
MULTI-AUTHOR REVIEW

Homeostatic maintenance of T cells and natural killer cells

Onur Boyman • Carsten Krieg • Dirk Homann •

Jonathan Sprent

Received: 10 March 2012 / Revised: 13 March 2012 / Accepted: 13 March 2012 / Published online: 30 March 2012

� Springer Basel AG 2012

Abstract Homeostasis in the immune system encom-

passes the mechanisms governing maintenance of a

functional and diverse pool of lymphocytes, thus guaran-

teeing immunity to pathogens while remaining self-

tolerant. Antigen-naı̈ve T cells rely on survival signals

through contact with self-peptide-loaded major histocom-

patibility complex (MHC) molecules plus interleukin (IL)-7.

Conversely, antigen-experienced (memory) T cells are

typically MHC-independent and they survive and undergo

periodic homeostatic proliferation through contact with

both IL-7 and IL-15. Also, non-conventional cd T cells rely

on a mix of IL-7 and IL-15 for their homeostasis, whereas

natural killer cells are mainly dependent on contact with

IL-15. Homeostasis of CD4? T regulatory cells is different

in being chiefly regulated by contact with IL-2. Notably,

increased levels of these cytokines cause expansion of

responsive lymphocytes, such as found in lymphopenic

hosts or following cytokine injection, whereas reduced

cytokine levels cause a decline in cell numbers.
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Abbreviations

APC Antigen-presenting cell

Blimp-1 B lymphocyte-induced maturation protein 1

BTLA B and T lymphocyte attenuator

Foxo1 Forkhead box o1

Foxp3 Forkhead box p3

GABPa GA binding protein a
Gfi-1 Growth factor independence 1

IFN Interferon

IL Interleukin

Jak Janus kinase

KLF2 Kruppel-like factor 2

KLRG1 Killer cell lectin-like receptor G1

LCMV Lymphocytic choriomeningitis virus

LN Lymph node

LPS Lipopolysaccharide

MHC Major histocompatibility complex

MP Memory-phenotype

NK Natural killer

RAG Recombinase-activating gene

S1P1 Sphingosine 1 phosphate receptor 1

SOCS-1 Suppressor of cytokine signaling 1

STAT5 Signal transducer and activator of transcription 5

TCF-1 T cell factor 1

TCR T cell receptor
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TGF-b Transforming growth factor-b
TLR Toll-like receptor

Treg T regulatory cell

TSLP Thymic stromal lymphopoietin

cc Common c chain

Introduction

Throughout their lives, lymphocytes are probed for their

capacity to mount efficient responses upon contact with

antigen, while maintaining self-tolerance. For ab T cell

receptor (TCR)? T cells, this process starts at their pre-

cursor stage during thymic selection and continues in the

periphery in antigen-naı̈ve and antigen-experienced

(memory) T cells. Extrinsic factors, most notably common

c chain (cc) cytokines and basal TCR signals, control and

maintain a stable pool size of ab TCR? T cells from the

newborn stage up to old age. Such homeostasis also applies

to other lymphocyte subsets, including cd TCR? T cells

and natural killer (NK) cells. Below, we will provide a

brief overview on the generation and activation of typical

ab TCR? T cells (hereafter referred to as T cells), followed

by a systematic review of the factors governing homeo-

static survival, proliferation, and expansion of T cells and

other lymphocyte subsets.

T cells are scrutinized at a precursor stage in the thymus

for their capacity to receive TCR-mediated survival signals

(a process termed positive selection) through contact with

self-peptide-loaded major histocompatibility complex

(MHC) molecules on epithelial cells in the thymic cortex;

these stromal cells also produce the pro-survival cytokine

interleukin (IL)-7. Subsequently, negative selection deletes

T cells with high affinity for self-peptide/MHC molecules

on professional antigen-presenting cells (APCs) and epi-

thelial cells in the medulla [1]. Upon completion of these

steps, mature CD4? and CD8? thymocytes are released

into the periphery and join the pool of naı̈ve T cells. At this

stage, naı̈ve T cells rarely, if ever, undergo cell division but

continuously screen the surface of APCs in secondary

lymphoid organs for their cognate antigen. Upon encounter

with antigen on activated APCs, naı̈ve T cells become fully

stimulated and undergo massive proliferation and expan-

sion, thereby giving rise to effector T cells that are able to

kill target cells and release effector cytokines [2]. The

majority of effector T cells are characterized by high

expression of killer cell lectin-like receptor G1 (KLRG1),

and most of these cells are eliminated via apoptosis upon

clearance of the pathogen concerned, leaving a few anti-

gen-specific T cells characterized by high IL-7 receptor a
(CD127) surface expression to survive as memory T cells

[3]. Compared to their naı̈ve counterparts, memory T cells

have the ability to mount more rapid and enhanced immune

responses upon renewed contact with the same pathogen or

antigenic determinant [2].

