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PAVLO BLAVATSKYY

ERROR PROPAGATION IN THE ELICITATION
OF UTILITY AND PROBABILITY WEIGHTING

FUNCTIONS

ABSTRACT. Elicitation methods in decision-making under risk allow us
to infer the utilities of outcomes as well as the probability weights from
the observed preferences of an individual. An optimally efficient elicita-
tion method is proposed, which takes the inevitable distortion of prefer-
ences by random errors into account and minimizes the effect of such
errors on the inferred utility and probability weighting functions. Under
mild assumptions, the optimally efficient method for eliciting utilities and
probability weights is the following three-stage procedure. First, a prob-
ability is elicited whose subjective weight is one half. Second, the utility
function is elicited through the midpoint chaining certainty equivalent
method using the probability elicited at the first stage. Finally, the prob-
ability weighting function is elicited through the probability equivalent
method.

KEY WORDS: cumulative prospect theory, decision theory, elicitation,
von Neumann–Morgenstern utility, probability weighting, rank-dependent
expected utility.

JEL CLASSIFICATION: C91, D81.

1. INTRODUCTION

Classical elicitation methods such as certainty equivalent
and probability equivalent methods (Farquhar, 1984) allow
us to infer a subjective utility function u: R → R in choice
under risk. However, these methods are systematically biased
when individuals weight probabilities in a non-linear manner
(Karmarkar, 1978; McCord and de Neufville, 1986; von
Winterfeldt and Edwards, 1986). Prominent descriptive deci-
sion theories such as rank-dependent expected utility theory
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(RDEU; Quiggin, 1982) and cumulative prospect theory (CPT;
Tversky and Kahneman, 1992) model the non-linear transfor-
mation of probabilities through a probability weighting func-
tion w: [0,1] → [0,1]. Wakker and Deneffe (1996) designed
the tradeoff method of utility elicitation that is not vulnera-
ble to non-linear probability weighting. Based on the tradeoff
method, Abdellaoui (2000) and Bleichrodt and Pinto (2000)
constructed robust methods for eliciting both utility and prob-
ability weighting functions.

This paper describes an optimally efficient elicitation proce-
dure that minimizes the propagation of random errors. Exist-
ing elicitation methods do not address the role of random
errors in decision-making under risk. Extensive experimental
evidence of randomness in repeated choice under risk is pre-
sented, for example, in Camerer (1989), Starmer and Sugden
(1989) and Wu (1994). Smith and Walker (1993) and Harless
and Camerer (1994, p. 1265) found that real incentives reduce
this randomness. However, elicitation methods often use hypo-
thetical incentives either because significant losses are possi-
ble (Fennema and van Assen, 1998; Etchart-Vincent, 2004) or
significant gains are required to obtain a manifestable curva-
ture of the utility function (Abdellaoui, 2000; Bleichrodt and
Pinto, 2000). Thus, the problem of error propagation is of
direct relevance to the design of elicitation methods.

In this paper, random errors are assumed to be indepen-
dently distributed and additive on the RDEU-scale, similar as
in Hey and Orme (1994, p. 1301) and Gonzalez and Wu (1999).
With this structure of an error term, an elicitation procedure is
called optimally efficient if it minimizes the expected sum of
squared errors of the inferred utilities (weights) of elicited out-
comes (probabilities). The appropriate technique for extracting
subjective indifference relation between two lotteries is assumed
to be available (see Section 5.2 in Farquhar, 1984, for a review).
Elicited indifference relations are interrelated to impose suffi-
cient restrictions on the utility and probability weighting func-
tions. This enables a researcher to infer the values of the latter.

Notation (x, p, y) denotes a two-outcome lottery that yields
an outcome x with probability p and an outcome y < x
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otherwise. An individual is indifferent between lotteries L1

and L2 if and only if utility of L1 is equal to utility of L2 plus
a random error. According to both RDEU and CPT (if x and
y are gains), utility of lottery (x, p, y) is equal to w(p) ·u(x)+
(1−w(p)) ·u(y).

The remainder of this paper is organized as follows. Section
2 briefly summarizes existing elicitation methods that are fre-
quently sited in the paper. Readers familiar with the literature can
skip Section 2 without the loss of continuity. Section 3 presents
the optimally efficient three-stage elicitation procedure. Section 4
concludes.

