the step size 
(hco >1 co > O, h <<. ho, and the non-resonance condition I sin(lhkco)l/> c~v/h 
for k = 1 . . . . .  N) one can prove that 

H(qn, ?in) = H(qo, ?iO) + O(h),  
l(qn, ?In) = I(qo, ?IO) + O(h) 

(31) 

for 0 ~< nh <<. h -N+l .  We mention that these techniques do not allow to 
prove the near energy conservation without considering at the same time 
also that of the oscillatory energy. 

The numerical non-resonance condition I sin(lhkco)l/> c ~  (for k = 
1 . . . . .  N) excludes that hw is o(~/-h) close to integral multiples of Jr, and 
defines via the integer N the length of  interval where (31) holds. Without 
this technical assumption the analysis is much more complicated, and the 
conservation of the total and/or oscillatory energies strongly depends on 
the choice of the filter functions ~0(~) and ~p(~) (see [8] for a detailed dis- 
cussion in the case of  a quadratic potential). 

Similar results can be obtained for the situation where the eigenvalues 
of  S2 are {0, alw . . . . .  asco} with fixed aj and co >> 1 (see [4]). If the aj 
are rationally independent, the oscillatory energies of  the individual fre- 
quencies are well conserved. In the presence of resonances among the a j ,  
an energy exchange can take place on a scale depending on the kind of  
resonance. 

3.2. S ine -Gordon Equation 

A situation, neither covered by the theory of Sec. 2 nor by that of  
Sec. 3.1, is the space discretization of non-linear wave equations. Fol- 
lowing the experiment of Hochbruck and Lubich [12] we consider the 
sine-Gordon equation: 

utt = Uxx - sin u (32) 
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for - 1 ~ x ~ 1 and t/> 0 subject to periodic boundary conditions. Pseudo- 
spectral discretization in space with equidistant collocation points xj = 
2 j / N  (j = - N / 2  . . . . .  N/2) yields an approximation 

if(x, t) = Z '  qk ( t )e ikrr x 

Ik l <~ N /2 

(the prime on the sum indicates that the first and last summands are mul- 
tiplied by 1/2), where the N-periodic sequence q(t)= (qk(t)) satisfies 

+ s = --~-N sin(UNlq), (33) 

5t'N denotes the discrete Fourier transform, and s is a diagonal matrix 
with entries wk=kzr for Ikl <~N/2. Introducing the velocity p=c) ,  the sys- 
tem (33) is seen to be Hamiltonian with 

1 , 1 , 2 ,~--at 
H ( p , q ) = ~ p  p + s q  s q+V(q) ,  V ( q ) = N  ,...., ( 1 - c o s U j ) ,  (34) 

Ikl<~N/2 

where U = (Uj)= .TNlq. We are interested in numerical methods that 
nearly conserve this Hamiltonian over long time intervals. 

Motivated by the analysis of  Sec. 3.1 we also consider the oscillatory 
energies 

1 2 1 2 2 lk(p ,q)= ~lPkl + 5coklqkl (35) 

of the individual frequency modes. With initial functions 

u(x, O) = Jr, 
ut(x, 0) = sin(rex) + 0.0057r2(1 - x 2) 

the Hamiltonian H(p, q) and the oscillatory energies lk(p, q) are plotted 
in Fig. 4 along the exact solution of  (33) with N = 128. The thick line 
(with constant value ~ 2.5) is the Hamiltonian, I0 is the curve oscillating 
between 1 and 10 -3, I1 is nearly constant with a value close to 0.5, 12 is 
essentially oscillating between 10 - 4  and 10 -5 , and the further oscillatory 
energies appear in decreasing order. It came as a surprise to us that most 
of the oscillatory energies are very close to being constant similar as what 
has been observed for (28) in the FPU-type problem. 

We apply the explicit, variable step size Runge Kutta code DOPRI5 
(see [11]) with tolerance Tol = 2 • 10 - 4  t o  the differential equation (33) 
on the interval [0, 550]. This integration takes 103953 accepted steps. The 
Hamiltonian and the oscillatory energies along the numerical solution, 
plotted in Fig. 5, are not correct. In particular, the oscillatory energy cor- 
responding to the high-frequency modes do not remain small, but increase 
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Fig. 4. Hamiltonian (34) and oscillatory energies (35) along the exact solution of the 
differential equation (33). 
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Fig. 5. Hamiltonian (34) and oscillatory energies (35) along the numerical solution of (33) 
obtained with DOPRI5. 
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Fig. 6. Hamiltonian (34) and oscillatory energies (35) along the numerical of (33) obtained 
with method (29, ~p(s e) = 1 and r  and with three different step sizes. 

rapidly until they reach a value close to Tol. Some of them continue to 
increase slowly and give rise to an unacceptable error in the Hamiltonian. 
The oscillatory energy for the low frequency modes are well reproduced in 
this experiment. 

We finally apply the Gautschi-type method of Sec. 3.1 with several 
different choices of the filter functions to the differential equation (33), 
again with N =  128. We use the constant step size h = 0 . 1  so that only 
5 500 steps yield an approximation on the same interval as before. In our 
experiments we observe that whenever the function r contains sin c(~) 
as factor, i.e. it vanishes at all integral multiples of 7r, the simulation gives 
a result that cannot be distinguished from that of the exact solution in 
Fig. 4. Since the frequencies of the discretized sine-Gordon equation are 
in resonance and without any gaps, this is an unexpected long-time behav- 
iour. 

Figure 6 shows the same experiment for the original method of 
Gautschi (~0(~)--1 and r  sinc2(~/2)), for which the filter function 
r does not vanish at odd integral multiples of 7c. In this case, the ener- 
gies are wrongly reproduced, and they are very sensitive with respect to 
small changes in the step size. This does not seem to be the case when 
r contains the factor sinc(~). It would be of interest to get more 
insight into the long-time behaviour of these methods. 
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