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Abstract The article develops the approach of Ferro and Segers (J.R. Stat.
Soc., Ser. B 65:545, 2003) to the estimation of the extremal index, and proposes
the use of a new variable decreasing the bias of the likelihood based on the
point process character of the exceedances. Two estimators are discussed:
a maximum likelihood estimator and an iterative least squares estimator
based on the normalized gaps between clusters. The first provides a flexible
tool for use with smoothing methods. A diagnostic is given for condition
D(2)(un), under which maximum likelihood is valid. The performance of the
new estimators were tested by extensive simulations. An application to the
Central England temperature series demonstrates the use of the maximum
likelihood estimator together with smoothing methods.

Keywords Central England temperature data · Clusters · Diagnostic ·
Extremal index · Extreme value theory · Gaps · Local likelihood
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1 Introduction

In recent years there has been increasing interest in the grouping charac-
teristics of extreme events. Applications include the temporal distribution of
large insurance claims and of financial crashes, and incidences of catastrophic
weather events. These motivate a search for reliable tools to describe these
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features, a key aspect being the estimation of the extremal index θ , which
governs the clustering of the extremes of a univariate observational series.

In addition to the runs and blocks estimators of θ (Smith and Weissman
1994; Hsing 1993; Weissman and Novak 1998), two other estimators have
recently been proposed: a two-threshold method (Laurini and Tawn 2003),
and the intervals estimator (Ferro and Segers 2003). The first estimates the
extremal index by means of the number of independent clusters observed in
the sample, and requires a preliminary identification of clusters. The intervals
estimator exploits the compound Poisson character of the point process of
exceedances; with an appropriate normalization, this implies that the inter-
exceedance times follow approximately a mixture distribution comprising a
point mass at zero and an exponential distribution.

Both new approaches have drawbacks. The two-threshold method requires
the choice of two declustering parameters, although it is less sensitive to
the choice of the run length than is the runs estimation. Furthermore, in
finance, where volatility-driven models are common, preliminary modeling of
the time series is required to select the second parameter of the method, a
lower threshold that separates low- and high-volatility periods. Like moment
estimators in general, the intervals estimator is hard to use with smoothing
methods, as would be necessary in investigating changes of the extremal index
over time. Moreover, the use of the methods based on the distribution of
the inter-exceedance times is inherently awkward, since zero inter-exceedance
times cannot be observed in practice; thus, all the inter-exceedance times are
attributed to the exponential part of the mixture.

The article follows Ferro and Segers (2003) by investigating the behaviour
of likelihood methods for the observed separation of the exceedances of a
process over a threshold un. We exploit the fact that in the usual limit, the
number of observations below un between two consecutive exceedances follow
the same point mass–exponential mixture distribution as the normalized inter-
exceedance times of Ferro and Segers (2003). Consequently, a likelihood can
be introduced that well describes processes with independent inter-exceedance
times and yields a maximum likelihood estimator. The validity of these
estimators can be extended to dependent processes satisfying the long-range
approximate independence condition of Ferro and Segers (2003) and the
condition D(2)(un) of Leadbetter and Nandagopalan (1989) and Chernick et al.
(1991). A second method, an iterative weighted least squares procedure based
on the exponential quantile–quantile plot of the normalized spacings, yields a
self-consistent way to determine a limit separation over which clusters can be
regarded as independent, and provides an estimate of the extremal index.

To assess the performance of the new estimators and to compare them to
the runs, two-threshold and intervals methods, data were simulated from a
number of different models with extremal index ranging from independence
to strong short-range dependence. The simulations showed that the maximum
likelihood estimator has lower bias and mean squared error than the runs, two-
threshold and intervals methods in cases where clusters are well modeled by
sequences of adjacent exceedances. Despite its somewhat higher root mean
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squared error, the iterative least squares procedure showed remarkably low
sensitivity to threshold choice and to the extremal dependence structure of the
simulated models.

To demonstrate the use of the maximum likelihood estimator, we investi-
gate possible changes in the extremal index of cold winter temperatures in the
Central England temperature (CET) series, using local likelihood methods. To
obtain confidence limits, we applied bootstrap techniques.