2. EXISTING ELICITATION METHODS

Certainty equivalent (CE) method is used to elicit an out-
come CE(L), which is called a certainty equivalent, such that
an individual is indifferent between CE(L) for certain and
a lottery L (Farquhar, 1984). Under chaining CE method, a
researcher picks several probabilities pi and elicits first the cer-
tainty equivalents CE(Li) of lotteries Li(x, pi , y).1 According
to expected utility theory, the utility of CE(Li) is equal to pi

given normalization u(y)= 0 and u(x)= 1 (Keeney and Raiffa,
1976). Subsequently, the researcher elicits the certainty equiva-
lents of lotteries L1i(x,pi,CE(L1)),L2i(CE(L1),pi,CE(L2)), . . . ,

Lii(CE(Li),pi, y) and so forth (Farquhar, 1984). The midpoint
chaining is a special case of the chaining CE method, when only
one probability p1 =0.5 is used (Krzysztofowicz and Duckstein,
1980).

Probability equivalent (PE) method is used to elicit a prob-
ability pi such that an individual is indifferent between lottery
Li(x,pi, y) and an outcome zi ∈ [y, x] for certain. Under expected
utility theory, the utility of zi is equal to pi given normalization
u(y)=0 and u(x)=1 (Farquhar, 1984). PE method avoids chain-
ing of responses but the results are biased when probabilities are
weighted non-linearly. Hershey and Schoemaker (1985) provide
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experimental evidence of systematic discrepancies between utility
functions elicited through CE and PE methods.

The tradeoff method (TO) is used to elicit a sequence
of outcomes x1, . . . , xn, which is called a standard outcome
sequence, such that an individual is indifferent between lot-
teries (xi−1, p,R) and (xi, p, r) (Wakker and Deneffe, 1996).
The reference outcomes 0 ≤ r < R < x0 or x0 < R < r ≤ 0 and
the probability p are free parameters chosen by the researcher.
According to expected utility theory, RDEU and CPT, the
utility of xi is just i/n when u(x0) = 0 and u(xn) = 1 are nor-
malized by assumption.2 Thus, the elements of the standard
outcome sequence are equally spaced in terms of the subjec-
tive utility. The results of TO method are not biased when the
probabilities are weighted non-linearly or even when the prob-
abilities are unknown.

The approach of Abdellaoui (2000) is used to elicit a prob-
ability weighting function through the PE method using the
standard outcome sequence x1, . . . , xn obtained from the TO
method as an input. A researcher elicits a sequence of prob-
abilities p1, . . . , pn−1, which is called a standard sequence of
probabilities, such that an individual is indifferent between lot-
tery (xn,pi, x0) and an outcome xi for certain. RDEU and
CPT imply w(pi) = i/n even without normalization
u(x0)=0, u(xn)=1. In contrast, expected utility theory implies
that probability pi is uniquely determined as pi = i/n and,
thus, its elicitation is nothing but a consistency check.

Abdellaoui et al. (2004) propose a robust two-step proce-
dure for eliciting an individual’s utility function. First, they
use the approach of Abdellaoui (2000) with n = 3 to elicit
a probability p whose subjective weight is one half. Second,
they elicit a subjective utility function by means of midpoint
chaining CE method with the elicited probability p=w−1(0.5)

being used instead of the probability p1 =0.5.
Bleichrodt and Pinto (2000) build upon the TO method

and propose to elicit a probability weighting function by
using a parametric fitting of a piecewise linear utility func-
tion. Gonzalez and Wu (1999) elicit utility and probability
weighting functions simultaneously using the alternating least
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squares approach. Ghirardato et al. (2003) propose to elicit
the utility function using the comparison of compound lotter-
ies.

3. THREE-STAGE PROCEDURE

A three-stage (3S) procedure is proposed to infer an individ-
ual’s utility of n outcomes and probability weights of n prob-
abilities. At the first stage, the approach of Abdellaoui (2000)
is used to elicit the weights of k∈{1, . . . , n−1} non-degenerate
probabilities. If k=n−1 the 3S procedure consists of only one
stage and coincides with the approach of Abdellaoui (2000).
If k =1 the first stage of 3S procedure coincides with the first
stage of the method of Abdellaoui et al. (2004).

At the second stage, subjective utility function is elicited
through the chaining CE method using the k probabilities that
were elicited at the first stage. Since the probability weights
of these probabilities are already known, we can control the
non-linear weighting of probabilities and the chaining CE
method is no longer biased under RDEU. After m itera-
tions of the chaining CE method the utility function is elic-
ited for (k +1)m+1 outcomes. For simplicity, I assume that
n= (k +1)m+1 so that exactly m iterations of the chaining CE
method are required to elicit the desired number of outcomes.
When k =1 the first and the second stage of the 3S procedure
coincide with the method of Abdellaoui et al. (2004).