Typical memory T cells are long-lived and migrate

between the secondary lymphoid organs via lymph and

blood. These so-called ‘‘central’’ memory T cells express

specific homing molecules, namely chemokine receptor

CCR7 and CD62L (L-selectin), which enable their migra-

tion to the T cell zones of lymph nodes (LNs) [4].

Conversely, expression of these homing molecules is very

low on another memory T cell subset found mainly in

peripheral tissues and blood, termed ‘‘effector’’ memory T

cells [4–6]. Both subsets are characterized by high surface

expression of the adhesion molecule CD44 (CD44high),

whereas naı̈ve T cells have a CD44low phenotype. It should

be noted that small numbers of polyclonal T cells with a

memory-phenotype (MP) are found in unimmunized ani-

mals; many of these MP cells are thought to arise through

contact with self-antigens [7]. Unless stated otherwise, the

discussion of memory and MP T cells below refers to

central rather than effector memory cells.

T cells

T cell receptor signals

Once T cells have exited the thymus, they are dependent on

the same pattern of survival signals they received during

their development in the thymus. In particular, survival of

antigen-naı̈ve T cells requires continued contact with self-

peptide/MHC molecules, MHC class II for CD4? T cells,

and MHC class I for CD8? T cells [8–12]. Notably, the

survival signals delivered via TCR contact with self-pep-

tide/MHC molecules are peptide specific, and there is

considerable competition among naı̈ve T cells of a given

antigen specificity for contact with appropriate self-pep-

tide/MHC molecules [13]. Significantly, this TCR-self-

peptide/MHC interaction does not induce naı̈ve T cells to

proliferate and attack self, but rather, in synergy with IL-7,

provides low-level signals that maintain cell survival in

interphase [14, 15]. Contact with these survival factors

occurs in secondary lymphoid organs, such as LNs, where

professional APCs and local stromal cells provide a rich

source of MHC molecules and IL-7, respectively [15–18].

In line with this model, numbers of naı̈ve T cells are sig-

nificantly reduced under conditions where homing to LNs

is hampered because of decreased levels of CD62L or

CCR7. Thus, antibody-mediated blocking of CD62L or

deficiency of the transcription factors Kruppel-like factor 2

(KLF2) or forkhead box o1 (Foxo1) leads to reduced levels

of CD62L, CCR7, and sphingosine 1 phosphate receptor 1

(S1P1), and is associated with a severe reduction in naı̈ve T

cell numbers [19–21].
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In contrast to naı̈ve T cells, memory T cell homeostasis

does not require TCR contact with MHC molecules

[22–25]. However, under certain circumstances, memory

T cells remain dependent on peptide/MHC molecules, for

example during chronic infections and autoreactive

responses against self-antigens [15, 26]. The observations

from acute and chronic viral infection models emphasize

that memory CD8? T cells of identical pathogen specificity

rely, depending on the pathophysiological context, on

distinct mechanisms to assure their maintenance. Thus,

memory CD8? T cells generated following acute infections

depend on a mix of particular cytokines (see below) for

their survival and homeostatic proliferation, whereas

memory CD8? T cells forming during chronic infections

require contact with cognate antigen/MHC molecules [15,

25, 26].

For CD4? T regulatory cells (Tregs), whether homeo-

stasis of these cells requires contact with self-peptide/MHC

molecules is controversial. In one study, mice expressing

MHC class II molecules selectively on thymic cortical

epithelial cells, but not in peripheral tissues, contained a

comparably normal pool size of Tregs, suggesting that

post-thymic Tregs do not require contact with self-peptide/

MHC molecules [27]. Conversely, a more recent study

using mice with abrogated TCR signaling capacity showed

decreased homeostatic proliferation of Tregs in vivo [28].

Cytokines sharing the common c chain receptor

The cc receptor (CD132) is a subunit of the cytokine

receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, all of

which play crucial roles during lymphocyte generation,

survival, and homeostasis. For all cc cytokines, selectivity

for individual cytokines is determined by their private

a chain [29]. Moreover, for IL-2 and IL-15, a shared

b subunit for the IL-2 and IL-15 receptor (CD122) is

involved in cytokine binding and signaling. Cytokine

binding and signaling through cc leads to the activation of

different signal transduction molecules, including signal

transducer and activator of transcription (STAT) 5A and

5B, Janus kinase (Jak) 1 and 3, and, in the case of pro-

survival signals to T cells, favorably shifts the balance

between anti-apoptotic (e.g., Bcl-2) and pro-apoptotic (e.g.,

Bim) molecules towards the former [29, 30]. Synthesis of

cc cytokines can occur in both immune and non-immune

cells. Thus, IL-2 is produced mainly by activated T cells,

predominantly CD4? T cells, in secondary lymphoid

organs and, to a lesser extent, also by NK cells, NK T cells,

and activated dendritic cells [31]. For IL-7, stromal cells in

primary and secondary lymphoid organs secrete high

amounts of IL-7 at a constant rate, followed by its pre-

sentation on extracellular matrix in these lymphoid as well

as non-lymphoid organs (e.g., skin, intestine, and liver)

