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Abstract The influence of the cutting edge micro geometry
on cutting process and on tool performance is subject of
several research projects. Recently published papers focus
on optimising the cutting edge rounding. The results are
partly inconsistent. Unfortunately, no international standard
yet exists to properly describe the cutting edge micro
geometry. This is seen as the root cause for detected
discrepancies. To develop a common understanding for the
influence of rounded cutting edges, it is indispensable to
use the same basis to characterise the edge profile. This
paper gives a review on existing characterisation methods,
analyses the difficulties in their application and discusses
different modelling ideas to describe the cutting edge
profile. Based hereon, a new algorithm and geometrical
parameterisation of the cutting edge is proposed, which
reduces uncertainties and difficulties in the application of
currently available methods. The proposed method consid-
ers measurement uncertainties and is robust against form
errors and creates thus the basis required for the study of
the influence of rounded cutting edges.
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Characterisation

Greek symbols
α clearance
β wedge angle
γ tool rake
γb chamfer angle

γeff tool effective rake
δ blasting angle
θ turning angle
ρ polar angle
ρ orientation angle of ellipse
φ included angle between profile apex and wedge

bisector
y apex angle
Δr flattening of cutting edge profile
Δrmz minimum zone between inner and outer circle with

common centre point
Κ asymmetry value

Latin symbols and acronyms
a half length of elliptical major axis
b half length of elliptical minor axis
bn chamfer width
c circle centre point position
d point distance
h uncut chip thickness
n position of cutting edge tip
n number of points
p distance between profile tip and flank fitting line
pi point position
pc fitting lines intersection point
pint intersection of wedge bisector and cutting edge

profile
pα flank intersection point of circle and edge profile
pγ rake intersection point of circle and edge profile
q distance between profile tip and face fitting line
ri radius
rn rounded cutting edge radius
u standard uncertainty
r observed mean radiusbr predicted radius
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Bf apex width
Dα flank asymmetry distance
Dγ rake asymmetry distance
S asymmetry value
R2 coefficient of determination
Sγ distance of rake separation point to ideal tool tip
Sα distance of flank separation point to ideal tool tip
Sc asymmetry value
SSreg estimated sum of squares
SStot total sum of squares
U measurement uncertainty

Indices
i continuous index
n normal to surface
ls least square
max maximum
min minimum
mz minimum zone
x in x direction
y in y direction

1 Introduction

The micro geometry of a cutting tool describes the actual
shape of the cutting edge, which is the intersection of a
tool’s flank and face. It is well-known that the micro
geometry significantly influences the cutting tool’s machin-
ing performance. Among other effects, influences on
cutting forces [1–5], wear development [2, 5–11], surface
properties [2, 5, 7, 8, 11, 12] or chip formation [6, 9, 10]
have been reported. All papers have in common that the
profile of the cutting edge has somehow been characterised
by ideal geometrical elements such as a radius of a circle or
the angle and the width of a chamfer. The influence of
asymmetrically rounded cutting edges has also been studied
[13, 14].

The published results, however, are partly contradictory.
While Denkena et al. [4] reports on decreasing forces with
increasing cutting edge radii rn, the opposite has for
example been document by Albrecht [1] or Cortés
Rodríguez [15].

The root cause for the inconsistent results is seen to lie in
the characterisation method used to describe the cutting
edge shape. The general approach in characterising cutting
edges is to first generate a set of data points representing
the cutting edge profile. This is typically acquired by
optical or tactile measurement. Methods that are principally
able of measuring surface textures and can thus be used for
edge detection are described in [16]. Optical systems that
are widely spread for the acquisition of cutting edge
profiles are focus variation-based systems and fringe

projection-based systems. Due to difficulties that arise from
the steepness of flank and face when measuring the cutting
wedge, interferometry is less commonly used. Optical
systems generate a 3D data set of the cutting edge. To
characterise the profile of a cutting edge, either different
profiles along the edge are extracted from the 3D file, or the
data are summarized in an average cutting edge profile. In
the next step, the resulting data points representing the edge
profile are used for the characterisation. The character-
isation by a rounded cutting edge radius rn is not unique.
This is also pointed out in a recent survey [17] which
compares the cutting edge radius measurement of different
institutions and detects significant deviations in the deter-
mined radii. Depending on user, measurement uncertainty and
fitting algorithm used, the same cutting edge profile is
described by different radii. The survey and the number of
published papers treating the effect of rounded cutting edges
underline the necessity to develop a new characterisation
algorithm which reduces the uncertainties of existing meth-
ods. While the characterisation of the cutting tool’s macro
geometry is internationally standardised [18], no standard yet
exists to characterise the profile of a cutting edge itself.

According to [19], which corresponds with [18] but is
more detailed, only a distinction between a rounded,
chamfered or sharp cutting edge is drawn, see Fig. 1. A
rounded cutting edge is a cutting edge which is formed by a
rounded transition between the face and the flank. The
nominal radius of a rounded cutting edge measured in the
cutting edge normal plane is rn. A chamfered cutting edge
is a cutting edge which has an angulated straight transition
between the flank and the face. Cutting edges can be
designed with one or multiple chamfers. A sharp cutting
edge is neither round nor chamfered. No further differen-
tiation is given. Combinations of the different shapes are
not dealt with in this standard.

A more detailed differentiation of ideal reference profiles
is given in [20]: asymmetrically rounded cutting edges as
well as combinations of chamfers and roundings are taken
into consideration. The different types are shown in Fig. 2.
The top row shows variations of rounded cutting edges,
while the bottom row represents different chamfered
versions. Chamfered cutting edges with rounded transitions
are available as well. The parameters Sα and Sγ already

chamfer width bn
rounded cutting
edge radius rn

sharp
cutting edge

chamfered
cutting edge

rounded
cutting edge

Fig. 1 Possible shapes of a cutting edge according to [19]
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give a first indication of the geometry. The values will be
dealt with in section 2.