In Section 2, we introduce notation used throughout the article, and state
the basic theorem and its corollaries on which the estimation methods are
based. Section 3 discusses the problems with a likelihood for inter-exceedance
times, introduces the gaps as a partial solution, and describes the two proposed
estimators. Further, it proposes a way of checking the condition D(2)(un)

preliminary to estimation, and simulations are described. Smoothing methods,
comparison of the different estimators using processes with known changing
extremal index and the application to the CET data are presented in Section 4.
Discussion is given in Section 5.

2 Definitions and Preliminaries

Let X1, X2, ... be a strictly stationary process with marginal distribution func-
tion F, and let Mn = max{X1, . . . , Xn}. Define the independent sequence of
variables X̂1, X̂2, ... with the same marginal distribution F as X1, X2, ..., and let
M̂n = max{X̂1, . . . , X̂n} denote the maximum of this sequence. Under appro-
priate mixing conditions, if there exists a nondegenerate limiting distribution
G for the variable (M̂n − bn)/an with some sequences of constants {an > 0}
and {bn}, then the normalized maximum (Mn − bn)/an of the dependent series
also has a nondegenerate limit distribution G∗, and they are related to each
other by G∗ = Gθ , where θ is the extremal index (Leadbetter 1983). If we
map the sequence from (0, n] into the interval (0, 1] by dividing the times
by n, the locations of exceedances over a high threshold un in a stationary
process are in the limit distributed as the points of a homogeneous Poisson
process on the interval (0, 1]. The rate for each threshold is constant, equal
to G∗ ((un − bn)/an), and is related to θ via the relation between G∗ and
G. This characterization of the times of exceedances suggests an estimator
of the extremal index (Ferro and Segers 2003): in a homogeneous Poisson
process with rate λ, the intervals between two neighboring points follow an
exponential distribution with parameter λ. With estimation in mind, a very
convenient normalization of the occurrence times can be found. For this
purpose, introduce the random variable

T(un) = min{n ≥ 1 : Xn+1 > un | X1 > un}
for the inter-exceedance times in the stationary sequence {Xi}. Ferro and
Segers (2003) have proved the basic convergence theorem for this estimation
method under the following condition.
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Condition �∗(un) For any A ∈ F1,k(un) with P(A) �= 0, B ∈ Fk+l,crn(un) and
1 ≤ k ≤ crn − l,

|P(B | A) − P(B)| ≤ α∗(crn, l)

for all c > 0, and there exists a sequence ln = o(n) for which α∗(crn, ln) → 0 as
n → ∞ for all c > 0.

Theorem 1 (Ferro and Segers 2003) If there exist sequences of integers {rn} and
of thresholds {un} such that

(1) rn → ∞, rn F(un) → τ and P
{

Mrn ≤ un
} → e−θτ as n → ∞ for some τ ∈

(0, ∞) and θ ∈ [0, 1], and
(2) Condition �∗(un) is satisfied,

then as n → ∞, P
{

F(un)T(un) > t
}

→ θ exp(−θ t) for t > 0.

This theorem states that in the limit an inter-exceedance time, normalized
by F(un), tends in distribution to a variable following an exponential-point
mass mixture: it is zero with probability 1 − θ , nonzero with probability θ ,
and conditionally on being nonzero, it follows an exponential distribution
with mean θ−1. The extremal index plays a double role: it determines both
the proportion of zero and nonzero inter-exceedance times and the expected
value of the normalized inter-cluster times. The first role corresponds to the
observation of Leadbetter (1983) that the limiting mean cluster size is θ−1,
since thus a proportion 1 − θ of the exceedances has to occur as secondary
elements of clusters, and in the limit these have zero inter-exceedance times.

3 Likelihood and Estimation

3.1 Likelihood

Suppose that we observe a random sequence X1, X2, . . . , Xn that satisfies
�∗(un). Suppose that N observations exceed the threshold un, let the collection
of indices { j : X j > un} denote the locations of the exceedances, and let Ti

denote the ith inter-exceedance time, that is, Ti = ji+1 − ji, i = 1, . . . , N − 1.
If the point process of the exceedances were well approximated by a compound
Poisson process, and the inter-exceedance times were independent, a simple
likelihood could be proposed. Two problems with this approach are:

(a) Although the distances between the exceedances of the same cluster
are zero in the limit process, the usual distance estimate as given by
Ti provides nonzero values for any n. Therefore, each interval between
exceedances is nonzero and is assigned to the exponential part of
the likelihood, causing likelihood-based estimators to be biased toward
independence.
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(b) The inter-exceedance times are dependent, and the use of the indepen-
dent likelihood is unfounded.