At the third stage, the probability weighting function is
elicited by means of the PE method using the outcomes elic-
ited at the second stage as an input. Since TO, CE and
PE methods are non-parametric elicitation methods, the pro-
posed 3S procedure, which is a combination of TO, CE and
PE methods, is also a non-parametric elicitation procedure.
The 3S procedure can be further extended in the following
way. Consider the situation when n � (k + 1)m+1. After the
third stage, the second stage can be repeated again using a
richer set of probabilities whose subjective weight has been
just elicited at the third stage. Thus, the second and the third
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stages are repeated in a cycle until a desired number n of
outcomes/probabilities is elicited. This extension, however, is
beyond the scope of this paper.

The choice parameter for a researcher is a number k of
non-degenerate probabilities whose subjective weights are elic-
ited at the first stage. For a fixed number n of outcomes
(probabilities) whose subjective utility (weight) is to be elicited
the number of iterations m is uniquely determined from the
choice of k, e.g., m= logk+1n−1. In Sections 3.1–3.3 the prop-
agation of random errors is analyzed for every stage of the
proposed 3S procedure. Section 3.4 demonstrates the choice of
the optimal number k to minimize the propagation of error
across all stages of the elicitation procedure.

3.1. Error propagation at stage one

At the first stage, the approach of Abdellaoui (2000) is
used for eliciting k ∈{1, . . . , n−1} non-degenerate probabilities
with known subjective weights. A standard outcome sequence
x1, . . . , xk+1 is elicited initially through the TO method. An
individual is asked k + 1 times to reveal an outcome xi that
makes him or her indifferent between the lotteries (xi−1, p,R)
and (xi, p, r) where the reference outcomes 0 ≤ r <R <x0 and
a probability p are fixed. Assuming an independently distrib-
uted error term εTO ∼ (0, σ 2

1 ) additive on the RDEU-utility
scale, these indifference relations can be represented by a sys-
tem of equations

w(p)u(xi−1)+(1−w(p))u(R)=w(p)u(xi)+(1−w(p))u(r)

+εTO
i , i ∈{1,. . ., k +1}. (1)

After normalization u(x0)= 0, u(xk+1)= 1 the recursive system
(1) becomes

u(xi)= i

k +1
+ 1

w(p)

⎛
⎝

i∑
j=1

εTO
j − i

k +1

k+1∑
j=1

εTO
j

⎞
⎠ ,

i ∈{1, . . . , k +1}. (2)
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Utility of xi has expected value E[u(xi)] = i/(k + 1) and var-
iance i(1 − i/(k + 1))σ 2

1 /w2(p). Interestingly, utility of the
median member of the standard outcome sequence u(x(k+1)/2)

has the highest variance 0.25 · (k + 1)σ 2
1 /w2(p) and utility of

the first and the last member – the lowest variance. In other
words, random errors distort more severely the inferred utility
of the medium members of the standard outcome sequence.
Wakker and Deneffe (1996, p. 1148) conjectured that error
propagation increases for the later members of the standard
outcome sequence.

Probabilities p1, . . . , pk are elicited thought the PE method.
An individual is asked k times to reveal a probability pi

that makes him or her exactly indifferent between lottery
(xk+1, pi, x0) and outcome xi for certain. With an indepen-
dently distributed error term εPE ∼ (0, σ 2

2 ) additive on the
RDEU-utility scale, these indifference relations can be repre-
sented by equations

w(pi)=u(xi)+ εPE
i = i

k +1
+ 1

w(p)

⎛
⎝

i∑
j=1

εTO
j − i

k +1

k+1∑
j=1

εTO
j

⎞
⎠

+εPE
i , i ∈{1, . . . , k}. (3)

In general, random errors in the PE method can have a
different variance than those in the TO method because two
methods employ different types of elicitation questions. Thus,
σ2 >σ1 when the questions in the PE method are more cogni-
tively demanding than in the TO method and σ2 >σ1 if con-
verse is true. It follows from (3) that the subjective weight
of probability pi has the expected value E[w(pi)] = i/(k + 1)

and variance i(1− i/(k+1))σ 2
1 /w2(p)+σ 2

2 . Notice that random
errors do not propagate in the PE method – the error εPE

i

affects only the inferred weight of probability pi and it does
not affect the inferred weights of the other probabilities.

3.2. Error propagation at stage two

The standard outcome sequence x1, . . . , xk+1 is already elicited
through the TO method at stage one. At the second stage
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Figure 1. Chaining CE method with multiple probabilities.

a more refined grid of outcomes is elicited by means of the
chaining CE method. An individual is asked to reveal the
certainty equivalents of lotteries (xi, pj , xi−1), i ∈ {1, . . . , k + 1},
where probabilities pj , j ∈ {1, . . . , k}, belong to the standard
sequence of probabilities elicited at the end of stage one. These
newly elicited certainty equivalents together with the standard
outcome sequence can be renumbered in the ascending order as
a sequence x1

1 , . . . , x1
(k+1)2 . The individual is then asked to reveal

the certainty equivalents of lotteries (x1
i , pj , x

1
i−1), i ∈{1, . . . , (k+

1)2}, j ∈ {1, . . . , k}. This procedure is iterated m times until a
sequence of outcomes xm

1 , . . . , xm
(k+1)m+1 (renumbered in ascend-

ing order) is elicited, e.g., Figure 1.
Each iteration µ∈ [1,m] of the chaining CE method is used

to elicit indifference relations

x
µ

i ∼ (x
µ−1
j+1 , pi−j (k+1), x

µ−1
j ), j = int[i/(k +1)],

i ∈{1, . . . , (k +1)µ+1
} (4)

with a convention p0 = 0 and x0
j = xj for every j ∈ {1, . . . , k}.