[17, 32–34] (Fig. 1). Also, hepatocytes can produce rele-

vant amounts of IL-7, for example upon treatment of mice

with lipopolysaccharide (LPS) [33]. IL-15 is synthesized in

APCs upon triggering with Toll-like receptor (TLR) ago-

nists, such as poly(I:C) and LPS, leading to autocrine

stimulation of APCs via type I interferon (IFN-I) [35].

Alternatively, IL-15 can be produced following activation

of APCs with type II IFN, such as IFN-c derived either

from NK cells stimulated with IL-12 and IL-18, activated

Fig. 1 Regulation of the IL-7 receptor a chain CD127. IL-7 (light
purple dots) is usually produced at a constant rate by stromal cells

residing in the primary and secondary lymphoid organs. Subse-

quently, IL-7 accumulates on extracellular matrix and is presented to

lymphocytes, here a T cell, expressing the IL-7 receptor, composed of

the cc (light brown bar) and the IL-7 receptor a chain CD127 (purple
bar). Both these IL-7 receptor subunits contain cytoplasmic tails

interacting with signaling molecules, such as Jak 1 and 3. Signals

emerging from Jak 1 and 3 lead, via activation of STAT5A and 5B, to

the upregulation of anti-apoptotic proteins such as Bcl-2 and

downregulation of pro-apoptotic proteins such as Bim in mitochon-

dria (light blue oval), thus tipping the balance in favor of pro-survival

signals. Transcription of the Cd127 gene and thus upregulation of

CD127 is positively influenced by contact with cc cytokines, GABPa,

and Foxo1. Foxo1 enhances expression of KLF2 thus leading to

upregulation of the chemokine receptor CCR7, CD62L (L-selectin),

and S1P1. Conversely, under certain conditions, contact with pro-

survival cc cytokines may induce activation of Gfi-1 in vitro, which

either directly or via inhibition of GABPa may downregulate CD127.

Moreover, strong TCR stimulation (and proliferation) may also lead

to decreased CD127 expression, either directly or via activation of

Gfi-1. Foxo1 forkhead box o1, Gfi-1 growth factor independence 1,

Jak Janus kinase, KLF2 Kruppel-like factor 2, STAT5 signal

transducer and activator of transcription 5, TCR T cell receptor,

S1P1 sphingosine 1 phosphate receptor 1, cc common c chain
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NK T cells, or effector T cells [36]. Subsequently, APCs

synthesize IL-15 and transport it to their surface in asso-

ciation with IL-15Ra, where it is presented in trans to

IL-15-sensitive T and NK cells [37] (Fig. 2). As discussed

in detail in the following sections, IL-7 and IL-15 are

crucial for homeostatic survival and proliferation of

conventional T cells, whereas IL-2 signals are essential for

the homeostasis of Tregs [38, 39].

The major role of IL-2 in vivo appears to be in mediating

development and homeostasis of Tregs, thus maintaining

peripheral immune tolerance [39]. CD4? Tregs typically

express high levels of IL-2Ra (CD25) and the transcription

factor Foxp3, the latter being essential for Treg function

[40]. Optimal expression of Foxp3 and CD25 is dependent

on contact with IL-2 [40]. Moreover, in conjunction with

transforming growth factor (TGF)-b, IL-2 signals are also

crucial during Treg development in the thymus, as well as

for homeostatic proliferation and survival of Tregs in

peripheral LNs [39–43]. Thus, IL-2-/-, CD25-/-, and

CD122-/- mice, which all lack normal IL-2 signaling, show

a considerable reduction in Treg numbers, thereby leading to

systemic autoimmune disease in these mice [39–41]. Con-

versely, Treg numbers increase several-fold in lymphoid and

non-lymphoid organs of mice receiving injections of IL-2 in

the form of recombinant IL-2 mixed with a particular anti-

IL-2 monoclonal antibody (mAb); such IL-2/anti-IL-2 mAb

complexes focus IL-2 onto CD25? cells and expand these

cells [44, 45]. It should be noted that, although Tregs con-

sume IL-2 and express a high level of CD25 under steady-

state conditions, these cells do not produce IL-2 [39]. Thus,

it has been suggested that Tregs might exert some of their

suppressive function by consumption of IL-2 (and other pro-

survival cc cytokines) via their high surface density of CD25

[31, 46]. Notably, certain other immune cells as well as some

non-immune cells express CD25, albeit at much lower lev-

els, and blocking CD25 on these cells with antibody or the

use of CD25-/- mice also leads to high levels of IL-2,

thereby causing strong IL-2-mediated proliferation of MP

CD8? T cells [31, 47, 48]. In contrast to IL-2, administration

of IL-4 to normal mice led to a reduction of CD4? Foxp3?