Recently, attempts have been made to introduce new
characterisation methods [4, 15, 20–22] which aim at
describing asymmetrically rounded cutting edges. However,
the published approaches are often limited in their
applicability. The significance of the parameters used to
describe the cutting edges is influenced by the user, by
measurement uncertainty and by geometrical variations of
the real cutting edge profile.

For a better understanding of the impact of the cutting
edge geometry on the process performance, it is important
to accurately know how the micro geometry looks like.
Therefore, significant parameters are needed which can be
used to link influences of the edge geometry to the
machining performance. In this paper, currently available
characterisation methods are analysed regarding applicability,
uncertainty and comprehensibility. Based on the results, a new
method for the cutting edge characterisation of rounded edges
is proposed. This method uses a new algorithm which reduces
the inadequateness and arbitrariness of already existing
methods, it minimises the influence of measurement uncer-
tainties, it is easy to apply, significant and robust and describes
the main features of a cutting edge in few parameters.

2 Description and analysis of currently
available characterisation methods

Different characterisation methods have been recently
proposed. Their significance is dependent on the measure-
ment uncertainty, i.e. the quality of the raw data used, form
errors on the cutting edge to be characterised, in some cases
by the user and the characterisation procedure itself. This
section gives an overview of existing methods to describe
rounded cutting edges and points out influences that
impairs a reliable characterisation result.

2.1 Rounded cutting edge radius rn

The probably most widespread and simplest way to
characterise a rounded cutting edge is by fitting a circle
into the cutting edge profile and to subsequently determine
the radius rn of that circle. The circle radius is a common
parameter. The method is easy to handle, especially if no
further information is given about how the fitting is to be
done. If the curvature of a cutting edge is given by a set of
points, mathematically at least three points along this
curvature have to be chosen for the circle fitting. The
radius rn of a circle that is determined by three points with
positions (xi/yi) can be calculated by the following
mathematical equation:

xi � x0ð Þ2 þ yi � y0ð Þ2 ¼ r2n ð1Þ
The solution is unique. The position (x0/y0) and the

radius rn of the inscribed circle are unequivocally solved,
see Fig. 3. The circle runs exactly through the three points
considered. If the result is not visually pleasing in terms of
representing the cutting edge rounding, the procedure is
generally repeated with three different points.

Thus, the chosen points on a curvature are strongly
dependent on the individual user. As a result, the centre and
the radius of the fitted circle will differ—the same cutting
edge is characterised differently. As indicated by the
inscribed circles in Fig. 3 (right), this user influence
increases with increasing profile deviation of the edge
profile in comparison to a perfect circle.

2.1.1 Circle fitting algorithms for overdetermined systems

To improve the circle fitting, a larger amount of points or all
points along a curvature can be considered respectively.
Typically, software programmes ask for the beginning and
the end of the fitting area. This means that these two values
are still individually chosen by the user and as such the
fitting is influenced.

In the case of fitting with more than three data
points, the mathematical system of equations is overde-

bn

b

bn,1

bn,2

ideal round
(S = S )

rn

double 
chamfered

trumpet shape
(S < S )

waterfall shape
(S > S )

chamfered

face

flank

S

S S S

S
S

b,1

b,2

chamfer width

rounded cutting edge
radius

b:

S ,S :

chamfer angle

rounding length on 
flank ( ) and face ( )

bn:

rn:

Fig. 2 Classification of possible cutting edge geometries after [20]
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Fig. 3 Circle described by three points (left); possible variation of
cutting edge radius rn when choosing different points along a
curvature for the circle radius determination (right)
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termined. Thus, a criterion for approximating the curvature
by a circle is necessary. Dependent on the criterion chosen,
the fitting results, i.e. the radii and the centre point
coordinates, change. The commonly used fitting criterions
are [23]:

& Gaussian condition or least square circle
& Tschebyscheff condition or minimum zone circle
& Minimum circumscribed circle
& Maximum inscribed circle

The algorithms are illustrated in Fig. 4.
The Gaussian condition is based on minimising the sum of

all squared distances between fitting element and data points.X
i

d2i ¼! min ð2Þ

In the present case, the fitting element is a circle
described by:

x� x0ð Þ2 þ y� y0ð Þ2 ¼ r2 ð3Þ
The distance between a data point (xi, yi) and a circle

with the centre (x0, y0) and the radius r is given by:

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � x0ð Þ2 þ yi � y0ð Þ2

q
� r with i ¼ 1 . . . n ð4Þ

To determine the values of x0, y0 and r, Eq. (3) has to be
differentiated with respect to these parameters. If the
resulting partial derivatives are identified by zero, the
mathematical equations behind a Gaussian circle fitting
correspond to:

@
P
i

d2i

@x0
¼ 0;

@
P
i

d2i

@y0
¼ 0;

@
P
i

d2i

@r ¼ 0 ð5Þ
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n

Xn
i¼1

xi �
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i¼1

r � xi � x0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xoð Þ2 þ yi � yoð Þ2

q ð6Þ

y0 ¼ 1

n

Xn
i¼1

yi �
Xn
i¼1

r � yi � y0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xoð Þ2 þ yi � yoð Þ2

q ð7Þ

r ¼ 1

n

Xn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xoð Þ2 þ yi � yoð Þ2

q
ð8Þ

This nonlinear system of equations can be solved iteratively.
The least square condition is the commonly applied method
when approximating geometrical elements. For a given set of
data points, the least square circle is unique. Further
advantages of the least square circle fitting are its high
repeatability and its outlier insensitivity. The more points are
used, the more stable the fitting generally becomes.

The Tschebyscheff condition reduces the maximum
distance between a point given and the fitted circle [23]:

max
i

dij j ¼! min ð9Þ
It is commonly used to calculate form deviations of

geometrical elements. According to [24], the roundness
deviation of a profile corresponds to the minimum distance
between two concentric circles which include all measure-
ment points. The location of the centres of these so called
minimum zone reference circles and the value of their radii
shall be chosen so that the difference in radii between the
two concentric circles is the least possible value [25]. The
mean minimum zone reference circle is the arithmetic mean
circle of the inner and outer circle. The Tschebyscheff circle
is strongly influenced by outliers. Its repeatability is inferior
to the Gauss condition and its solution is not always unique.