Given an independently distributed error term εCE ∼ (0, σ 2
3 )

additive on the RDEU-scale, indifference relations (4) can be
rewritten as

u(x
µ

i )=u(x
µ−1
j )+w(pi−j (k+1))× (u(x

µ−1
j+1 )−u(x

µ−1
j ))+ εCE

µ,i ,

j = int[i/(k +1)], i ∈{1, . . . , (k +1)µ+1} . (5)

The recursive system (5) shows that random errors propa-
gate in a non-linear manner. The probability weights elicited
at the first stage (affected by random errors) are multiplied
by the utilities of outcomes elicited at previous iterations of
the chaining CE method (also affected by the same random
errors). Due to non-linear error propagation, elicited out-
comes are not expected to be equally spaced in terms of
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utility. Thus, the knowledge (or estimate) of the variances
σ 2

1 , σ 2
2 and σ 2

3 is required for unbiased elicitation. To simplify
formal analysis below, I assume a linear propagation of errors
at stage two. Specifically, recursive system (5) is replaced with

u
(
x

µ

i

)=u
(
x

µ−1
j

)
+w

(
pi−j (k+1)

)
(E[(u(x

µ−1
j+1 )]

−E[u(x
µ−1
j )])εCE

µ,i , j = int[i/(k +1)],

i ∈{1, . . . , (k +1)µ+1}. (6)

PROPOSITION 1. The utility of outcome xm
i has a (mathe-

matical) expectation

E[u(xm
i )]= i/(k +1)m+1 for all i ∈{1, . . . , (k +1)m+1}.

All proofs are given in the appendix.
According to Proposition 1, the outcomes elicited at the

first and the second stages are expected to be equally spaced
in terms of subjective utility. Elicitation of the utility function
is completed at the second stage. Stage three is used for elic-
iting a refined probability weighting function.

3.3. Error propagation at stage three

The standard sequence of probabilities p1, . . . , pk is already
elicited at the end of stage one. The PE method is used at
stage three to elicit a more refined grid of probabilities. Spe-
cifically, for every i ∈{1, . . . , (k +1)m+1}, an individual is asked
to reveal a probability qi that makes him or her indiffer-
ent between lottery (xk+1, qi, x0) and outcome xm

i for certain.
Given an independently distributed error term εPE ∼ (0, σ 2

2 )

additive on the RDEU-scale, the indifference relations elicited
at stage three can be represented by a system of equations

w(qi)=u(xm
i )+ εPE

m,i, ∀i ∈{1, . . . , (k +1)m+1}. (7)

Elicited probabilities are expected to be equally spaced in terms
of subjective weight because E[w(qi)] =E[u(xm

i )] = i/(k + 1)m+1

where the latter equality follows from Proposition 1. The system
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of Equations (7) implies that random errors do not propagate
at stage three – an error εPE

m,i affects only the inferred weight of
probability qi but not the inferred weights of the other proba-
bilities.

3.4. Optimally efficient elicitation procedure

The optimally efficient 3S procedure for eliciting utility func-
tion is designed first. By definition, the optimally efficient
elicitation procedure aims to minimize the expected sum of
squared errors. Thus, we search for a number k ∈ {1, . . . , n −
1} that minimizes the expected sum of squared errors of the
inferred utilities of n elicited outcomes.

PROPOSITION 2. The inferred utilities of n = (k + 1)m+1 out-
comes elicited through the 3S procedure described above have
the expected sum of squared errors (8) if k �=1 and (9) if k =1.