Tregs [49].

With regard to conventional T cells, several recent

studies have revisited the role of IL-2 during priming of

naı̈ve T cells and shown that provision of IL-2 is important

for inducing optimal T cell responses [48]. Thus, IL-2

signals during priming of naı̈ve CD4? and CD8? T cells

optimize expansion of these cells and allow them to survive

as long-lived memory cells, in part due to IL-2-induced

high expression of CD127 on the cells [50, 51]. Moreover,

for CD8? T cells, it has been shown that contact with IL-2

during primary infection with the lymphocytic chorio-

meningitis virus (LCMV) allows antigen-specific memory

CD8? T cells to efficiently respond to secondary challenge

with the same virus [52, 53]. However, in addition to the

qualitative effects of receiving IL-2 signals during priming,

contact with IL-2 can have a quantitative effect on CD25

expression on effector T cells. Thus, effector T cells

showing prolonged expression of high CD25 generally

become short-lived effector cells, whereas the fraction of

Fig. 2 Regulation of the IL-15 receptor b chain CD122. IL-15 (light
green dots) is produced by APCs along with its a chain IL-15Ra.

Upon intracellular association of IL-15 with IL-15Ra, both are

transported onto the surface of the APC and presented in trans to

lymphocytes, here a CD8? T cell, expressing the dimeric IL-15

receptor, composed of the cc (light brown bar) and the IL-15 receptor

b chain CD122 (light green bar). (Notably, IL-15-responsive

lymphocytes may also express IL-15Ra on their own surface, which

is not shown here.) Both these IL-15 receptor subunits contain

cytoplasmic tails interacting with signaling molecules, such as Jak 1

and 3. Signals emerging from Jak 1 and 3 lead, via activation of

STAT5A and 5B, to the upregulation of anti-apoptotic proteins such

as Bcl-2 and downregulation of pro-apoptotic proteins such as Bim in

mitochondria (light blue oval), thus favoring pro-survival signals.

SOCS1 is able to directly inhibit the activity of Jak 1 and 3 and thus

negatively influence IL-15-mediated signaling. Transcription of the

Cd122 gene and thus upregulation of CD122 is positively influenced

by the combined action of eomesodermin and T-bet, or by TCR

stimulation (and proliferation). Conversely, Blimp-1 represses T-bet

thereby negatively influencing Cd122 transcription. Contact with

IL-12 or signals from APCs upon CpG binding to TLR9 on APCs (not

shown) leads to inhibition of eomesodermin, whereas these signals

activate T-bet. In contrast, contact with cc cytokines and TCF-1

activity positively influence eomesodermin, which favors the gener-

ation of long-lived memory CD8? T cells, whereas Blimp-1 together

with T-bet favors the generation short-lived effector CD8? T cells.

APC antigen-presenting cell, Blimp-1 B lymphocyte-induced matu-

ration protein 1, Jak Janus kinase, SOCS-1 suppressor of cytokine

signaling 1, STAT5 signal transducer and activator of transcription 5,

TCF-1 T cell factor 1, TCR T cell receptor, TLR Toll-like receptor,

cc common c chain
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cells that upregulate CD25 for a shorter period (thereby

receiving less stimulatory signals) tend to survive as long-

lived memory cells [51, 54]. At the memory stage,

administration of recombinant IL-2 to mice 2 months fol-

lowing LCMV infection has been shown to mediate

proliferation and expansion of virus-specific memory

CD8? T cells and also, to a lesser degree, CD4? T cells

[55, 56]. Vigorous expansion of LCMV-specific memory

CD8? T cells and also naturally occurring MP CD8? T

cells was observed upon adoptive transfer of these cells to

normal mice treated with IL-2/anti-IL-2 mAb complexes

[44, 57]. These observations are in line with studies on

antigen-specific CD8? T cells from mice lacking the co-

inhibitory molecule B and T lymphocyte attenuator

(BTLA, CD272). Thus, BTLA-/- CD8? T cells showed

enhanced primary and secondary antigen responses in vivo,

presumably reflecting that BTLA engagement inhibits IL-2

secretion by T cells [58, 59].