Further fitting algorithms are the maximum inscribed
reference circle and the minimum circumscribed reference
circle. The maximum inscribed circle is the largest possible
circle that can be fitted within a set of data points:

r¼! max with di � 0 ð10Þ

The minimum circumscribed reference circle is the
smallest circle that can be fitted around a set of data points.

r¼! min with di � 0 ð11Þ

The signed distance di is negative if the measurement
point lies within the circle, while it is positive when it is
outside the circle [23].

Typically, these conditions are used to evaluate fits. As
for the Tschebyscheff algorithm, the solution for the
maximum inscribed circle is not in every case unique.
Generally, the algorithms are sensitive regarding outliers
and have a low repeatability.

Despite the characteristics that the different fitting
algorithms have, all circle fitting algorithms suffer that in
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Fig. 4 Circle fitting algorithms for overdetermined systems
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characterising cutting edge radii the fitting area is generally
chosen manually (by the operator) and thus, as mentioned
above, individually influenced by the user. No guideline is
available for choosing this area.

In the research area of cutting edge characterisation, it
has been criticised that different shapes might be charac-
terised by the same radius [13]. The circumstance is caused
by the choice of fitting points and is illustrated in Fig. 5.

Furthermore, a general drawback of the cutting edge
radius is a lack of information about asymmetry.

2.1.2 Effect of point uncertainty and number of points
on radius uncertainty when using least square circle fitting

Despite the characteristics that the different fitting algo-
rithms have, the circle fitting is susceptible to point
uncertainties. Every measured point is affected by an
uncertainty. According to [26], the uncertainty of measure-
ment describes a region about an observed value of a
physical quantity which is likely to enclose the true value of
that quantity.

The uncertainty of measurement is influenced by the
measuring device, the user, the environment and the
workpiece. This uncertainty has a direct impact on the
accuracy of a characterisation.

In the above discussion, it has been assumed that the
data points given represent the real shape of the cutting
edge, but in real measurements this is not the case. The
influence of measurement uncertainty on a radius can be
easily understood when fitting a circle through three points.
The inscription of a circle into three points being not
affected by uncertainty is mathematically unique. This
circle is represented in Fig. 6 as the black circle. If each
point is now affected by the uncertainty Un perpendicular to
the circle line, it is possible to draw a maximum and a
minimum circle into the fitting points which deviate in their
radius and in their centre point position from the true circle.
The largest possible circle is represented by the red dashed
line, while the smallest possible circle is depicted by a blue
dotted line. In this example, the uncertainties have the same
value but are independent of each other. For three equally
distributed points within an angular range of 90°, a true
circle radius of r=20 μm and a point uncertainty of

Un=1 μm, the possible circle radii vary between 17.5<r<
23.5 μm. This simple example shows how the point
uncertainty affects the radius uncertainty by a multiple of
its own value.

The effect of this propagated error usually becomes
smaller when increasing the angular range of the points
used to fit in a circle. Increasing the number of data points
used for the fitting decreases the radius uncertainty as well.

Based on the calculations of [27], the influence of point
dispersion, angular range and amount of points on the
radius uncertainty as well as centre point uncertainty can be
determined. For a least square circle fitting, the uncertainty
factors that have to be multiplied with the dispersion of the
measured points are tabulated in Table 1. The numbers are
valid for an uncertainty range of 95% provided that the
point distances are constant and only random errors and no
systematic errors influence the measurement.

If 100 points are taken for a circle fitting over an angular
range of 90°, the resulting error in radius contributes 2.02
times the dispersion of the used points.

The number of points and the point dispersion are
directly related to the measurement method. For accurate
measurements, as many points as possible should be
determined along a curvature with a point dispersion as
small as possible. Typically, the feature of interest has radii
between 2 and 100 μm. Especially in the lower region of
that range, where the resolution of some measurement
systems might have the same order of magnitude as the
feature to be characterised, an accurate determination of the
rounded cutting edge radius is difficult.

For the other fitting algorithms, a determination of the
functional relation between the dispersion of all measure-
ment points and propagated error is difficult, as the fitting
result is only dependent on a few points of all measurement
points: for the determination of the minimum circumscribed
or the maximum inscribed circle, only three points are
relevant. The minimum zone circle is described by 4 points
[28].

Taking the above mentioned aspects into consideration,
only the least square circle fitting is to be used for the
characterisation of rounded cutting edges by a radius.
However, the influence of uncertainty on the fitting quality
must be kept in mind and should thus always be specified.

2.2 Method proposed by Denkena

To be able to describe the shape of an asymmetrically
rounded cutting edge, Denkena et al. [4, 13] developed a
characterisation method which uses four respectively five
parameters to express the shape of a cutting edge rounding.
Its individual steps and the resulting parameters are the
following according to [13]. The characterisation procedure
is illustrated in Fig. 7 with the numbers indicated.

circles 
with same 

radius
rn rnrn,1 

rn,2 

Fig. 5 Characterisation of the same cutting edge by different radii rn
(left) and different shapes by the same radius rn (right)
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(1) Build flank and face tangents and find their
intersection.

(2) Determine the wedge angle bisector.
(3) Find the points at which the cutting edge begins to

separate from the flank and face.
(4) Measure the distances between the tangent intersection

and the separating points. These distances are labelled
Sγ for the face and Sα for the flank.

(5) Determine the distance Δr, which is the shortest way
from the intersection of the lines representing the flank
and face to the cutting edge profile.

(6) Determine the angle φ between wedge angle bisector
and a straight line through the highest point of the
profile.

(7) Calculate the ratio Κ between Sγ and Sα

The values Sγ and Sα and thus their ratio Κ indicate the
asymmetry of the curvature. A ratio of Κ=1 specifies a
symmetrically rounded edge. Values below Κ=1 character-
ise waterfall-shaped profiles. Cutting edges with Κ values

larger than 1 are often referred to as trumpet style profiles,
q. v. Fig. 2. The distance Δr indicates the general
magnitude of the rounding. The smaller the Δr value is,
the sharper the edge is. The angle φ describes the shift from
the profile apex to the wedge angle bisector and is thus
another value for the asymmetry of the edge profile. In
recently published papers, in which this characterisation
method is used [14, 29], the angle φ is not employed
anymore. A similar, earlier published approach to determine
asymmetrical cutting edge can be found in [21], which
characterises a cutting edge rounding by its radius rn (no
information is given about fitting area and algorithm) and
the two distances Sγ and Sα.

