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Abstract Osteoporotic changes start in cancellous bone
due to the underlying pathophysiology. Consequently,
the metaphyses are at a higher risk of ‘‘osteoporotic’’
fracture than the diaphysis. Furthermore, implant pur-
chase to fix these fractures is also affected by the poor
bone quality. In general, researchers and developers
have worked on three different approaches to address
the problem of fractures to osteoporotic bone: adapted
anchoring techniques, improved load distribution as well
as transfer with angular stable screws, and augmentation
techniques using bone substitutes. A patent-based re-
view was performed to evaluate which ideas were uti-
lized to improve fixation in osteoporotic, metaphyseal
bone, especially in the proximal femur, and to analyze
whether the concept had entered clinical use. Anchoring
devices that are either extramedullary or intramedullary
have a long clinical history. However, demanding sur-
gical techniques and complications, especially in poor
quality bone, are justification that such implants and
their corresponding surgical techniques need to be im-
proved upon. Expanding elements have been evaluated
in the laboratory. The results are promising and the
potential of this approach has yet to be fully exploited in
the clinics. Internal fixators with angular stable screws
open the door for many new anchorage ideas and have
great potential for further optimization of load distri-
bution and transfer. Augmentation techniques may im-
prove anchorage in osteoporotic bone. However, the

properties of bone substitute materials will need to be
modified and improved upon in order to meet the
demanding requirements. If we summarise the develop-
ment process and the clinical use of implants to date, we
have to clearly state that more factors than simply bio-
mechanical advantage will determine the clinical success
of a new fixation principle or a new implant. Instead,
fracture treatment of patients with osteoporosis really
needs an interdisciplinary approach!
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Implant failure Æ Osteoporosis Æ Patent

Introduction

The method of fixation for metaphyseal fractures in
osteoporotic bone is important for two reasons. Firstly,
cancellous bone is more susceptible to loss of bone mass
due to osteoporosis [1–3]; consequently, the metaphyses
are at a higher risk of ‘‘osteoporotic’’ fracture than the
diaphysis. As a result, there is a high incidence of
metaphyseal fractures such as proximal femoral frac-
tures, fractures of the proximal humerus and of the
distal radius [4,5]. Secondly, implant purchase in osteo-
porotic metaphyseal bone is also affected. In the case of
a fracture, the poor quality of the trabecular network
would therefore require more (adequate) fixation ele-
ments. However, the number and size of implants that
can be placed, especially in the articular fragment, is
often limited.

In general, researchers and developers have worked
on three different approaches to address the problem of
fractures to osteoporotic bone: adapted anchoring
techniques, improved load distribution as well as
transfer with angular stable screws, and augmentation
techniques using bone substitutes.

In the following text, the authors present a review
based upon 21 patents which demonstrates the evolution
of different implants that have been either specifically
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designed for application in osteoporotic metaphyseal
bone, or which may be adapted for use in osteoporotic
metaphyseal bone.

A fourth approach, prosthetic joint replacement, will
not be addressed in this review.

Anchoring techniques

The high incidence of fractures of the proximal femur
and the often deleterious effect of a fracture to the indi-
vidual patient has led to the development of numerous
implants for this indication. The general search for the
optimal fixation principle to treat osteoporotic meta-
physeal fractures is exemplified by the progress as well as
pitfalls in the methodology to develop specific implants
for the proximal femur. This section will look at
anchoring techniques in conjunction with extramedul-
lary, intramedullary and expanding fixation elements.

Extramedullary fixation elements

Angle blade plate

The ‘‘blade’’ is one of the oldest fixation principles; it
provides a broad surface contact area perpendicular to
the main loading axis within metaphyseal bone. It is
capable of resisting considerable torsion and bending
moments.

One of the earliest designs of the angle blade plate is
described in the following patent from 1964: mechanism
to repair the proximal femur joint [6]. This invention
comprises a plate portion and a blade extension. The
blade is driven through the femur neck into the joint
head. The cross section of the blade has a ‘‘U’’ profile.
The side walls and base of the blade are ‘‘chisel-like’’.
Due to this form, minimum bone loss occurs when
inserting the blade into the bone (Fig. 1a).