S=
[
k +1

6

(
n− 1

n

)
+ (k +1)2

2(k2 +k −1)

(
k3(klogk+1n−1 −1)

(k −1)2

+n−k −1
nk

)
− (logk+1n−1)(k +1)2

2(k −1)

]
σ 2

1

w2(p)

+
[

logk+1 n−1− n−k −1
nk

]
σ 2

2 + (logk+1 n−1)n
k

k +1
σ 2

3 ,

(8)

S|k=1 =
[
n

3
− 13

3n
+ (log2n)2 −3log2n+4

]
σ 2

1

w2(p)

+
[

log2n−2+ 2
n

]
σ 2

2 + (log2 n−1)
n

2
σ 2

3 . (9)

Consider a situation when the TO elicitation questions are
cognitively undemanding and the indifference relations elicited
through the TO questions are not distorted by random errors i.e.
σ 2

1 = 0. In this case, the right-hand side (RHS) of Equation (8)
decreases in k and it is optimal to set k to its maximum k =n−1.
Thus, the optimal elicitation procedure is simply the TO method.
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Another special case is when the PE and the CE elicita-
tion questions are cognitively undemanding and the indiffer-
ence relations elicited through the PE and CE methods are
not affected by random errors, i.e., σ 2

2 = σ 2
3 = 0. In this case,

the RHS of Equation (8) increases in k and it is optimal to
set k to its minimum k = 1. Thus, the optimal elicitation pro-
cedure is the method of Abdellaoui et al. (2004). More gen-
eral result is obtained in Proposition 3.

PROPOSITION 3. If random errors are most distorting in the
TO questions and least distorting—in the CE questions, i.e.,
σ 2

1 ≥ σ 2
2 ≥ σ 2

3 ; there exists a number n∗ such that the optimally
efficient procedure for eliciting the utility function of n≥n∗ out-
comes is the 3S procedure with k=1 (the method of Abdellaoui
et al., 2004).

Existing experimental studies have not yet addressed the
issue of error measurement in choice under risk. However,
there is some indirect evidence that the distorting effect of
random errors is stronger in the TO elicitation questions com-
pared to the PE and CE questions and in the PE questions
compared to the CE questions. Wakker and Deneffe (1996)
report that untrained individuals find the TO elicitation ques-
tions harder to understand compared to the PE and CE elic-
itation questions. Ronen (1973) and Karmarkar (1978) report
that untrained individuals find the PE elicitation questions
more difficult than the CE questions. These findings support
our assumption that σ 2

1 ≥ σ 2
2 ≥ σ 2

3 . Intuitively, the TO ques-
tions may appear more difficult and hence – more vulnerable
to errors because they do not involve degenerate lotteries and
the PE questions – because they require a probability judg-
ment, which is a rare task in real life.

The threshold n∗ from Proposition 3 decreases in σ 2
1 and

increases in σ 2
2 , σ 2

3 and w(p) (p is the probability used in the
TO method at the first stage of the 3S procedure). Thus, if the
3S procedure with k =1 is optimally efficient for eliciting n≥n∗

outcomes when σ 2
1 =σ 2

2 =σ 2
3 , then it remains optimally efficient

when σ 2
1 ≥σ 2

2 ≥σ 2
3 . When σ 2

1 =σ 2
2 =σ 2

3 , i.e., the distorting effect
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of random errors is the same in TO, PE and CE elicitation
questions, a (conservative) value for the threshold n∗ is n∗ =11
if w(p)≤1/3, n∗ =19 if w(p)≤1/2 and n∗ =64 if w(p)≤2/3.

Existing experimental studies employ the TO method to elicit
a standard outcome sequence with n≤6 outcomes. Wakker and
Deneffe (1996) and Fennema and van Assen (1998) use n= 4.
Etchart-Vincent (2004) uses n=5. Bleichrodt and Pinto (2000)
and Abdellaoui (2000) use n=6. Von Winterfeldt and Edwards
(1986, p. 254) intuitively recommend to use 3≤n≤6. The only
experimental study that employs the 3S procedure with k = 1,
Abdellaoui et al. (2004), elicits a subjective utility of n = 11
losses and n=8 gains. Thus, current experimental practice and
intuitive recommendations in the literature are consistent with
the optimally efficient elicitation procedure formally derived in
Proposition 3.

The optimally efficient 3S procedure for eliciting probability
weighting function is the same as for utility function. Equations
(3) and (7) imply that the expected sum of squared errors of the
inferred weights of n probabilities elicited through the 3S pro-
cedure is equal to the expected sum of squared errors (8) and
(9) plus a constant nσ 2

2 .

4. CONCLUSION

Propagation of random errors constitutes a fundamental chal-
lenge for elicitation methods in choice under risk. Although this
problem was recognized since long, the existing literature pro-
vides only informal arguments (Wakker and Deneffe, 1996) and
intuitive recommendations (von Winterfeldt and Edwards, 1986)
on how to minimize the propagation of random errors. Partially
this is due to the lack of consensus on the structure of stochastic
utility. Little is known how random errors enter into an individ-
ual’s decisions. As a starting point for a formal argument, this
paper assumes a specific error term—independently distributed
and additive on the RDEU-scale–and derives an optimally effi-
cient elicitation procedure that minimizes the expected sum of
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squared errors. A natural extension of this paper is to study the
robustness of its results to other structures of random error.