Due to their simplicity, the parameters Sγ and Sα are easy
to understand. Together with Δr these values give three
grid points by which the approximate shape of the edge
profile becomes imaginable. Besides being able to princi-
pally indicate an asymmetric rounding, this method has the

rn,true = 20 µm 

rn,max = 23.5 µm 

rn,min = 17.5 µm 

Un=1 µm 

90° 

X

Y 
Uncertainty Un

of a single point 

Uncertainty area

of the centre point

rn,max

rn,min

rn,true

Fig. 6 Influence of point uncer-
tainty Un on the minimum
radius rn,min and maximum
radius rn,max of a circle fitted
through three points

Table 1 Uncertainty factors ur for the circle radius, dependent on
angular range and number of points, after [27]

Number of
points

Angular range [°]

30 90 180 270 360

4 411.48 41.53 8.95 6.35 6.35

5 132.83 13.61 2.98 1.94 1.93

6 94.12 9.71 2.15 1.31 1.30

8 69.96 7.29 1.61 0.93 0.91

10 60.53 6.32 1.40 0.79 0.75

20 41.90 4.41 0.98 0.52 0.48

32 32.90 3.47 0.77 0.40 0.36

100 19.06 2.02 0.45 0.23 0.20

320 11.11 1.17 0.26 0.13 0.12

1000 6.31 0.67 0.15 0.07 0.07

S

S
r

2
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3
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Face 

 = S /S7

Flank 

shortest distance betw. edge profile & ideal tool tipr:

distance of rake separation point to ideal tool tipS :

distance of flank separation point to ideal tool tipS :

asymmetry value : apex angle:

Fig. 7 Characterisation steps and results of the method proposed by
Denkena et al. [4]
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advantage that the general description of the magnitude of
the rounding is less sensitive regarding point uncertainties
than a radius that has been fitted into the profile. Assuming
that the position of the intersection point of the straight
lines is determined with high accuracy (see further below),
the uncertainty of the value Δr corresponds to the same
uncertainty as the point of the profile apex is affected with
as shown in Fig. 8.

When using the profile flattening Δr instead of a
rounded cutting edge radius rn to describe the rounding
magnitude, it has to be kept in mind that the relationship
between these two values is nonlinear and dependent on the
wedge angle. For two different wedge angles β, the same
Δr describes different cutting edge radii rn. The relation
between cutting edge radius and Δr is visualised in Fig. 9.
The mathematical relation between the flattening Δr, the
radius rn of a circle touching both fitting lines and the
wedge angle is given by:

Δr r; bð Þ ¼ rn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

tan b=2ð Þ2
s

� 1

 !
ð12Þ

2.2.1 Influence of macro geometry and choice of fitting area
on the characterisation result

In order to determine the intersection point pc, line fits are
to be done with the profile areas representing the face and
flank. A high repeatability in fitting can be achieved with
the least square algorithm. In the case of perfect flat faces,
the determination of fitting lines is simple and easily
repeatable as the points used for the fitting are all ideally
lying on one straight line. However, many cutting tools
have curved surfaces rather than plane surfaces. The
orientation of the straight fitting lines and the intersection
point pc is then strongly dependent on the points chosen for
the line approximation according to Fig. 10.

Unfortunately, no details are mentioned about the proper
choice of the fitting areas. Thus, depending on the user’s

decision the characterisation results will be individually
different. Figure 10 also points out a second difficulty in the
application of this characterisation method. Depending on
the points used to fit in a least square straight line, no
tangential transition point exists. The fitting lines might
cross the edge profile (see pc,1 and pc,2 in Fig. 10). The
determination of Sγ and Sα, as implied originally, becomes
impossible.

2.2.2 Influence of form error and measurement uncertainty

Assuming that the macroscopic form of the flank and face
is a plane, the real surfaces can still have form errors due to
manufacturing errors or due to tool wear, which might have
a significant effect on the determination of the distances Sγ
and Sα. While at first glance the separation points might be
visually easy to determine for a perfect flat face, in practise
they are difficult to approximate for a surface having form
errors and uncertainty affected points. The method is very
sensitive regarding point uncertainties. Minor deviations
normal to the surface can cause major differences in the
values of Sγ and Sα.

In a user individual, visual determination of the
parameters Sα and Sγ, the result will strongly be influenced
by form errors, chosen magnification and illustrated line
thickness, see Fig. 11.
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range of rFace 

Flank

Fig. 8 Influence of point uncertainty on the shortest distance Δr
between cutting edge profile and the tip of an ideal sharp cutting edge

0

10

20

30

40

50

60

70

80

90

40 50 60 70 80 90

wedge angle   [°]

p
ro

fi
le

 f
la

tt
en

in
g

 
r 

[µ
m

] rn = 50 µm

rn = 20 µm

rn = 5 µm

rn

Δr

=60°=90°

rn

rn

Δr

rn

Fig. 9 Interrelation of wedge angle β, profile flattening Δr and
rounded cutting edge radius rn

pc,1

pc,2

pc,3

cutting 
wedge 

face flank

Fig. 10 Influence of curved
face and flank and chosen
fitting area on straight fitting
lines and their intersection
point pc

Int J Adv Manuf Technol (2012) 59:899–914 905



For an accurate identification of the separation points, a
mathematical method is needed. Ideally, the profile is
approximated by a function. For this function, the curvature
in every point of the profile can be derived. If the curvature
of the contour line starting from the rake or flank falls
below a certain limit (which might be chosen as a function
of the macroscopic curvature of flank and rake), the point is
marked as separation point. However, real cutting edge
profiles show form errors that sometimes are in the same
magnitude as the radius of the rounded cutting edge to be
characterised. For such cutting edges, a proper character-
isation by the parameters mentioned is difficult.