The ‘‘U’’ profile described above is an optimum
compromise between the minimal amount of bone re-
moval that is necessary for implantation and the maxi-
mum stiffness of the implant. The plate portion is fixed
to diaphyseal or metaphyseal areas of the long bones.
The angle blade plate was originally developed for the
stabilization of proximal or distal femur fractures [7].
However, several authors found it beneficial to use the
angle blade plate in other metaphyseal regions too [8–
11]. Its use has been described, for example, in the
treatment of fractures and non-unions in the proximal
tibia and proximal humerus. Biomechanical studies have
confirmed improved loads to failure of blade plates over
conventional screw-plate devices. The use of an angled
blade plate device rather than a screw-plate device, e.g.
dynamic hip screw (DHS), is recommended, as the bone
is impacted by the blade rather than removed by the
drilling process required for screw insertion [12]. Addi-
tionally the position of the blade can be revised without
compromising fixation [13,14].

Clinical usage is, however, limited by the demanding
surgical technique required to insert these one-piece
implants. This has led to a higher complication rate in
clinical studies [15,16].

Dynamic hip screw (DHS)

The DHS was developed to overcome the surgical
problems of insertion of the blade plate at the proximal
femur, and utilizes the same principle as the dynamic
condylar screw (DCS) at the distal femur [17–19]. In
both cases, a large-diameter screw provides the
anchorage within the articular bone fragments, i.e. in the
femoral head or condylus (Fig. 1b). The key feature of
the DHS is the dynamic slide of the screw, which allows
for secondary impaction of the fracture along the axis of
the screw. The DHS is the implant of choice for stable
pertrochanteric fractures. It consists of a plate with a
guide barrel attached.

Several factors determine the performance of these
devices. Accurate placement of the screw in the femoral
head appears to be a critical factor. Placement in the
superior quadrant may lead to failure by pull-out, par-
ticularly in osteoporotic bone. Cut-out was described in
several clinical studies [20,21]. However, if the DHS is
inserted correctly, the failure rate of fixation is univer-
sally observed to be under 5%, even in patients with
osteoporosis [22]. The tip–apex distance (TAD) has been
devised by Baumgaertner and Solberg [23] to give the
surgeon a guideline for accurate screw placement. The
TAD is calculated by summing the distances from the
screw tip to the surface of the femoral head in both the
anteroposterior and the lateral plane. A TAD under
25 mm is recommended, as no screw cut-out occurred in
a retrospective series when this had been achieved.

The following two patents, which span almost a
decade, highlight important technical aspects of the
DHS concept.

Fig. 1 Angle blade plate with ‘‘U’’ shaped blade profile. The slot in
the plate allows for height adjustment (a). The DHS with a
modular screw component in the femoral head, which allows for
secondary impaction of the fracture (b)
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Osteosynthesis anchoring screw (1991) [24]. The pro-
files of hip screw threads are similar to conventional
bone screws where the thread tips are sharp and hence
cut into the bone (Fig. 2). Physiological loading of the
femur head comprises mainly compressive forces in this
indication. These forces applied to osteoporotic femur
heads can lead to penetration of the implant into the
joint. This invention describes an anchoring screw that
has optimised thread geometry whereby the thread tips
are blunt, resulting in a geometry optimised for physi-
ological load bearing.

Device for attaching fractured hip joint heads (1998)
[25]. This invention comprises a bone plate, which is
attachable to the femur, a sleeve that extends at an angle
from the bone plate and an anchor bolt which can be
inserted into the sleeve. The shaft of the anchor bolt and
the inside of the sleeve have corresponding axial grooves
that prevent rotation while allowing axial movement.

The trochanteric stabilizing plate (TSP)

The trochanteric stabilizing plate (TSP) is intended for
unstable fracture patterns. It supplements the standard
sliding hip screw construct by buttressing the greater
trochanter and preventing lateral displacement.

In a prospective clinical trial, Babst et al. found that
the TSP prevented excessive fracture impaction and
consecutive limb shortening in 90% of patients [26].

Intramedullary nails and fixation elements

Due to theoretical biomechanical advantages, intrame-
dullary devices were especially developed for fixation of

pertrochanteric femoral fractures: the intramedullary
nail is located more medially and therefore has a shorter
lever arm than previous sideplate constructs. Further-
more, intramedullary fixation of proximal humerus
fractures and distal femoral fractures is a minimally
invasive technique that preserves the blood supply of the
periosteum and soft tissue while simultaneously pro-
viding strong fixation. IM fixation is especially recom-
mended for fracture treatment in osteoporotic bone
because its central location distributes loads uniformly.
Since the osteoporotic bone is already in a weakened
state, this distribution is very beneficial [27].