Problem (a) can be solved by the introduction of a new variable. Let
S(un) denote T(un) − 1, and call it a gap of the exceedances to distinguish it
from inter-exceedance times. Theorem 1 can be stated for the gaps without
change; the proof follows that of Theorem 1, and since it requires only a
slight modification by considering P{F(un)(T(un) − 1) > t}, we do not present
it here. Thus, we can propose an independent log-likelihood in terms of
F(un)S(un) instead of F(un)T(un):

� (θ; {Si}) = (N − 1 − NC) log(1 − θ) + 2NC log θ − θ

N−1∑

i=1

F(un)Si, (1)

where NC = ∑N−1
i=1 I(Si �= 0).

For problem (b), the dependence of the spacing process, we have to check
how the validity of the likelihood can be extended. Modeling the exceedance
distances by Si(un) is equivalent to modeling the sequences of adjacent ex-
ceedances in the observed series by the clusters of the limiting point process.
The condition for this model to be valid is D(2)(un) of Chernick et al. (1991)
that is based on Leadbetter and Nandagopalan (1989).

Condition D(2)(un) is said to be satisfied if

nP{X j > un, X j+1 ≤ un, Mj+2,rn > un} → 0 as n → ∞,

with the sequence {un} as in the long-range asymptotic independence con-
dition, and a sequence of block sizes {rn} such that n/rn → ∞; moreover, simul-
taneously in every block, the asymptotic long-range independence condition
D(un) of Leadbetter et al. (1983) is satisfied.

Condition D(2)(un) ensures that the probability of again exceeding the
high threshold un after dropping below it within a cluster tends to zero, and
provides thus a sufficient condition for the contiguous sequence model to
be adequate. From the full log-likelihood (1), we can derive the maximum
likelihood estimator

θ̂ =
∑N−1

i=1 qSi+N−1+NC−
[(∑N−1

i=1 qSi+N−1+NC

)2−8NC
∑N−1

i=1 qSi

]1/2

2
∑N−1

i=1 qSi

, (2)

where q denotes the estimated value of F(u).
When NC = N − 1, the likelihood function (1) is monotone increasing

within the interval [0, 1], with maximum attained at θ = 1. The maximum
likelihood estimator can be then defined by θ̂ = 1; this is equivalent to allowing
NC = N − 1 in (2).

Another estimator exploits the fact that, as was noted by Ferro (2003), the
standard exponential quantile-quantile plot of F(un)S(un) can be fitted by a
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broken-stick model; one segment is composed of zeros and the other is a line
with slope θ−1, intersecting each other at (− log θ, 0). In practice, we have
found that the best way to use this structure is the following iterative weighted
least squares procedure:

(1) Select the nonzero gaps {s∗
i } from the collection of gaps, scale them by

their mean and order them to make a sample {χi : i = 1, . . . , NC}, to
compare to standard exponential quantiles xi = − log(1 − i/(NC + 1)) for
i = 1, . . . , NC;

(2) Fit a weighted least squares model to the points {xi, χi} with weights given
by w−1

i = ∑N−1
j=N−i j−2 to obtain the estimated intersect α̂ and slope β̂;

(3) Find an estimate of the extremal index by θ̂LS = min
{

exp
(
α̂/β̂

)
, 1

}
; and

finally
(4) Choose the largest 	θ̂LS(N − 1)
 spacings from the original collection

{s∗
i }, and after ordering, compare them to the sample used to obtain

θ̂LS. If they are different, apply steps (2)–(4) for the points {(xi, χi) : i ≥
N − 	θ̂LS(N − 1)
}. If they are identical, accept θ̂LS obtained in (3) as the
estimated extremal index.

This estimator works by finding a self-consistent estimator for θ : a first guess
for θ is given by using the exponential nature of the inter-cluster distances,
then, making use of the fact that a proportion of 1 − θ of the observed
exceedances should be “secondary" cluster elements, it determines a new set of
inter-cluster gaps obtained from the first guess for θ . Then a second estimate is
given, based on the exponential distribution of the new gap set. The iteration is
continued until it reaches a stable point, where neither the estimate nor the set
of gaps change further. That is to say, since there are two roles to the extremal
index, first by determining the mean cluster size, second, by determining the
distribution of the inter-cluster times, this procedure uses one to correct the
estimate by the other, and yields the estimate where these two agree.