2.3 Methods proposed by Tikal

Only little information is available about the method
originally proposed by Tikal. Tikal’s method describes the
shape of a rounded cutting edge by determining the radii at
different positions along the curvature. As shown in Fig. 12,
the method depicted in [20] determines the radii r1 to r4 of
the curvature in four areas as well as a reference radius r0.

The selected areas are transition areas between three
different tangents, the flank and the rake. No exact
procedure is given for the characterisation, but it seems to
be based on the following steps:

(1) At the intersection point pint of wedge angle bisector
and cutting edge profile, draw a line perpendicular to
the wedge angle bisector. The line crosses the best-fit
lines of flank and face. The intersection points are
called pα and pγ.

(2) Draw a circle with a centre point in pint and a radius
corresponding to the distance pint to pα.

(3) Build the tangents to the cutting edge profile in the
point pint and in the intersection points p1 and p3 of the
circle and the cutting edge profile.

(4) Determine the radii r1 to r4 in the transition curves
between the different tangents or tangents and face or
flank, respectively.

(5) Determine the reference radius r0 of the circle which
touches the best-fit straight lines of flank and face and
has its centre on the bisector of the wedge angle.

The steps are illustrated by the circled numbers given in
Fig. 12. The result of this complex characterisation method
is a detailed description of the cutting edge rounding by
five different radii. A straight imagination of how the actual
shape looks like seems to be difficult. A further difficulty of
the characterisation method arises due to the small regions
that are chosen for the curve fitting. As mentioned above,
the influence of measurement uncertainty on the fitting
result of circles becomes larger with a decreasing angular
range. In case of fitting several radii along a curvature,
which consists of a limited number of data points, the
uncertainty might become larger than the nominal values of
the four circle radii r1 to r4 inscribed. Moreover, the number
of parameters that this characterisation method generates
impairs its significance. The method further indicates a
precision of manufacturing methods for the generation of
cutting edges which is currently not given.

In [22], a modification of this method is given, which also
determines the angle φ of the tangent touching the edge
profile at the intersection with the wedge angle bisector. The
method is illustrated in Fig. 13. The parameter Bf describes
the width of the cutting edge tip as the distance between the
two intersection points of a line crossing the flank and rake
best-fit straight lines perpendicular to the wedge angle
bisector. This modification gives a further parameter—the
apex angle φ—for the asymmetry of a cutting edge profile

intersection of wedge angle bisector & edge profilepint:

intersection of circle & edge profilep1,p3: 

reference radius

intersection of horizontal line & best-fit straight lines
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Fig. 12 Rounded cutting edge characterisation according to Tikal and
Holsten [20]
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Fig. 11 Influence of form error and illustrated line thickness on the
user individual determination of the separation points of cutting edge
profile and straight lines
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and seems especially suitable for chamfered cutting edges
with rounded transitions to flank and face. Form errors might
impede a representative line fitting for the determination of
the apex angle φ.

2.4 Method proposed by Cortés Rodríguez

The method of [15] is an enhancement of the method
proposed earlier in [20]. In a first step, the profile is
approximated by a sixth-degree polynomial. Based on this
polynomial, a whole series of geometry describing param-
eters can be calculated for every point on the curvature. The
parameters to be considered are according to [15]: curvature
function, radius function, turning angle function, effective
contour, effective rake, position of nose tip, nose radius and
asymmetry as well as a best-fit radius.

The polynomial approximation of the edge profile and
radii ra and rb as well as turning angles θa and θb for two
individually chosen points a and b along the curvature are
depicted in Fig. 14.

To determine the asymmetry of a profile, Cortés
Rodríguez searches the apex n along the curvature (see
Fig. 15) [15]. Through this point, he draws a straight line
perpendicular to the wedge angle bisector. The ratio Sc of
the distances p and q from that point to the lines
representing flank and face is a measure for the asymmetry:

Sc ¼ p

q
ð13Þ

In the next step—this is the biggest difference to the
other mentioned characterisation methods—Cortés Rodrí-
guez takes the effective working conditions into consider-
ation. An effective rake angle γe at the point representing
the uncut chip thickness h and the turning angle θ1 at the
cutting edge point that touches the machined workpiece
surface are defined [15], as shown in Fig. 15. According to
[15], the position of n is influencing the material flow.

Therefore, its distance hn to the machined surface is
important to know:

hn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yn � y1ð Þ2 þ xn � x1ð Þ2

q
� sin q1 � arctan

yn � y1ð Þ
xn � x1ð Þ

� �� �� �
ð14Þ

Bf

r2

r1

β/2 

β

Fig. 13 Characterisation of a chamfered and rounded cutting edge by
transition radii r1 and r2, apex angle φ and apex width Bf, as proposed
by Tikal and Holsten [22]
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Fig. 14 Characterisation of a cutting edge profile by a sixth-degree
polynomial and determination of turning angle θ and radius r for two
randomly chosen points a and b, as proposed by Cortés Rodríguez [15]
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For symmetrical roundings, i.e. Sc≈1, [15] considers a
least square circle fitting which is subject to being
tangential to the lines representing flank and face.

Applying this method [15] transfers the macroscopic
cutting tool features (rake angle, clearance) into the
microscopic range. The difficulty in separating the edge
features from the tool flank and face is avoided by defining
the areas as a function of the working conditions.

An analysis of the error influence caused by fitting a
sixth-grade polynomial is difficult to generalise, as the
result is always dependent on the distribution of the
measurement points representing the actual shape of the
cutting edge. The approximation by a sixth-grade polyno-
mial impairs the risk of oscillating. The higher the grade n
of a polynomial is, the higher is the tendency to oscillate
between its fitting points (known as Runge’s phenomenon),
which increases towards the boundary of the set point
multiply. As a consequence, large deviations between fitted
function and real profile may arise, which should be outside
of the range where the polynomial represents the cutting
edge. The deviations are certainly dependent on the real
shape of the edge and the area chosen for the polynomial
fitting. For a representative polynomial fitting of a high
grade, the fitting area should be limited to the micro
geometry area. For that in turn, this area has to be
determined in advance.