Locked cross nails and screws

The following two patents from 1969 and 1990, respec-
tively, describe intramedullary devices that utilize locked
cross nails or femur neck screws.

Intramedullary rod and cross nail assembly for treating
femur fractures (1969) [28]. An intramedullary rod
which conforms generally in shape and dimensions to
those of the medullary canal, including a cross nail
extending through the rod and having its ends posi-
tioned to be engaged in adjoining trochanteric portions
of the femur, and a set screw in the rod for locking the
cross nail in an operative anchoring position (Fig. 3).
One objective of the invention is to produce effective
fixation or immobilization of the bone fragments or
parts and thereby to facilitate reduction of fractures in
the upper third of the sub-trochanteric portion of the
femur shaft.

An osteosynthesis aid to support subtrochanteric fractures
(1990) [29] comprises a locking femur nail and a
femur neck screw, incorporating a self-cutting thread. A
locking pin is described which may be placed in the
locking nail to prevent rotation, while allowing axial
movement of the femur neck screw. This invention,
however, would not prevent rotation of the bone frag-
ments.

Fig. 2 Device for attaching fractured hip joint heads incorporating
a multi-pitch thread at the tip of the head component. Rotation of
the femur head is prevented due to the steep spiral angle of the
‘‘wings’’

Fig. 3 Intramedullary rod and cross nail with a star-shaped profile
in the femoral head
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Spiral blade plate

Before the introduction of the spiral blade, the use of
intramedullary nailing in proximal humerus fractures
and distal femoral fractures in osteoporotic patients did
not provide ideal fixation [30]. The principle of the spiral
blade includes an increase in the load-bearing surface,
featuring a projected surface area 75% greater than
previous locking screws. This increase in the load-bear-
ing surface should lower osseous stress at the bone–
metal interface [12] (Fig. 4a).

The evolution of the spiral blade plate is demon-
strated in the following three patents dating from 1962
up to 1996.

Fixation device for fractured femur (1962) [31]. A
primary objective of the invention is to provide a fem-
oral device which may be inserted through a relatively
narrow slot extending longitudinally to the subtro-
chanteric shaft of the femur, the device being constituted
by a structural component formed on a helix, which is
an integral part of the supporting plate. A further
objective is to provide a comparatively large supporting
area for sustaining loads imposed upon the femoral head
(Fig. 4b).

Osteosynthetic assembly with twist fixation plate (1991)
[32]. Described here is an intramedullary nail for
insertion into the medulla of a femur and a fixation plate
with a twisted blade for insertion into the femur head.
The blade is twisted helically about 90� and is able to
transmit heavy loads both to the bone and to the in-
tramedullary nail. The assembly may also be used to
treat brittle bone, such as is caused by osteoporosis.

Device for holding broken bones in a fixed position (1996)
[33]. A device for fixing fractures in the region of

joints, having a blade plate and a side plate intended for
fixation to the shaft of the long bone. The blade plate
and the side plate can be connected to each other at a
selectable angle in the range of 90–150�.

Studies suggest improved mechanical properties of
the spiral blade plate when compared with traditional
locking bolts [34]. Clinical reports of implant failure
have, however, given rise to concern about the wide-
spread clinical use of the spiral blade plate [35–38].
Despite this, the latest implant generation seems to be
experiencing a renaissance.

The double-T-plate

Another approach to optimize the implant-bone inter-
face was the utilization of a double-T-blade profile by
Friedl and colleagues [39,40] (Fig. 5). Good clinical re-
sults in elderly patients were reported by the inventor
and by Schwammle et al. [41]. The double-T-blade was
used to achieve high primary stability of the fracture
fixation. Although the biomechanical principle seems
logical, the implant has not gained widespread accep-
tance up to now.

Up to this point we have mainly discussed load-car-
rying devices such as the angle blade or spiral blade
plates. A relatively new and different concept is to im-
prove the purchase of the implant in the bone using
expandable elements.

Osteosynthesis using expandable elements

Expandable elements have been evaluated in biome-
chanical studies and their effectiveness has been dem-
onstrated [42].