3.2 Condition D(2)(un)

The crucial condition D(2)(un) for the validity of the maximum likelihood
estimator (2) may be checked by calculating

p(u, r) =
∑n

j=1 I(X j > u, X j+1 ≤ u, Mj+2,r > u)
∑n

j=1 I(X j > u)

for the observed sequence X1, . . . , Xn, where I is the indicator function. Given
u and r, we can compute the proportion of the anti-D(2)(un) events {X j+1 ≤
u, Mj+2,r > u | X j > u} among the exceedances for a range of thresholds and
block sizes.

Examples are given in Fig. 1; the upper left panel refers to an AR(2)
process with φ1 = 0.93 and φ2 = −0.86, which does not satisfy condition
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Fig. 1 The observed proportion of anti-D′′(ui) events for the oscillating AR(2) (upper left panel),
moving maximum process (upper right), Markov chain (lower left) and ARMA(1,4) (lower right).
Foreground horizontal axis: F(u), right-hand side horizontal axis: block size r, vertical axis: p(u, r)

D(2)(un); the upper right panel shows a moving maximum sequence max{Zi−3,

Zi−2, Zi−1, Zi}, Zi being an independent, identically distributed random se-
quence, which satisfies D(2)(un). The two lower panels contain simulated
examples used for the demonstration of the behaviour of the maximum
likelihood estimator in Section 3.3; these are a Markov process with standard
Gumbel margins and symmetric logistic joint distribution with parameter
r = 2 (Smith 1992), and an ARMA(1,4) process with innovations following a
Pareto distribution, having parameters φ = 0.82, ϑ1 = −0.11 and ϑi = 0.13 for
i = 2, 3, 4.

One aspect of the plots is the trend of the proportions. D(2)(un) is a limit
condition satisfied if there exists a path (ui, r j) with ui → ∞ and r j → ∞ ac-
cording to condition D(2)(un), for which p(ui, r j) → 0. Finding such a direction
on the plots amounts to finding that there is a threshold where the contiguous
cluster model will be a good approximation. On the other hand, even if there
is no direction with marked downward trend, an impression of the bias can be
gained by the proportion of anti-D(2)(un) events, since these give information
on how many clusters are misidentified as two or more clusters; if such clusters
are few, we might decide to accept this relatively small upward bias despite
the possible failure of D(2)(un). The four panels of Fig. 1 illustrate these
types of behaviour: for the AR(2) process, there is no direction of downward
trend, and we can expect a very high bias; for the moving maxima sequence,
D(2)(un) is satisfied and the maximum likelihood estimator works well; for the
ARMA(1,4) sequence, there seems to be a constant but low proportion of anti-
D(2)(un) events independently of (u, r), and as we shall see in Subsection 3.3,
the maximum likelihood estimator yields good results; and for the Markov
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chain model, the proportion is high enough to cause a bias of around 20%
in the maximum likelihood estimator θ̂ (cf. Fig. 2).

3.3 Simulation Studies

We compared the performances of the new estimators to the intervals, runs,
and two-threshold estimators on examples from three families of simple
models: ARMA, MARMA, and Markov chain processes. We simulated each
process with parameter combinations yielding exceedance sequences with
different extremal indexes ranging from near-independence to strong depen-
dence. Each parameter combination in every process was used to obtain R =
500 independent repetitions of sequences with lengths n = 2,000 and 30,000.
For each simulated process, estimation was performed on the 500 repetitions
using the different estimators with four different thresholds corresponding to
empirical exceedance probabilities 0.95, 0.975, 0.9825 and 0.99. The variance
and bias of the estimators were assessed by calculating the root mean squared

error and median relative bias Bmethod =
(

mediani=1,...,R{θ̂method,i} − θ
)

θ−1 and
plotting them against thresholds. The results can be summarized as follows:

1. The simulations justified the role of condition D(2)(un): for any process that
satisfies this condition, the maximum likelihood estimator performs better
than the intervals or iterative least squares methods in terms of both bias
and of mean squared error. The results for two processes are shown in
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Fig. 2 Comparison of the maximum likelihood (solid) and iterative least squares (dashed) estima-
tors to the intervals (dotted), 2-threshold (dash-dotted) and runs estimators (long-dashed) on an
ARMA(1,4) process and on a Markov chain with Gumbel margins and symmetric logistic bivariate
joint distribution. For the 2-threshold method, run length 8 and lower threshold F(ln) = 0.5 were
chosen. For the runs method, run length 8 was used. The number of observations was n = 30,000
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Fig. 2; these are the ARMA(1,4) and the Markov chain given in detail in
Section 3.2, for which the diagnostic plots to check D(2)(un) are presented
in Fig. 1.