In some cases, the sixth-grade polynomial fitting result
might be worse than a circle fitting; in other cases, it might
be of higher accuracy, meaning that the maximum deviation
between real cutting edge profile and fitted function is
smaller. The problem of oscillating can be avoided by using
spline functions. Thus, an even better approximation and a
better basis for subsequent calculations may be achieved.

Even though extensive, this method is certainly powerful
in relating machining behaviour to the actual shape of the
cutting edge. However, for the general description of
cutting edges, independent of the cutting conditions they
will be applied to, the set of parameters that the method
proposes might be unmanageable. The characterisation
method lacks comprehensibility and comparability. The
approximation by a polynomial indicates a precision which
cannot be manufactured with currently used manufacturing
methods for the generation of rounded cutting edges.

3 Requirements for alternative characterisation
methods

The existing characterisation methods are partly difficult to
apply. The methods are mostly based on some separation of
macro and micro geometry. In practise, especially the
determination of the transition between both implies
difficulties, e.g. the area which is to be used for a circle

fitting is in most cases not clearly indicated. Form errors
and point uncertainties make the application of the
mentioned methods more difficult, as the methods are
mostly based on ideal geometric shapes. Therefore, a
characterisation method is necessary, that is either indepen-
dent of the transition between micro and macro geometry or
that is defining parameters which explicitly separates the
fitting areas.

Furthermore, a characterisation method should be simple.
In best case the whole geometry is characterised by only few
parameters which are easy to identify, representative for the
actual shape of the cutting edge and which are manufacturable
and relevant for the process behaviour.

The characterisation method should indicate the magnitude
of the rounding and, if applicable, give information about the
asymmetrical shape. In best case the parameters can be used
for both rounded as well as chamfered cutting edges.

Every characterisation is based on data which are subject
to uncertainty. None of the available methods consider this
influence on the characterisation result. The influence of
point uncertainties on the characterisation result should be
kept to a minimum. To indicate the quality of a character-
isation result, if possible the uncertainty of the parameters
used for a characterisation should be evaluated as well.

4 Discussion of alternative characterisation methods

Considering the above-mentioned requirements, different
possible characterisation methods are revised. To generally
keep the user influence low, two strategies can be
considered. Either, an algorithm is used that recognises
the area of the cutting edge micro geometry autonomously
and does subsequent fittings only within the autonomously
determined boundaries, or the area crucial for the micro
geometry characterisation is iteratively defined by a
function of macroscopic features.

4.1 Characterisation algorithms without predefined
fitting areas

So far, the fitting areas for the determination of fitting
elements have always been chosen individually. This leads
to a user-dependent characterisation without a unique
solution. A possibility to uncouple the characterisation
result from individual influences is to use an algorithm that
determines its boundary conditions for the least square
fitting of elements autonomously.

One way to implement such a method is to consider the
whole cutting edge profile including flank and face as possible
fitting area for a circle. For every combination of adjoined
points of the edge profile the algorithm fits in a circle that
fulfils certain boundary conditions, e.g. minimum number of

908 Int J Adv Manuf Technol (2012) 59:899–914



points n, maximum allowable radius rn,max, minimum
coefficient of determination Rmin

2 etc. The circle that fulfils
the different criteria and has the lowest radius uncertainty is
then chosen as the cutting edge radius. Figure 16 shows the
graphical evaluation of such an algorithm.

4.2 Characterisation algorithms with predefined
or iteratively defined fitting areas

4.2.1 Fitting an ellipse into the cutting edge profile

By least square fitting of an elliptical arc into the cutting
edge profile, the rounding magnitude as well as the
asymmetry can be indicated. Preferably, the fitting area is
either known, or defined as proposed further below. An
ellipse is described by the position of the centre point, the
angular position ρ of major axis, and the lengths a and b of
major and minor axis. For the simplest case, i.e. an ellipse
with the centre in (0/0) and a major axis matching the x-axis
of the coordinate system, the equation is given by:

x2

a
þ y2

b
¼ 1 ð15Þ

Thus, the geometry and orientation are described by
three parameters. To describe the position, two parameters
(e.g. Δx and Δy) are needed plus a reference point on the
wedge angle bisector, see Fig. 17. The amount of
parameters already signifies that a simple, easy imaginable
characterisation is not feasible by an ellipse. Therefore, this
approach is not further pursued.

4.2.2 Suggestion of a new characterisation method
for rounded cutting edges with iteratively determined
fitting area

For obvious reasons, it is most plausible to use a radius to
dimension the magnitude of a rounded cutting edge. Due to

different causes, the characterisation by a circle radius is not
yet robust enough. The radius uncertainty resulting from
fitting a circle to a set of uncertainty affected points has
been mentioned above. In case of characterising a rounded
cutting edge by a circle, following uncertainty factors
influence the result:

& Point uncertainty
& Fitting algorithm
& Fitting area

For a robust characterisation of a rounded cutting edge,
the uncertainty of a measured point should be as small as
possible. This is to be ensured by the user by choosing a
proper measurement method and correct measurement
settings. The tabulated values in Table 1 may serve as a
guideline to identify the minimum resolution and maximum
instrumental uncertainty of a measurement system which is
necessary to keep the uncertainty of the fitted element low.

Even though probably used in the other methods
mentioned (though never explicitly specified) as fitting
algorithm, a least square fitting is suggested. As discussed,
this method has a high repeatability and is unsusceptible
regarding outliers.