Fig. 4 Replacement of conventional screw by a spiral blade plate in
combination with an intramedullary nail. The implant provides the
best possible contact surface for fixed angle locking in osteoporotic
bone (a). A device for the proximal femur which features a plate
with an integral structural component formed on a helix (b)

Fig. 5 Intramedullary rod with alternative blade forms for the
proximal femur including the ‘‘double-T’’ profile
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Rivets and plugs

One idea is to adapt the concept of the rivet as used in
metal work. For example, Steiger and co-inventors have
patented a device for fixing surgical implants (2003) [43]
(Fig. 6). The principle of the rivet has proven to be
effective where anchorage of screws may be difficult [44].

A further example is that of Frei and Hehli, who have
patented an osteosynthetic anchoring element (2001)
[45]. This invention is characterized by expanding radial
arms, which anchor into the bone (Fig. 7).

Plate osteosynthesis utilizing anchoring arms

Novel inventions that involve plate designs with fea-
tures, which eliminate the need for fixation screws, have
been created. One such idea is described in the patent of
Ulrich Mennen (Fig. 8).

Internal fixation device for bone fractures [46]. Accord-
ing to the invention, an internal fixation device for a
bone fracture is provided. The device is made up of a
metal plate having fastening arms formed on at least two
edges of the plate, which can be secured to a bone
fracture site by deforming and penetrating directly into
the bone thereby bridging a bone fracture.

The ‘‘Mennen plate’’ has been used for the treatment
of periprosthetic femoral fractures. Although the plate
offered some benefits for this indication, several sur-
geons have described pitfalls such as non-unions and
implant failure using this implant type [47–52].

Improved load distribution and transfer with angular
stable screws

Locked internal fixators

Conventional plate designs rely upon direct contact and
friction between the plate and the bone as a result of the

axial preload of the screws, which presses the plate
against the bone.

Advances in fracture fixation include the advent of
locked internal fixators. The interlocking of screws
within plates allowed minimization of the bone to im-
plant contact area that was previously identified as del-
eterious to the blood supply [53]. The principle of
interlocked screws has removed the need for axial pre-
loading of the screws, as the internal fixator no longer
relies on friction and intimate contact between plate and
bone for stability. Instead, the bone is fixed at each point
along the length of the fixator. This provides for a very
stable construct, as there is no toggle at the plate-screw
interface. In addition, locking has allowed elevated
applications, which means that pre-shaped implants can
be used.

Fig. 6 The bone rivet, demonstrating anchoring elements, which
engage into the bone. The principal of this design is similar to rivets
used in metalwork

Fig. 7 An anchoring device featuring expanding radial arms for
engagement into the bone

Fig. 8 The Mennen plate with fastening arms, which deform and
penetrate into the bone
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The screw nut

One of the first examples of this concept is described in
the patent of Mast: a screw nut for plate osteosynthesis
(1993) [54] which fixes the screw to the plate and acts as
a distance holder for reducing the contacting area be-
tween bone plate and bone (Fig. 9a). The invention can
be used with any type of bone plate and bone screw and
at any selected position (hole) of the plate.

Biomechanical testing has demonstrated that the
screw nut enhances fixation strength, especially in poor
bone stock [55].

The point contact fixator (PC-Fix)

The PC-Fix was one of the first implants that applied
this new concept to patients (Fig. 9b). The main features
are highlighted below.

Bone plate with conical holes (1994) [56]. According
to this invention, the plate is applied to the bone by
means of short screws designed with a conical head,
which upon insertion lock safely in the conical hole of
the plate. The locking between the plate and screws
prevents tilting of the screws within the cortex. Loads
between the bone and the plate are transferred directly
though the screws, which now act as pegs under shear
rather than anchors under tension. The plate under-
surface is shaped so as to permit only point contact to
the bone at very small areas (Fig. 9b).

Early experience with the use of PC-Fix for forearm
fractures has proven the efficacy of locked fixators,
especially in the setting of osteoporotic bone [12]
(Fig. 10).

The less invasive stabilization system (LISS)

The PC-Fix is no longer in clinical use. It has been
superseded by the LISS, which is described in the fol-
lowing patent: bone plate (2001) [57]. Similar to the PC-
Fix, the bone screws to anchor the bone plate have a
conical head. However, the surface of the screw head has

a thread or spiral structures. The plate holes are fitted
with a thread, which matches that of the screw head.

The LISS is indicated for stabilization of fractures of
the distal femur and the proximal tibia, and is applied
via a minimally invasive surgical procedure. The plate
lies beneath the deep fascia and muscle but outside the
periosteum and is anatomically pre-shaped. It preserves
blood circulation because the plate is inserted through a
small incision at the epiphyseal level and no excessive
soft tissue dissection is needed [58,59]. Clinical results
have shown that LISS is beneficial for osteoporotic
bones and periprosthetic fractures [60,61].