2. Like the intervals estimator, the iterative weighted least squares estimator
does not require condition D(2)(un), and its performance is very close
to that of the intervals method. As the iterative least squares method
uses only the longer separations for the estimation, its variance is larger
for short series with high thresholds, but since it is less sensitive to the
threshold choice (its behaviour changed little for any threshold in the
range F(un) ≥ 0.05), this can be compensated by choosing a relatively low
threshold.

3. Simulations from processes with independent observations for which θ = 1
confirmed that with the extension of the likelihood described in Section 3,
the application of nonparametric bootstrap methods can be used for
inference for possibly independent data sets too.

4 Local Extremal Index

To demonstrate the use of our maximum likelihood estimator, we examine
now the possibility to apply them to detect nonstationarity in data. Stationarity
is a condition only rarely observed in practice for long time series; a fixed
type of parametric model with slowly varying parameters more often yields
a useful description of the data. The point process description of the extremes
of Section 2 and the likelihood model presented in Section 3 offer a way to
recognize problems related to nonstationarity: likelihood models can easily be
used together with smoothing methods.

4.1 Simulation Studies

We simulated ARMA(p, q) sequences of various extremal indexes, and at-
tached them to form processes with abruptly changing extremal characteris-
tics. All the ARMA(p, q) sequences satisfied condition D(2)(un), so that the
maximum likelihood estimator was expected to behave well.

To compare the maximum likelihood, the intervals, and the iterative least
squares estimators, we estimated the extremal index of the series with a
smoothing interval of length 7,301 with thresholds corresponding to F(u1) =
0.95 and F(u2) = 0.98. For every estimation method, θ was taken to be
constant for the whole window. A weighted form of the maximum likelihood
estimator was used with weights derived from a truncated normal kernel, and
to estimate the variance of the method, we applied a parametric bootstrap
consisting of the simulation of homogeneous Poisson processes and finding the
95% pointwise percentile intervals.

The intervals and the iterative least squares estimators allow only for the
use of equal weights. For them, the bootstrap method proposed by Ferro and
Segers (2003) was applied to obtain confidence intervals.
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The results on one process are shown in Fig. 3; the two processes composing
the estimated sequence were the same as our first example in Section 3
(θ = 0.25) for the first part and another ARMA(1,4) with coefficients φ =
0.38, ϑ1 = 0.74, ϑ2 = 0.72, ϑ3 = 0.05, ϑ4 = 0.01 (θ = 0.13) for the second.
The figure reflects well the generally observed characteristics. The wobbles in
the estimates with intervals and iterative least squares at locations where the
true extremal index was constant are due to the use of constant weights that
allocate too much influence to observations entering or leaving the window. In
most cases it is worthwhile to use relatively low thresholds, around the quantile
F−1(0.95).

4.2 Central England Temperature Series

We use the Central England Temperature data to assess possible changes in
the extremal index of unusually cold winter temperatures. This series of daily
mean temperatures, representative of a roughly triangular area of the United
Kingdom enclosed by Preston, London and Bristol, stretches over 233 years
and provides excellent test data for the application of kernel methods. Data
from 1 January 1772 through 31 December 2004 were used.

Since the series has both a seasonal component and a trend, a two-step
procedure was applied to obtain a series having roughly the same range
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Fig. 3 Comparison of the weighted MLE, intervals and iterative least squares estimators with
thresholds given by F(u1) = 0.95 (left panels) and F(u2) = 0.98 (right). The estimators are
the weighted maximum likelihood (top), the intervals (middle), and the iterative least squares
(bottom). Heavy solid lines: estimates, thin dashed: 95% percentile bootstrap CI, thin solid: true
extremal index
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over the whole period, enabling us to determine common thresholds. Yearly
seasonal variation in the median and in the dispersion was approximated by a
cubic spline-smoothed median and median absolute deviation taken for each
day of the year over the 233 years of the series, then used to center and scale
the data. Any longer-term trend, which seems to become non-negligible in the
last 50 years, was removed by centering and scaling with cubic spline-smoothed
10-year medians and median absolute deviations. At the ends of the series,
we repeated the first 5 years before 1 January 1772 and the last five after 31
December 2004. To apply standard methods for maxima, the series was then
negated, the sequence of gaps calculated by choosing a threshold and applying
the procedure outlined in Section 3; finally, we dropped the gaps ending in
months from March through November.