Choosing the wrong fitting area can lead to a circle
fitting which is not representative for the actual profile of a
cutting edge. As a result the same edge is either
characterised by different circle radii, or differently shaped
edges might be characterised by the same radius. This
difference in results has already been criticised in [13]. To
combat its cause, the choice of fitting area has to be
separated from the individual user. By making the fitting
area user independent, the repeatability increases. As one
uncertainty driver—definition of cutting area—is eliminated,
the resulting characterisation uncertainty is reduced. The
mathematical determination of the fitting areas is accom-
plished iteratively proposing the following algorithm,which is
also shown in Fig. 18:

autonomously chosen fitting 
area for circle with lowest 
uncertainty cutting edge

profile

circle with lowest radius 
uncertainty 

cutting edge profile 

radius rn

Fig. 16 Example of a not-area-
limited, least square circle fitting
on a cutting edge. For every
combination of adjoined mea-
surement points of the cutting
edge profile, the algorithm
calculates a least square fitted
circle (red circles), determines
the radius, uncertainty and
coefficient of determination
and then chooses the radius with
the lowest radius uncertainty
(black circle) as cutting edge
radius
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(1) A least squares straight line fitting is accomplished on
flank and face over an area preset to a certain distance
to the nose tip. An eligible value for the distance
corresponds to the maximum of the cutting edge
rounding expected. In this example, a value of 200 μm
is chosen. If a non-realistic value is chosen, e.g. 0 μm
or several mm, the error will be compensated within
the next iterative steps. The fitting length should be
chosen in such a way that a macro geometrical
curvature of flank and face is not causing an
inappropriate fit and still represents the effective
working geometry. Thus, the considered length should
correspond with the maximum uncut chip thickness
the tool is proposed to be used for. In this case, a
fitting length of 300 μm is chosen.

(2) The least squares fitted straight lines cross in point pc.
The angle inscribed by these straight lines is the
wedge angle β. The wedge angle bisector gives as
intersection with the cutting edge profile point pint.

(3) Draw a circle that intersects point pint and is tangent to
both straight fitting lines. The points where the circle
touches the fitting lines represent the new upper limit
for the least squares straight line fitting of flank and
face.

(4) Steps (2) and (3) are repeated until the distance between
the points where the straight lines are tangent to the circle
and the upper fitting limit of the foregoing step is
approximating zero. These points are the limit finally
representing the transition frommacro to micro geometry.

(5) Generate a least squares reference circle using all
points within the micro geometry limit. The circle
does not necessarily need to touch the fitting lines nor
is its centre necessarily on the wedge angle bisector.
The radius rn of the fitted circle represents the radius
of the rounded cutting edge.

Following this algorithm a unique solution for the
characterisation of a rounded cutting edge by its radius rn
is achieved.

Based on the equations of [27] and provided that the point
uncertainty is known, the radius uncertainty of the fitted
circle can be derived. For an ideal radius of rn=50 μm, 100
evenly distributed measurement points over an angular range
of αr=90° and a measurement uncertainty for one point of
U=0.5 μm, the resulting radius uncertainty is 2% of the
diameter, based on an uncertainty range of P=95% (k=2). A
calculated low radius uncertainty, however, is not necessarily
representing a low deviation between fitted circle and data
points. Therefore, additionally the coefficient of determina-
tion R2 can be calculated for the fitted circle. The coefficient
of determination R2 indicates the goodness of fit, i.e. how
well the points used for the circle fitting are actually
represented by the fitted circle and its radius:

R2 ¼ SSreg
SStot

¼
Pn
i¼1
bri � rð Þ2

Pn
i¼1

ri � rð Þ2
ð16Þ

The estimated sum of squares SSreg is the deviation
between predicted radius bri and observed mean radius r.
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Fig. 17 Description of a rounded cutting edge by fitting an elliptical
arc into the profile
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The total sum of squares SStot corresponds to the deviation
between observed radius ri and observed mean radius r. If
R2 equals one, the observed values are perfectly predicted
by the fitted curve. That means for the present case, every
point used to approximate the circle lies on the circle line.
Together, the radius uncertainty and coefficient of determi-
nation can be used as an indicator for the quality of the
fitting procedure and suitability of the describing geometry
for the real cutting edge.

The choice of the fitting area is deduced from a perfectly
rounded cutting edge. Thus, the fitting quality is dependent
on the actual cutting edge profile. However, it is now
possible to uniformly describe the magnitude of the rounding
by the proposed procedure.

To determine the dimension of the cutting edge prepa-
ration independently of its actual shape (chamfered or
rounded), it is proposed to carry out the steps (1) to (4) of
the procedure mentioned above. In the last step, the
distance between the straight line point of intersection pc
to the intersection between the wedge angle bisector and the
real cutting edge pint is determined and serves as a general
indicator for the edge flattening Δr of the cutting edge
profile (see Fig. 18). The smaller Δr is, the closer the edge
is to a pointy profile. The relation between profile
flattening, ideal radius and wedge angle are illustrated
above in Fig. 9. If the fitting areas for the least square
straight lines of flank and rake are preset, the position of the
intersection point is only affected by a low uncertainty. The
characterisation of the flattening by Δr gives the smallest
possible uncertainty, as only the point uncertainty in one
dimension (direction of wedge angle bisector) affects this
value.

In case of a poor quality of fit, i.e. if the coefficient of
determination falls below a preset limit of, e.g. R2<0.9, the
cutting edge should not be characterised by a circle radius.
In such a case, a line fitting over the micro edge geometry
should be considered. As illustrated in Fig. 19, the data

points for starting a least square straight line fitting are
those close to the intersection of wedge angle bisector and
cutting edge. The fitting area should be maximised until the
coefficient of determination decreases. Subsequently, the
angle and width of the best fitting chamfer are to be
calculated.

4.2.3 Evaluation of the cutting edge asymmetry

To determine the asymmetry of a cutting edge, the
following method is proposed: The first five steps are
identical with the method mentioned above. The method is
illustrated in Fig. 20.

(6) Draw a line through the intersection point pint
perpendicular to the wedge angle bisector. At its
intersections with the least square straight lines,
determine the distance to the cutting edge profile in
the direction parallel to the wedge angle bisector. The
values are called Dγ or Dα, respectively. The ratio of
these two values indicates the asymmetry S.

In comparison to using tangential transition points as
proposed by Denkena et al. [4], the concept of using
distances between intersection points gives the advantage of
a reduced sensitivity regarding point uncertainty and
deviations of single points.