One drawback of the LISS as an internal fixator is
that it cannot be used as a reduction tool. The fracture
must be reduced and held in traction prior to plate
application.

The locking compression plate (LCP)

The most recent development in the field of locked
internal fixators is the LCP. The advantages of this
system are that improved fixation using locked com-
pression is combined with giving the surgeon the option
to use the fixator as a reduction tool. However, this
system requires demanding teaching due to the com-
plexity of application. The key features of the LCP are
described below.

Bone plate (2000) [62]. This novel bone plate can
serve as a dynamic compression plate (DCP) and as a so-
called internal fixator at the same time, as effectively as if
the two elements were separate (Fig. 11). The shape of
the conical thread is identical to the LISS described
above. The locking head screw is captured in the
threaded part of the threaded hole through more than
200� when using the LCP as an internal fixator.

The last approach discussed in this section is to
substitute the conically shaped screw head and plate
hole, with a screw head and plate hole having a spherical
form. The invention of Wolter facilitates placement of
the screw by the surgeon at an angle of choice.

Fixation system for bone (1999) [63]. A bone plate is
applied to the bone by means of bone screws. The head
of the bone screw and the plate holes have a thread. The
head of the screw has a spherical form, which allows the
screw to be fixed in the plate hole at various angles. The
pitch of the screw thread on the screw head is smaller
than the pitch of the thread on the screw shaft.

Unlike the locked internal fixators described earlier,
the plate in this invention ends up being pressed onto the
bone surface as a result of the (two) different thread
pitches on the screw head and shaft [64].

Augmentation techniques using bone substitutes
to improve anchorage

Despite the very successful developments described
earlier in this article, failed fracture fixation remains an

Fig. 9 The ‘‘Schuhli’’ screw nut, which acts as a distance holder for
reducing the contacting area between bone plate and the bone (a).
The PC-Fix incorporating short locking screws and point contact
of the plate to the bone (b)
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important clinical problem especially with osteoporotic
bones. Although the quality of fracture reduction and
the choice and placement of an internal fixation device
are controlled by the surgeon, bone quality is not.

Researchers have investigated different ways to ad-
dress this problem. In one study, osteotomies in osteo-
porotic human cadaveric humeri were fixed with metal
plates and screws in three experimental groups. The
influence of using either poly (L-lactide) or methylmeth-
acrylate augmentation devices were compared to non-
augmented fixation. Screw pullout and torsion tests were
performed. The investigators concluded that resorbable
polymeric medullary augmentation devices could be used
to enhance plating of osteoporotic bones [65].

If there is severe osteoporosis, the basic problem is
that the rigid metal implant is not adapted to the ‘‘soft’’
osteoporotic bone. Materials for bone augmentation

may increase purchase for internal fixation devices in
poor bone, assist in stabilizing comminuted fractures,
and facilitate load transfer. Different types of materials
have been investigated using different techniques as de-
scribed below to achieve the goal. Despite several re-
ports on successfully improved biomechanical load
bearing capacities [66], and despite reports on early
clinical application, none of them has so far been
adopted for routine clinical use [67–69].

Prophylactic and post-traumatic augmentation
techniques

Augmentation of cannulated hardware

The augmentation techniques described in the following
patents may prove suitable for application or adaptation

Fig. 10 Load distribution in a
conventional plate-screw
construct (a) and in the PC-Fix
(b)
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in different anatomical regions of metaphyseal bone.
One option is to use bone substitutes in preventive
treatment as explained in the recent patent of Margulies
and co-inventors.

Method and apparatus for augmentation of the femoral
neck (2003) [70]. This invention describes combining
an implant and cement for prophylactic and/or pre-
ventive use for femoral neck augmentation. A hole is
drilled into the femoral neck. The hole is filled with an
uncured filler cement. Loose materials are removed, then
an open-ended tube shaped implant having openings in
its walls is inserted into the hole and attached to the
bone. Additional filler cement is provided under pressure
which flows into spaces in the bone structure via the tube
wall openings (Fig. 12). The proposed invention pro-
vides a new method of surgical prevention, by per-
forming a minimal and novel surgical procedure before a
fracture occurs. In this way, a more invasive and more
complicated procedure may be prevented.