Under mild assumptions, the optimally efficient method
for eliciting subjective utilities (weights) of many outcomes
(probabilities) is the following three-stage procedure. First, a
probability, whose subjective weight is one half, is elicited
through the approach of Abdellaoui (2000). Second, the util-
ity function is elicited through the midpoint chaining CE
method using the probability elicited at the first stage as
an input. Third, the probability weighting function is elic-
ited through the PE method using the outcomes elicited at
the second stage as an input. This elicitation procedure is
non-parametric (no assumption about the functional form of
utility and probability weighting functions is made) and robust
(the inferred subjective utility function is independent from
the inferred subjective probability weighting function). The
first two steps of this procedure are used by Abdellaoui et al.
(2004) for the experimental elicitation of the utility function.
Thus, this paper can be regarded as a theoretical complement
of Abdellaoui et al. (2004) providing interesting insights on
the optimal efficiency of their elicitation method.
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APPENDIX

Proof of Proposition 1. For convenient notation, let ξi =
1

w(p)

(∑i
j=1 εTO

j − i
k+1

∑k+1
j=1 εTO

j

)
denote an error distorting the

inferred subjective utility (2) of an outcome xi, i ∈{1, . . . , k+1}.
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In Section 3.1 we already established that ξi∼
(
0,

σ 2
1

w2(p)
i
(
1− i

k+1

))
.

Using the definition of ξi we can rewrite (2) as

u(xi)= i/(k +1)+ ξi, i ∈{1, . . . , k +1}. (A1)

Additionally, let amam−1 · · ·a0 denote a natural number writ-
ten in a number system with a base value k + 1. Obviously,
every digit ai ∈ {0, . . . , k} for any i ∈ {0, . . . ,m}. The conver-
sion of number amam−1 · · ·a0 into a decimal number system is
am(k +1)m +am−1(k +1)m−1 +· · ·+a1(k +1)+a0.

LEMMA A.1. Utility of outcome xµ
aµaµ−1···a0

elicited during iter-
ation µ∈{1, . . . ,m} of the chaining CE method is given by

u
(
xµ

aµaµ−1···a0

)
= aµaµ−1 · · ·a0

(k +1)µ+1
+ ξaµ

+ ξaµ−1

k +1
+· · ·+ ξa0

(k +1)µ

+
εPE
aµ−1

k +1
+· · ·+ εPE

a0

(k +1)µ
+ εCE

1,aµaµ−1
+· · ·

+εCE
µ,aµaµ−1···a0

. (A2)

Proof by mathematical induction. When µ=1 the system of
equations (6) becomes

u
(
x1

a1a0

)=u
(
xa1

)+w
(
pa0

) (
E
[
u
(
xa1+1

)]−E
[
u
(
xa1

)])+ εCE
1,a1a0

,

∀a1, a0 ∈{0, . . . , k}. (A3)

Equation (A1) implies that E
u(xa+1)� − E
u(xa1)� = 1/(k + 1)

for any a1 ∈{0, . . . , k}. The weight w(pa0) is equal to a0/(k+1)

+ ξa0 + εPE
a0

due to Equation (3). Therefore, Equation (A3)
becomes

u
(
x1

a1a0

)= a1a0

(k +1)2 + ξa1 + ξa0

k +1
+ εPE

a0

k +1
+ εCE

1,a1a0
,

∀a1, a0 ∈{0, . . . , k}. (A4)

Thus, Lemma A1 holds if µ= 1. Let us assume that Lemma
A1 holds also for any µ∈{1, . . . ,m−1} and let us prove that
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it holds for µ = m as well. If µ = m the system of Equations
(6) becomes

u
(
xm

am···a0

)=u
(
xm−1

am···a1

)+w
(
pa0

) (
E
[
u
(
xm−1

am···a1+1

)]

−E
[
u
(
xm−1

am···a1

)])+ εCE
m,am···a0

. (A5)

Lemma A1 is assumed to hold for µ = m − 1. Hence,
E
[
u
(
xm−1

am···a1+1

)]−E
[
u
(
xm−1

am···a1

)]=1/(k +1)m and

u
(
xm−1

am···a1

)=am · · ·a1

(k +1)m + ξam
+ ξam−1

k +1
+· · ·+ ξa1

(k +1)m−1

+ εPE
am−1

k +1
+· · ·+ εPE

a1

(k +1)m−1 + εCE
1,amam−1

+· · ·+ εCE
m−1,am···a1

.

Plugging these results into Equation (A5) yields

u
(
xm

am···a0

)= am · · ·a0

(k +1)m+1 + ξam
+ ξam−1

k +1
+· · ·+ ξa0

(k +1)m

+ εPE
am−1

k +1
+· · ·+ εPE

a0

(k +1)m + εCE
1,amam−1

+· · ·+ εCE
m,am···a0

.