Local form errors might distort the asymmetry values
though. To assess this influence, the asymmetry value S is
compared with an area based evaluation of the asymmetry.
The area-based algorithm considers the distances from the
cutting edge profile to the horizontal line of all points that are
lying between the points used for the determination of the
asymmetry value S above. The ratio of the areas left and right
to the wedge angle bisector give the area-based asymmetry
values Sa. By taking more points into consideration, the
influence of local form deviations and measurement uncer-
tainties on the asymmetry value relativises based on the
assumption that they are statistically evenly distributed.

Figure 21 shows the asymmetry evaluation of cutting
edges that were abrasive jet machined at different blastingcircle fitting
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poor quality of fit

/2

chamfer width

chamfer
angle

maximise fitting area until
qualitiy of fit decreases

Fig. 19 The characterisation of a chamfered cutting edge by a circle
radius results in a poor quality of fit (left). In such a case, the micro-
geometry is to be fitted by a straight line (right)
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Fig. 20 Asymmetry determina-
tion of a rounded cutting edge
by building the ratio S of the
distances Dγ on face side and
Dα on flank side
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angles δ relative to the wedge angle bisector. Both
asymmetry parameters S and Sa show the same trend. The
larger the blasting angle, the lower is their value.
Furthermore, the dispersions of the two methods are within
the same range. Thus, local form errors do not significantly
distort the line based asymmetry evaluation.

For that reason, the area-based asymmetry character-
isation is not recommended over the line-based variant, as
the values resulting from this method are not directly
convertible into a defined measure that gives the actual
profile of the edge. The method only specifies if an
asymmetry is existent and indicates its magnitude.

Using the line-based asymmetry definition together with
the value Δr, three points along the curvature are known.
These three grid points are all based on intersection of
elements, which are only affected by little uncertainties.
The positions of the resulting grid points are easily
traceable and the general shape of the cutting edge can be
reconstructed. A further advantage of the three parameters
Δr, Dα and Dγ is their validity for all cutting edge profiles:
rounded as well as chamfered cutting edges or combinations
thereof can be characterised by the values.

Applying statistical values which are used to describe
symmetries of distributions like skewness or kurtosis to the
characterisation of asymmetries is not recommended. The
skewness gives an indication whether the cutting edge
rounding is more trumpet or waterfall shaped, but it is not
as descriptive and traceable as the proposed values of Dα

and Dγ. Furthermore, skewness and kurtosis give no
dimensional information.
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Fig. 22 Comparison of characterisation results when applying a
fitting algorithm with iteratively defined fitting area (A) and without
preset fitting area and a minimum radius uncertainty Ur as
optimisation criterion (B). The set restrictions (number of points n,
max radius rn,max and min coefficient of determination Rmin

2) for the
illustrated comparison are given in (B). (C) shows the influence of
different restriction values as in (B) on the radius rn, number of points
N and radius uncertainty Ur (based on point uncertainty Un=1 μm)
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4.3 Comparison between a least square circle fitting
with iteratively determined fitting area
and without predefined fitting area

Using differently prepared cutting edges, the new character-
isation method for rounded cutting edges that is suggested
above (Fig. 18) is compared with the circle fitting algorithm
without any predefined fitting areas (Fig. 16). The
characterised cutting edges were prepared by micro-
abrasive jet blasting. The blasting angle δ between wedge
angle bisector and nozzle axis varied between 0°, 10° and
30°. Blasting times differed as well. The characterisation
results are illustrated in Fig. 22. The radii r of the algorithm
without any predefined fitting zone and a minimum radius
uncertainty as optimisation criterion is shown on the
horizontal axis. The set restrictions are given in (B). The
radii rn of the proposed method with an iteratively defined
area as function of profile flattening and wedge angle are
depicted on the vertical axis. The depicted values are
mostly in accordance with each other. Deviations can
especially be observed for asymmetrically rounded cutting
edges (blasting angle δ=30°). The influence of the
characterisation method on the determined radius is
exemplified using the cutting edge that shows the worst
radius agreement when using the different methods:
Obviously, the optimisation criterion and boundary con-
ditions (Rmin

2=0.998) cause a fitting of a circle into the top
area of the cutting edge rounding (B). This radius
corresponds to the smallest circle that still fits best in terms
of uncertainty and coefficient of determination. If the
restrictions are changed (Fig. 22(C)) to a similar minimum
coefficient of determination Rmin

2 as the resulting R2 in the
suggested characterisation method (A), the radii of the two
circles equalise. Thus, if the coefficient of determination is
set high, the method without predefined fitting area tends to
give the lower limit of radii that a cutting edge could still be
dimensioned with. For this reason, the achievable radius
uncertainty is typically larger, as fewer points are considered
for the circle fitting. For symmetrically rounded cutting edges,
the difference in radius between the two characterisation
methods is, using the restrictions given in Fig. 22(B), smaller
than 5% of the nominal values.

However, while the algorithm without predefined fitting
area might find multiple circles with the same minimum
uncertainty, the suggested method with an iteratively
determined fitting area as a function of edge flattening Δr
and wedge angle β always results in a unique solution.

5 Conclusions

The currently available methods to characterise the micro
geometry of a cutting edge are difficult to apply. Either the

methods are affected by an increased uncertainty, difficult to
reconstruct or the number of generated parameters decreases
their significance. Therefore, a new algorithm is proposed
which ensures a unique determination of the cutting edge
rounding by a least square circle fit over an area that is
determined iteratively. The algorithm eliminates one
uncertainty driver, which effectively reduces the resulting
characterisation uncertainty and increases characterisation
reproducibility and repeatability. To indicate the magnitude of
the cutting edge preparation, a value is introduced that is
ensuring a minimum uncertainty. To specify the asymmetry of
the rounding, a characterisation is suggested which is
insensitive to point uncertainties and form deviations and can
be used irrespective of whether the edge is chamfered or
rounded. Further methods to avoid an individual user influence
are thinkable, but most probably more complicated in their
application. The points mentioned in this paper shall give ideas
for the elaboration of an urgently needed international standard
to characterise the cutting edge micro geometry.
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