Besides its essential contribution to B cell development

(in mice), IL-7 in concert with tonic TCR signals has a

crucial role in maintaining the survival of naı̈ve CD4? and

CD8? T cells in interphase. IL-7 also contributes to the

survival and intermittent homeostatic proliferation of

memory T cells [56, 60, 61] (Fig. 3). Thus, it is not sur-

prising that virtually all T cells express high levels of

IL-7Ra (CD127). Downregulation of CD127 occurs fol-

lowing TCR engagement in vivo or after contact with IL-2,

IL-4, IL-6, IL-7, or IL-15 in vitro [62–64], although the

role of these cytokines in decreasing CD127 levels in vivo

is controversial [44, 65, 66]. Conversely, several tran-

scription factors including Foxo1 and GA binding protein a
(GABPa) have been implicated in the upregulation of

CD127 in T cells (Fig. 1), as well as PU.1 in pre-B cells

[20, 67, 68]. Moreover, the transcription factor growth

factor independence (Gfi)-1 has been reported to repress

CD127 in CD8? T cells by antagonizing GABPa following

TCR signals in vivo or contact with IL-2, IL-4, IL-6, IL-7,

or IL-15 in vitro [64, 69].

Interestingly, IL-7 signals also influence lymphoid tissue

inducer cells, which are crucial for the development of

secondary lymphoid organs, including LNs and Peyer’s

patches. Lymphoid tissue inducer cells are retinoic acid-

related orphan receptor (ROR)ct? CD4? CD3- cells in the

gut. It has been shown that these cells depend on IL-7

signals, and that increased IL-7 signals lead to the expan-

sion of these cells in vivo [70–72].

Unlike IL-7, responsiveness to IL-15 (and IL-2) is

controlled by expression of CD122, the IL-2/IL-15Rb
subunit. Expression of CD122 is regulated by many factors,

including upregulation following TCR stimulation. In

particular, the T-box transcription factor eomesodermin in

conjunction with T-bet ensures maintenance of high

CD122 levels on long-lived MP CD8? T cells [73, 74].

Eomesodermin is influenced positively by the transcription

factor T cell factor (TCF)-1 as well as by cc cytokine

signals, whereas inflammatory stimuli (such as IL-12 and

CpG) have been found to repress eomesodermin but induce

Fig. 3 Factors involved in the homeostasis of T cells and NK cells.

Lymphocyte subsets are depicted in different colors (blue conven-

tional CD4? and CD8? T cells; red Treg; light orange cd T cell; light
brown NK cell), along with their expression of CD25 (IL-2Ra orange
bar), CD122 (IL-15Rb light green bar), and CD127 (IL-7Ra purple
bar). Expression levels of these cytokine receptors on these lympho-

cyte subsets are indicated by the size of the bars as low (or

background), intermediate, or high. Homeostatic survival and expan-

sion of naı̈ve CD4? and CD8? T cells depends on IL-7 and MHC

molecules, whereas their homeostatic proliferation requires IL-7

signals. Other cytokines able to stimulate naı̈ve T cells, e.g., upon

injection into mice, are IFN-I (i.e., IFN-a/b), IFN-c, and TSLP, as

well as, for naı̈ve CD8? T cells, also IL-2, IL-15, IL-21, and IL-12.

Homeostasis of typical memory CD4? T cells is governed by IL-7

(and IL-15) signals, whereas contact with IL-15 and IL-7 is

responsible for homeostasis of typical memory CD8? T cells, which

can also be boosted by administration of other cc cytokines and IFN-I.

Tregs rely on IL-2 for homeostatic survival and proliferation, while

their homeostatic expansion is dependent on IL-7 and probably also

IL-2. For cd T cells, contact with mainly IL-15 and also IL-7 is

responsible for their maintenance, whereas IL-15 signals are crucial

for NK cell homeostasis. IFN-I type I interferon, MHC major

histocompatibility complex, MHC-I MHC class I, MHC-II MHC class

II, NK natural killer, Treg T regulatory cell, TSLP thymic stromal

lymphopoietin, cc common c chain
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T-bet expression; conversely, T-bet together with B lym-

phocyte-induced maturation protein (Blimp)-1 favors the

generation of short-lived effector CD8? T cells [51, 75–81]

(Fig. 2). CD122 expression is highest on both memory and

MP CD8? T cells, as well as on NK cells and certain other

lymphoid subsets [35, 57, 82]. Accordingly, IL-15 signals

are crucial for the homeostatic proliferation and survival of

each of these subsets (Fig. 3). Contact with IL-15 occurs in

several sites, including the bone marrow, spleen, and LNs,

as well as liver [82–87]. The importance of IL-15 is indi-

cated by the finding that animals deficient in IL-15

production (IL-15-/- mice) or IL-15Ra-mediated trans-

presentation of IL-15 (IL-15Ra-/- mice) show a consid-

erable reduction in numbers of resting MP CD8? T cells,

NK cells, NK T cells, and intraepithelial lymphocytes;

these findings reflect that IL-15 is required largely for

proliferation and expansion of these cells rather than for

their initial formation [83, 88–90]. Conversely, increasing

IL-15 signals in vivo, for example by injecting recombinant

IL-15 or the use of IL-15 transgenic animals, causes con-

siderable expansion of MP CD8? T cells and NK cells

[91–96].