The simulation studies suggested that above a threshold u for which F(u) =
0.95, the estimators behave well, and, as was shown directly by fitting general-
ized Pareto models to exceedances in the series {yi} for a range of thresholds,
this gives acceptable thresholds for a valid extreme-value approximation. The
threshold value u = 2.0 was chosen; this corresponds to empirical exceedance
probability q ≈ 0.023.

To check condition D(2)(un), we divided the series into four periods 1772–
1830, 1830–1889, 1889–1948 and 1948–2004, and we computed the surface
p(u, r) with the values F(u) = 0.95...0.995 and r = 4, 5, 6, 7, 12, 20 for each
period. Although the proportion of anti-D(2)(un) events is nearly 0.1, it remains
constant for all the plane (u, r), so, for the sake of estimation, we supposed
that the resulting bias will remain approximately constant and relatively small,
thus allowing us to detect any nonstationarity. Comparisons of the results
to the intervals and the iterative weighted least squares method might yield
information on the bias.

4.3 Smoothing of the CET

Corresponding to a description by a fixed model with parameters varying with
time, we suppose that there exists a limiting Poisson process of the exceedances
for the Central England temperature data, but it is inhomogeneous, that is, the
parameter θ is changing over time: at any point t the limiting distribution of the

inter-exceedance spacings is P
{

F(un; t)S(un) > s
}

→ θ(t) exp(−θ(t)s) for s >

0 as n → ∞, where θ(t) is the extremal index, a smooth function of the time.
We assume moreover that the change is slow in the sense that there is a finite
time interval around any point ti where this process can be well approximated
by a homogeneous one with constant θ∗(ti), and that θ∗(ti) ≈ θ(ti). A local
constant estimator of the extremal index θ(ti) can then be constructed by
fitting a weighted likelihood model within the homogeneity intervals around
each point. In some cases, better fit may be expected from a local polynomial
model which traces more faithfully the changes in the estimated parameter
(Fan and Gijbels 1996); however, in this case of nonstationarity the inhomo-
geneous Poisson process nature of the cluster locations is not assured by any
theoretical result.
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To compare the maximum likelihood, the intervals, and the iterative least
squares estimators, we estimated the extremal index of the series with two
different smoothing time intervals h = 3,001 and 7,301 (approximately 33
and 80-year periods) with threshold 2.0. To model the temporal behaviour
of the extremal index we applied a logit-transformed local linear form for
θ as a function of time. We used direct optimization of the locally weighted
log-likelihood

�(W)(ti0) =
K∑

i=1

w(ti)�(θ(ti)), (3)

where K is the number of clusters in the interval centered on the cluster at
time ti0 , ti are the locations of clusters, �(θ(ti)) is the likelihood contribution
from the cluster beginning at ti, and

θ(ti) = exp{αti0
+ βti0

(ti − ti0)}
1 + exp{αti0

+ βti0
(ti − ti0)}

, (4)

with αti0
and βti0

as the parameters of the model in the smoothing interval
centered at ti0 . The weights w(ti) were given by a normal kernel. For this setup,
a parametric bootstrap based on the fit {α̂ti0

, β̂ti0
} with 500 repetitions was used

to assess the variability of the estimation. For each interval, we simulated the
inhomogeneous Poisson process with intensity determined by θ(ti), repeated
the estimation for the samples, and took the 0.025- and 0.975-quantiles. The
intervals and the iterative weighted least squares procedure was applied the
same way as in Section 4.1.