Internal fixation in severely osteoporotic, commi-
nuted, unstable intertrochanteric fractures has been
augmented by packing cements such as methylmethac-
rylate around the implant in a rather crude manner.
Augat et al. showed that controlled augmentation with
bone cement could significantly improve fixation
strength, for example, in proximal femoral fractures [71].
Problems exist, however, with putting or placing such
cements into the fracture site in cases of non-union.
Extreme care must be taken to ensure that the cement is

not extruded between the main fracture fragments since
otherwise, the foreign body will absolutely prohibit bony
union. The essential keystone of this invention is the
fenestration between the screw blades so that cement can
be injected into the femoral head and away from the
fracture site as such, further locking the screw threads
into the bone. It is important to note that screw threads
(rather than any nail blades) cut out spiral grooves along
which a better penetration and a more evenly controlled
injection of cement can occur for a more reliable im-
plant–cement–bone fixation (Fig. 13). The use of fenes-
trated or cannulated screws is illustrated in the following
patents from Tronzo (1987) and Reynders and Berger
(2001).

Fenestrated hip screw and method of augmented fixation
(1987) [72] describes a fenestrated hip screw through
which a fixing cement can be introduced into a region of
bone where a problem of osteoporosis exists.

Bone screw (2001) [73] teaches the use of a screw with
a bore, which reaches the outside in the form of at least
one perforation. The advantage of the bone screw is that
osteocementum can be introduced into the adjacent
bone in such a way that an artificial coaxial cement bed
for the thread of the bone screw is formed. The cement
bed is only laterally adjacent to the screw such that the
screw can be axially advanced even if the osteocemen-
tum has hardened.

The final patent in this section describes the appli-
cation of the augmention material under vacuum. This
may prove to be beneficial by allowing optimal filling of
the cancellous bone.

Suction drainage bone screw (1995) [74]. In arthro-
plastic surgery, most implants are implanted in the bony
bed using so-called bone cement. This bone cement is
usually made of polymethylmethacrylate. However, the

Fig. 11 The PHILOS implant system illustrates the concept of
combining the DCP with the locked internal fixator

Fig. 12 Hip screw with cement delivery system. Bone cement may
be introduced into the increased trabecular spacing in osteoporotic
bone
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bone cement can only penetrate into the honeycombs of
the bone marrow if they are clean and free of fat marrow
and cell compounds. The bone screw of the invention
has an axially continuous longitudinal canal or bore in
its interior and is adapted to receive a vacuum line in the
appropriate manner, preferably in the vicinity of the
screw head. Thus it is possible to suck the blood and fat
out of the bone canal and the surrounding area around it
through the longitudinal canal of the bone screw. The
bone screw of the invention renders it possible to fill the
canal with bone cement under vacuum. It is absolutely
imperative to fill in the cancellous bone with cement in
the areas in which it is under load in order to reinforce
the framework against deformation.

The use of bone cements as an augmentation material
challenges the materials researcher, since the loading in a
compound system produces considerable shear forces in
the augmentation material. Materials that have been
tested to date either in the laboratory or in the clinics do
not have adequate shear strength, hence their success has
been limited.

Conclusions

Within the past 40 years, osteosynthesis has become a
well standardized treatment modality for fractured
bones with good success rates. Fracture fixation in
osteoporotic bone, however, is still a challenge that may
even increase within the next decade due to demographic
changes. This is especially true for articular and meta-
physeal fractures.

Despite excellent results with prosthetic treatment of
hip fractures, this cannot be looked upon as the ultimate
solution for all patients and all joints.

Extramedullary or intramedullary anchoring devices
have a long clinical history. However, demanding sur-
gical techniques and complications, especially in poor
quality bone, are justification that such implants and
their corresponding surgical techniques need to be

improved upon. Expanding elements have been evalu-
ated in the laboratory. The results are promising and the
potential of this approach has yet to be fully exploited in
the clinics. Internal fixators with angular stable screws
open the door for many new anchorage ideas and have
great potential for further optimization of load distri-
bution and transfer. Augmentation techniques may im-
prove anchorage in osteoporotic bone. However, the
properties of bone substitute materials will need to be
modified and improved upon in order to meet the
demanding requirements.

To summarise the development process and the
clinical use of implants to date, it should be clearly
stated that more factors than just biomechanical
advantage will determine the clinical success of a new
fixation principle or a new implant. Instead, fracture
treatment of patients with osteoporosis really needs an
interdisciplinary approach!
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