IL-21, which is mainly produced by CD4? T cells, is

able to act on CD8? T cells, either by itself or in synergy

with IL-15 (see below), to enhance CD8? T cell responses

or counts [97–99]. Recently, IL-21 signals delivered to

CD8? T cells during viral infection were found to be

important for the formation of memory CD8? T cells

[100]. Moreover, for memory CD8? T cells forming during

chronic virus infections, IL-21 signals were able to prevent

rapid exhaustion of these cells, thus helping to control the

virus [101–103]. However, injection of IL-21 did not

accelerate homeostatic proliferation of memory CD4? and

CD8? T cells generated following acute virus infections

[56].

Notably, some cc cytokines can act in synergy with other

cc cytokines. Thus, in contrast to IL-15 alone, which has

little effect on naı̈ve CD8? T cells at physiological con-

centrations [35], a combination of exogenous IL-15 and

IL-21 is able to induce proliferation not only of memory

but also naı̈ve CD8? T cells in vitro and lead to increased

CD8? T cell-mediated anti-tumor activity in vivo [98].

Also, IL-15 signals can be supplemented or compensated

for by high concentrations of other cc cytokines, such as by

injecting IL-2, IL-4, or raising IL-7 levels in IL-7 trans-

genic mice. These situations lead to marked increases in

numbers of MP CD8? T cells, even in IL-15-/- mice.

Except in IL-7 transgenic mice, elevating the level of cc

cytokines induces rapid proliferation, as distinct from the

slow intermittent proliferation, characteristic of normal MP

T cell homeostasis [44, 104]. For IL-7, high levels of

thymic stromal lymphopoietin (TSLP), which does not

bind to cc but to CD127 and the TSLP receptor, can

compensate for a lack of IL-7 in T cell homeostasis in vivo

[105, 106].

Increased availability of cc cytokines, especially IL-7

and to a lesser degree IL-15, is found during lymphopenia,

which occurs naturally in the neonatal period of mice or

upon removal of T and B cells from adults, for example

following whole body irradiation [15, 107]. Lymphopenia

reduces consumption of IL-7 (and IL-15), thereby

increasing its availability to residual T cells and after

adoptive T cell transfer to lymphopenic hosts [15, 108]. As

a result, both conventional T cells and Tregs are subjected

to increased IL-7 (and IL-15) signaling, thereby causing the

cells to undergo acute ‘‘homeostatic’’ proliferation, also

termed homeostatic expansion or lymphopenia-induced

proliferation [109–112]. For naı̈ve T cells, homeostatic

expansion is dependent not only on IL-7 but also on TCR

contact with self-peptide/MHC complexes. Following

homeostatic expansion, naı̈ve T cells acquire the pheno-

typic and functional properties of memory T cells. As

mentioned earlier, most MP T cells may be self-reactive

and represent the progeny of naı̈ve T cells responding to

self-antigens during episodes of homeostatic expansion

[7, 109–111, 113, 114]. Interestingly, lack of suppressor of

cytokine signaling (SOCS)-1 renders naı̈ve CD8? T cells

hyperresponsive to IL-15 signals, thus causing self-peptide/

MHC molecule-dependent ‘‘homeostatic expansion’’ even

under non-lymphopenic conditions [115, 116]. Moreover,

under conditions where in vivo levels of either IL-2 or

IL-15 are elevated, naı̈ve T cells undergo a form of

homeostatic expansion that is MHC-dependent, but much

more rapid than the typical pattern of slow homeostatic

expansion driven by IL-7 [117]. In addition to cytokines

and self-peptide/MHC molecules, homeostatic expansion

of T cells can be influenced by other factors such as

expression of lymphocyte activation gene-3 (LAG-3,

CD223), BTLA (CD272), the transmembrane adaptor pro-

tein SIT, and heat-stable antigen (CD24). Thus,

homeostatic expansion of LAG-3-, BTLA-, or SIT-deficient

naı̈ve CD8? T cells is faster and more intense than for

normal cells [59, 118, 119]. Conversely, CD24-deficient T

cells show a considerable reduction in their tempo of pro-

liferation during homeostatic expansion [120]. For

homeostatic expansion of memory T cells, it should be

mentioned that these cells are heavily dependent on contact

with both IL-7 and IL-15, but do not require interaction

with peptide/MHC molecules [15].