(A6)

Notice that (A6) is nothing but (A2) when µ = m. Thus,
Lemma Al holds also for, µ=m. Taking mathematical expec-
tation from (A6) yields E

[
u
(
xm

am···a0

)]=amam−1 · · ·a0/ (k +1)m+1.

Proof of Proposition 2. Proposition 1 implies that
E
⌊
u
(
xµ

aµaµ−1···a0

)⌋
=aµaµ−1 · · ·a0/ (k +1)m+1. Thus, inferred util-

ities of n= (k +1)m+1 outcomes elicited through the 3S proce-
dure have expected sum of squared errors

S =E

⎡
⎣

m∑
µ=0

k∑
aµ=0

· · ·
k∑

a1=0

k∑
a0=1

(
u
(
xµ

aµaµ−1···a0

)
− aµaµ−1 · · ·a0

(k +1)m+1

)2
⎤
⎦ .

(A7)
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Utility u
(
xµ

aµaµ−1···a0

)
is determined by (A2) in Lemma Al.

Plugging (A2) into (A7) yields

S =E

⎡
⎣

m∑
µ=0

k∑
aµ=0

· · ·
k∑

a1=0

k∑
a0=1

(
ξaµ

+ ξaµ−1

k +1
+· · ·+ ξa0

(k +1)µ

+
εPE
aµ−1

k +1
+· · ·+ εPE

a0

(k +1)µ + εCE
1,aµaµ−1

+· · ·+ εCE
µ,aµ−1···a0

)2
⎤
⎦ .

(A8)

Since random errors are independently distributed we can
rewrite the last equation as (A9).

S =
m∑

µ=0

k∑
aµ=0

· · ·
k∑

a1=0

k∑
a0=1

⎛
⎝E

[
ξ2
aµ

]
+
[
ξ2
aµ−1

]

(k +1)2
+· · ·+

E
[
ξ2
a0

]

(k +1)2µ

⎞
⎠

+
m∑

µ=1

k∑
aµ=0

· · ·
k∑

a1=0

k∑
a0=1

(
2E

[
ξaµξaµ−1

]

(k +1)
+· · ·+ 2E

[
ξa1ξa0

]

(k +1)µ(µ−1)

)

+
m∑

µ=1

k∑
aµ=0

· · ·
k∑

a1=0

k∑
a0=1

⎛
⎝E

[
εPE2

aµ−1

]

(k +1)2
+· · ·+

E
[
εPE2

a0

]

(k +1)2µ

⎞
⎠

+
m∑

µ=1

k∑
aµ=0

· · ·
k∑

a1=0

k∑
a0=1

(
E
[
εCE

1,aµaµ−1

2
]
+· · ·+E

[
εCE
µ,aµaµ−1···a0

2
])

.

(A9)

To proceed further we need to calculate the following sums:

(a)

m∑
µ=0

k∑
aµ=0

· · ·
k∑

a1=0

k∑
a0=1

⎛
⎝E

[
ξ 2
aµ

]
+

E
⌊
ξ 2
aµ−1

⌋

(k +1)2
+· · ·+ E

[
ξ 2
a0

]

(k +1)2µ

⎞
⎠

=
m∑

µ=0

(
µ−1∑
i=0

k(k +1)µ−1−2i + 1
(k +1)µ

)(
k∑

b=0

E
[
ξ 2
b

])

=
m∑

µ=0

(
(k +1)µ+1

(k +2)
+ 1

(k +2)(k +1)µ

)
k(k +2)

6
σ 2

1

w2(p)

= k +1
6

(
(k +1)m+1 − 1

(k +1)m+1

)
σ 2

1

w2(p)
= k +1

6

(
n− 1

n

)
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σ 2
1

w2(p)
×because

k∑
b=0

E
[
ξ 2
b

]=
k∑

b=0

σ 2
1

w2(p)
b ·
(

1− b

k +1

)

=
[
k(k +1)

2
− 2k3 +3k2 +k

6(k +1)

]
σ 2

1

w2(p)
= k(k +2)

6
σ 2

1

w2(p)
.