Figure 4 shows the results obtained by local linear smoothing and intervals
estimation for the 7,301-day smoothing interval and threshold 2.0. Results for
the intervals and the iterative least squares estimations were fairly similar. The
bias caused by the possible failure of D(2)(un) appears to be small. After about
1850, the two estimates are much the same, since their confidence bands are
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Fig. 4 Comparison of the weighted local linear MLE and intervals estimators with threshold
u(2) = 2.0. The left panel shows the extremal index for 7,301-day smoothing intervals by the local
linear maximum likelihood estimator, the right panel are the estimates by the intervals method
with the same window. Heavy solid lines: estimates, thin solid: 0.95 percentile bootstrap CI
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strongly overlapping. Before 1850, there is a difference between the maximum
likelihood and the intervals estimate: the maximum likelihood method shows
a pronounced peak of θ > 0.6 where the intervals (and the iterative least
squares) give nearly constant values around θ = 0.4. The difference might be
due to the use of equal weights; using non-equal weights accentuates more
the local characteristics of the time series around the center of the estimation
window. With a long window, a local feature in the series is masked by
the equally weighted farther periods in the intervals and the least squares
estimation; in investigations with shorter window, these estimators too showed
a peak here, though with a lower maximum. Another plausible explanation
would be the condition D(2)(un) failing temporarily (indicating nonstationarity
at least in this period), but this was not confirmed by the analysis of the anti-
D(2)(un) events.

4.4 Test for Constant Extremal Index

For the period 1772–1980 both the intervals and the iterative least squares
methods suggested the possibility of a constant extremal index with a value
slightly below 0.5. For the local linear maximum likelihood estimation, this
was checked by a bootstrap procedure: for threshold 2.0, we resampled the
winter inter-cluster spacings and cluster sizes with equal probabilities, and
performed weighted local linear maximum likelihood estimation on 4,000
repetitions, resulting in a collection of extremal index curves. These were then
smoothed and their values on a common time grid were calculated to obtain
pointwise and overall percentile confidence bands for the time-dependent
curves. We show the result in Fig. 5. Although there is some suggestion of
a weak downward tendency, an overall extremal index value of 0.5 seems
plausible for most of the observed period, even for the period 1800–1830.
Another peculiar interval is the few decades beginning around 1980, when the
estimated extremal index has a strong upward tendency that is shown by all
three estimation methods (and even with all window lengths tried), though it
is not significant in Fig. 5.
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Fig. 5 Check of the hypothesis of constant extremal index with the threshold u(2) = 2.0. Heavy
solid line: estimated extremal index for the true sequence, thin solid lines: median, 0.025- and
0.975-percentile bootstrap confidence interval, thin dashed lines: 95% overall confidence interval,
thin straight line at θ = 0.5: plausible constant value for the extremal index
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5 Discussion

The article proposes new estimators for the extremal index based on inter-
exceedance times. These are a maximum likelihood estimator, and an iterative
weighted least squares estimator based on the exponential quantile-quantile
plot. Their good properties can be summarized as follows:

– The maximum likelihood estimator is of closed form and so is very easy
to implement in practice, while the iterative least squares method uses
only standard statistical techniques, without the need for preliminary
declustering or checking D(2)(un).

– In addition to its simplicity, the maximum likelihood estimator has smaller
bias and root mean squared error than the intervals, the two-threshold, and
the runs methods on the class of processes satisfying condition D(2)(un).

– As the maximum likelihood estimator is derived from a regular likelihood
model, it can be used with smoothing methods, providing a tool for
checking changes in clustering.

– In the simulations with extremal index varying with time, the maximum
likelihood estimator could follow the changes in θ more faithfully and with
smaller variance.

– In all simulations of stationary processes, the iterative least squares
method showed the lowest sensitivity to threshold choice and very
small bias.

Beside the advantages, there are some drawbacks:

– The validity of the likelihood model is restricted by the condition D(2)(un).
– Sensitivity to threshold choice persists for our estimators, although it is

lower than for runs and two-threshold methods. The same is true, however,
for any extremal analysis, and as in general, no simple solution can be
proposed.

Future developments are still possible. Similar maximum likelihood models
could be built on truncating the exponential part at a separation M and con-
sidering every spacing below M as within-cluster time. This would obviously
require conditions similar to D(2)(un), which is the first of the hierarchy of
conditions D(k)(un) of Chernick et al. (1991), and which might be checked
by similar plots as D(2)(un). This extension could be regarded as a framework
comprising a large class of estimators, included the runs estimator that can be
derived as a maximum likelihood estimator from a penultimate approximation
to the likelihood (1), and the intervals estimator, which is a moment estimator.
Extensions to multivariate clustering can be imagined based on Nandagopalan
(1994).
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