Other cytokines

As mentioned above, IFNs, particularly IFN-a/b (IFN-I),

can lead to IL-15 production by APCs and thereby induce

proliferation of memory and MP CD8? T cells. In addition,

IFN-I is also able to act directly on naı̈ve antigen-specific
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CD8? and CD4? T cells and promote expansion and sur-

vival of these cells during an immune response, such as

following infection with LCMV [121, 122]. This direct

action of IFN-I provides a so-called ‘‘third signal’’ to the

responding T cells and can also be delivered by IL-12

[123]. In certain situations, however, IFN-I might exert a

negative role on CD8? T cells following viral infection,

particularly on memory CD8? T cells [124]. With regard to

other cytokines, IFN-c has been found to resemble IFN-I in

being able to act directly on naı̈ve CD8? and CD4? T cells

by improving antigen-mediated expansion of these cells

[125, 126] (Fig. 3).

Certain cytokines, notably TGF-b and IL-10, are pro-

duced by some Tregs and can have a marked inhibitory

action on T cells, although data from recent years have

shown that the contribution of these cytokines to the

quality of the immune response is highly variable, espe-

cially for CD8? T cells [127]. Thus, in certain situations,

IL-10 can boost expansion and memory formation of

antigen-specific CD8? T cells, for example during acute

bacterial infection [128, 129]. However, during prolonged

immune responses, IL-10 seems to be suppressive. Thus, in

chronic LCMV infection, it was found that blocking IL-10

production, either by genetic removal or injection of anti-

body, reversed the anergic phenotype of antigen-specific

CD8? and CD4? effector T cells, thereby leading to virus

clearance and the generation of functional antigen-specific

memory T cells [130, 131].

For TGF-b, this cytokine has a role in regulating the

survival and differentiation of Tregs and effector CD4? T

cells [39, 132]. Conversely, for CD8? T cells, TGF-b
signals might influence responsiveness of CD8? T cells to

homeostatic cues, such as TCR and cytokine signals [132].

Thus, T cell-targeted deletion of the TGF-b receptor II led

to the emergence of activated, effector-like CD62Llow

CD44high CD8? T cells undergoing rapid homeostatic

proliferation [132]. Based on these characteristics, TGF-b
receptor-deficient CD8? T cells display features of

memory T cells that continue to interact with their cognate

(self-)antigen. Interestingly, a recent study showed that

attenuation of TGF-b signaling in T cells resulted in a

reversal of the anergic phenotype of antigen-specific

memory CD8? T cells generated during a chronic viral

infection, thus leading to eradication of the virus [133].

cd T cells

T cells expressing cd TCRs are non-conventional T cells

that recognize non-peptide antigens, which are upregulated

upon tissue stress [134, 135]. Recognition of these stress-

induced molecules by cd T cells is achieved via binding of

their (semi-)invariant cd TCRs in addition to triggering of

other stimulatory molecules, such as TLRs. In addition to

being present in secondary lymphoid organs and the liver,

cd T cells reside in epithelial surfaces, such as the skin and

the mucosa of the respiratory, digestive, and reproductive

systems [134, 135]. Homeostasis of cd T cells has been

reported to require contact with cytokines, but not with

MHC molecules. Thus, cc cytokines, notably IL-7 and IL-15,

have been implicated in mediating these processes, as mice

deficient in these cytokines or their receptors lack (subsets)

of cd T cells [89, 136–139]. Accordingly, cd T cells

express high levels of CD127 and CD122 [140]. Similar

to ab TCR? T cells and NK cells, injection of cd T cells

to lymphopenic hosts also lacking cd T cells leads to

homeostatic expansion of transferred cd T cells, which is

driven by IL-15 and IL-7 [140, 141]. Thus, cd T cells

compete for the same cytokine signals as T cells, notably

CD8? ab TCR? T cells, and NK cells during homeostatic

expansion, while contact with MHC molecules does not

seem to be required for such expansion [141]. Interestingly,

an NK1.1? subset of cd T cells shows a slower rate of

homeostatic expansion, compared to CD8? cd T cells [142]

Natural killer cells

IL-2 is known as a potent NK cell stimulatory factor, both

in vitro and in vivo, and NK cells expand considerably

following treatment with CD122-specific IL-2/anti-IL-2

mAb complexes, similar to MP CD8? T cells [44, 57, 143].