(b)

m∑
µ=1

k∑
aµ=0

· · ·
k∑

a1=0

k∑
a0=1

(
2E

⌊
ξaµ

ξaµ−1

⌋

k +1
+ 2E

⌊
ξaµ

ξaµ−2

⌋

(k +1)2
+· · ·+

2E
⌊
ξa1ξa0

⌋

(k +1)µ(µ−1)

)
=2

m∑
µ=1

µ−1∑
i=0

µ−i∑
j=1

ki

(k +1)j

(
k∑

b=0

k∑
c=1

E [ξbξc]

)

= k(k +1)2

2
σ 2

1

w2(p)

m∑
µ=1

µ−1∑
i=0

µ−i∑
j=1

ki

(k +1)j
= k(k +1)2

2
σ 2

1

w2(p)

m∑
µ=1

µ−1∑
i=0

ki−1
(

1− 1
(k +1)µ−i

)
= (k +1)2

2
σ 2

1

w2(p)
×

m∑
µ=1

(
kµ −1
k −1

− 1
(k +1)µ

kµ(k +1)µ −1
k(k +1)−1

)
=
[

(k +1)2

2
(
k2 +k −1

)

×
(

k3(km −1)

(k −1)2
+ 1

k

(
1− 1

(k +1)m

))
− m(k +1)2

2(k −1)

]
σ 2

1

w2(p)
,

where we used the fact that
∑k

b=0

∑k
c=1 E [ξbξc] = ∑k

b=0

∑k
c=1

E
(∑b

j=1 εTO
j − b

k+1

∑k+1
j=1 εTO

j

)(∑c
j=1 εTO

j − c
k+1

∑k+1
j=1 εTO

j

)
= σ 2

1
w2(p)∑k

b=0

∑k
c=1

(
min{b, c}− bc

k+1

)= k(k+1)2

4
σ 2

1
w2(p)

. While calculating sum
(b) we implicitly assumed that k �=1, i.e., the division by k −1
is possible. When k =1 we obtain

(b′)
m∑

µ=1

k∑
aµ=0

· · ·
k∑

a1=0

k∑
a0=1

(
2E

⌊
ξaµ

ξaµ−1

⌋

k +1
+· · ·+ 2E

⌊
ξa1ξa0

⌋

(k +1)µ(µ−1)

)

=2
σ 2

1

w2(p)

m∑
µ=1

µ−1∑
i=0

(
1− 1

2µ−i

)
=
(

m2 −m+2− 1
2m−1

)
σ 2

1

w2(p)
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(c)
m∑

µ=1

k∑
aµ=0

· · ·
k∑

a1=0

k∑
a0=1

⎛
⎝E

[
εPE2

aµ−1

]

(k +1)2
+· · ·+

E
[
εPE2

a0

]

(k +1)2µ

⎞
⎠

=
m∑

µ=1

µ∑
i=1

kσ 2
2

(k +1)i
=

m∑
µ=1

(
1− 1

(k +1)µ

)
σ 2

2 =
[
m− n−k −1

nk

]
σ 2

2

(d)

m∑
µ=1

k∑
aµ=0

· · ·
k∑

a1=0

k∑
a0=1

(
E
[
εCE

1,aµaµ−1

2
]
+· · ·+E

[
εCE
µ,aµaµ−1···a0

2
])

=m(k +1)mkσ 2
3 =mn

k

k +1
σ 2

3 .

Plugging sums (a)–(d) into (A9) and substituting for m = logk+1
n−1 yields immediately Equation (8). Plugging sums (a), (b′), (c),
(d) and k =1 into (A9) yields immediately Equation (9).

Proof of Proposition 3. The 3S procedure with k = 1 is
optimally efficient when �S = S

∣∣
k=2 − S

∣∣
k=1 > 0. The sums of

squared errors S
∣∣
k=2 and S

∣∣
k=1 are given by Equation (8) when

k=2 and Equation (9) correspondingly. Since σ 2
1 ≥σ 2

2 ≥σ 2
3 , the

difference �S =S
∣∣
k=2 −S

∣∣
k=1 has a lower bound (A10).

�S >

[
n

6
+ 149

60n
− 25

4
+3 log2 n−4.5 log3 n− (

log2 n
)2 + 18

5
2log3 n

]
1

w2(p)

−n

6
− 1

2n
+ 1

2
+
(

2n

3
+1

)
log3 n−

(n

2
+1

)
log2 n. (A10)

When n=3, the RHS of (A10) becomes negative if the weight
w(p) is greater than 0.135. Thus, the 3S procedure with
k = 1 is not necessarily efficient when n = 3. However, when
n → +∞, the RHS of (A10) becomes strictly positive. Since
the sum of squared errors S is a continuous function of n,
there exists a threshold n∗ ≥ 3 such that �S > 0 for every
n≥n∗.
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NOTES

1. Throughout this section index i goes from unity to some natural
number n≥1, i.e., i ∈{1, . . . , n}.

2. For simplicity, this paper considers only lotteries yielding gains (mon-
etary outcomes above a reference point, typically zero). Thus, the
predictions of rank-dependent expected utility theory and cumulative
prospect theory coincide. The extension of TO method to losses is
straightforward (Etchart-Vincent, 2004)
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