However, IL-2 probably plays only a minor role in the

steady-state homeostasis of NK cells, in contrast to IL-15,

which is crucial for survival and homeostatic proliferation

of NK cells under normal conditions [144] (Fig. 3). As

mentioned above, IL-15-/- and IL-15Ra-/- mice both

lack NK cells, whereas increased IL-15 signals in vivo lead

to expansion of NK cells [89–95]. Conversely, the

peripheral pool size of NK cells in IL-2-/- IL-4-/- IL-

7-/- triple-deficient mice on a recombinase-activating

gene (RAG)-/- background is normal and functional, thus

showing that these cc cytokines are dispensable for NK cell

generation and survival [145]. Interestingly, IL-15-medi-

ated expansion of NK cells is antagonized by IL-21 in

vitro, whereas NK cells receiving IL-21 signals show

enhanced cytotoxicity and IFN-c production upon stimu-

lation with poly(I:C) in vivo or IL-15 in vitro [146].

Similar to T cells, NK cells undergo expansion upon

transfer to lymphopenic mice and, like MP T cells, acquire

characteristics of long-lived memory cells [147]. However,

such ‘‘homeostatic expansion’’ requires adoptive transfer of

NK cells to NK cell-deficient mice, notably RAG-/- cc
-/-

double knockout mice. Such RAG-/- cc
-/- mice probably

contain increased cytokine levels of both IL-7 and IL-15,

reflecting a lack of consumption of these cytokines [144,

148]. Moreover, in very young mice, i.e., at the age of

1 month or less, turnover of NK cells is considerably
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increased, suggesting that NK cells, like MP CD8? T cells,

undergo homeostatic expansion [149]. Such expansion of

NK cells probably depends largely on contact with IL-15,

with little or no role for IL-7 or other cc cytokines [145].

Interestingly, KLRG? NK cells show poor IL-15 responses

in terms of homeostatic proliferation and homeostatic

expansion [148]. Also, MHC class I molecules do not seem

to be involved in homeostatic NK cell expansion [149].

IL-12 and IL-18 are able to activate NK cells when

added in vitro. However, neither of these cytokines nor

IFNs have been implicated in the normal homeostasis of

NK cells in vivo. Likewise, there is no evidence that NK

cell homeostasis involves TGF-b or IL-10.

Concluding remarks and summary

Collectively, homeostasis of lymphocytes is governed by

cytokines, most notably cc cytokines, and, for some lym-

phocytes, also signals received from antigen-receptors

(Fig. 3). Thus, homeostatic survival and homeostatic

expansion of naı̈ve CD4? and CD8? T cells depends on

IL-7 and self-peptide/MHC molecules, whereas homeo-

static proliferation of these cells requires IL-7 (and IL-15)

signals. Other cytokines able to stimulate naı̈ve CD4?

T cells are IFNs and TSLP, whereas naı̈ve CD8? T cells

can also be stimulated with increased levels of IL-2, IL-15,

IL-21, and IL-12.

Homeostasis of typical (central) memory and MP CD4?

T cells is governed by IL-7 (and IL-15) signals, whereas

contact with IL-15 and IL-7 is responsible for homeostasis

of typical (central) memory and MP CD8? T cells. Ele-

vated levels of other cc cytokines, e.g., following injection

of recombinant cytokine or IFN-I, are able to boost num-

bers of memory CD8? T cells, while enhanced IL-2 signals

can lead to an increase in memory CD4? T cell counts.

Notably, both MP cells and memory CD8? T cells gener-

ated by homeostatic proliferation closely resemble antigen-

specific memory CD8? T cells formed during responses to

pathogens; thus, all these CD8? T subsets are long-lived

and dependent on IL-7 and IL-15 [15, 25, 56]. Also, MP

CD4? T cells are similar to pathogen-specific memory

CD4? T cells in being dependent on IL-7 (and IL-15)

signals [15, 25, 56, 150] (Fig. 3). However, unlike memory

CD8? T cells, the frequency of pathogen-specific memory

CD4? T cells tends to decrease with time [13, 151, 152].

The precise cause of this decline remains unclear.

In contrast to the above-mentioned T cell subsets, CD4?

Tregs rely on IL-2 signals for their homeostatic survival

and proliferation. Homeostatic expansion of CD4? Tregs in

lymphopenic hosts is driven by elevated IL-7 levels and

probably also depends on paracrine IL-2 signals from

activated T cells. Interestingly, it has been suggested that

strong IL-15 signals might also impact on Tregs and lead to

their expansion [153].

Similar to memory CD8? T cells, homeostasis of cd T

cells relies on contact with mainly IL-15 and also IL-7. For

NK cells, IL-15 signals are crucial for their homeostatic

maintenance under steady-state conditions. Furthermore,

increased IL-2 levels are well known to potently activate

and expand NK cells.
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