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Abstract. Given an almost complex structure J in a cylinder of R
2p (p > 1) together with

a compatible symplectic form ω and given an arbitrary J−holomorphic curve Σ without
boundary in that cylinder, we construct an holomorphic perturbation of Σ, for the canonical
complex structure J0 of R

2p, such that the distance between these two curves in W 1,2 and
L∞ norms, in a sub-cylinder, are controled by quantities depending on J , ω and by the area
of Σ only. These estimates depend neither on the topology nor on the conformal class of Σ.
They are key tools in the recent proof of the regularity of 1-1 integral currents in [RT].

1 Introduction

Let ω be a smooth symplectic form in B2
2(0) × B2p−2

2 (0) (p > 1) - ω is a closed
2-form satisfying ωp > 0 – and let J be a smooth compatible almost complex
structure : g(·, ·) := ω(·, J ·) is symmetric and therefore defines a scalar product
in B2

2(0) ×B2p−2
2 (0) that we will denote by g. We assume that at the origin ω(0)

coincides with the standard symplectic form of R
2p, ω0 =

∑p
i=1 dx2i−1 ∧ dx2i

and that J(0) coincides with the standard almost-complex structure J0 satisfying
J0 · e2i−1 = e2i for i = 1 · · · p where ek is the canonical basis of R

2p.
We consider a J holomorphic curveΨ :Σ → B2

2(0)×B2p−2
2 (0) (Σ is a smooth

Riemann surface and Ψ a smooth J−holomorphic map from Σ into (B2
2(0) ×

B2p−2
2 (0), J)). we assume that the current Ψ∗[Σ] satisfies

supp(∂ (Ψ∗[Σ])) ⊂ ∂B2
2(0) ×B2p−2

2 (0) . (1.1)

We will adopt the following notation : for any r < 2

Σr := Ψ−1(B2
r (0) ×B2p−2

2 (0)) . (1.2)

(Under these notations one has for instance Σ2 = Σ). We define now the “dis-
tortions” of g(·, J ·) relative to the canonical flat metric g0 in B2

2(0) × B2p−2
2 (0) .
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These are the following quantities :

d1(g) := sup
x

sup
X∈TxR2p

g(X,X)
g0(X,X)

+
g0(X,X)
g(X,X)

d2(g) := sup
x

sup
X,Y ∈TxR2p

g(X ∧ Y,X ∧ Y )
g0(X ∧ Y,X ∧ Y )

+
g0(X ∧ Y,X ∧ Y )
g(X ∧ Y,X ∧ Y )

.

(1.3)

Our main result in this paper is the following.

Theorem 1.1 For any J holomorphic curveΨ :Σ → B2
2(0)×B2p−2

2 (0) satisfying
(1.1), there exists a map η : Σ → R

2p, such that Ψ + η is J0 holomorphic and η
satisfies ∫

Σ

|∇η|2 ≤ 2 ‖J − J0‖2
∞

∫
Σ

Ψ∗ω , (1.4)

and

‖η‖L∞(Σ1) ≤ K ‖∇J‖∞ , (1.5)

where K is a constant depending only on d1(g), d2(g) and
∫

Σ
Ψ∗ω.

The striking fact in this result is that the constants are independent of the conformal
type and the topology of Σ. These estimates are key tools in the proof of the
regularity of 1-1 integral currents in arbitrary dimension in [RT]. η is chosed to be
the solution of the following elliptic problem – see Proposition A.3 -



∂η = −∂Ψ in D′(Σ)

∀h ∈ H+
0 (Σ)

∫
∂Σ

η dh = 0 .

∀Σk connected compo. of Σ ,

∫
∂Σk

η = 0

(1.6)

where we are representing η and Ψ by their canonical complex coordinates in
(R2p, J0) and whereH+

0 (Σ) denotes the space ofW 1,2(Σ) holomorphic functions
on Σ. Observe that since Ψ is J−holomorphic, taking the ∂ of the first equation in
(1.6) one gets for all k = 1 · · · 2p (using the real coordinates this time)

∆Ση
k = − ∗

( 2p∑
l=1

d(Jk
l (Ψ)) ∧ dΨ l

)
in D′(Σ) . (1.7)

Since
∫

Σ
|∇ψ|2 = 2

∫
Σ
Ψ∗ω which is one of the variable of the problem one is led

to a first order formulation of Wente’s Problem : Let u be a function onΣ satisfying


∂u = f in D′(Σ)

∀h ∈ H+
0 (Σ)

∫
∂Σ

u dh = 0 ,

∀Σk connected compo. of Σ ,

∫
∂Σk

u = 0

(1.8)



Approximating J-holomorphic curves by holomorphic ones 275

where f is a L2 ∂ exact (0, 1) form f = ∂φ satisfying

∗∂f = da ∧ db , (1.9)

where a and b are W 1,2 functions in Σ. Assuming f is L2(Σ) perpendicular to
∂H−

0 (Σ)⊕∂V , whereH−
0 (Σ) is the space of anti-holomorphic functions inΣ and

V is the finite dimensional space of harmonic functions inΣ which are constant on
each connected component of ∂Σ, then one easily verifies, see the appendix, that
the harmonic extension ũ is perpendicular toH+

0 (Σ)⊕H−
0 (Σ)⊕V and therefore

is equal to 0. Thus u satisfies


∗∆u = da ∧ db in D′(Σ)

u = 0 on ∂Σ
(1.10)

and from P.Topping’s result [To] one has

‖u‖L∞(Σ) ≤ 1
2π

‖∇a‖L2(Σ) ‖∇b‖L2(Σ) , (1.11)

(see more on the second order Wente Problem in [Ge] and [He]). Therefore if one
would know thatΨ is perpendicular toH−

0 (Σ)⊕V we would directly have obtained

‖η‖L∞(Σ) ≤ 4p
π

∫
Σ

Ψ∗ω ‖∇J‖∞ . (1.12)

Of course there is no reason forΨ to satisfy this assumption and the difficulty comes
then from the L2 projection of Ψ over H−

0 (Σ) ⊕ V . A solution η to the problem
(1.8) and (1.9) can even not be bounded in L∞ on the whole Σ. Take for instance
Σ = D2 and

f = ∂

( ∞∑
n=1

1
n log n

e−i nθ

)
.

Therefore there is a real need to restrict to a subdomain of Σ as we do in (1.5). In
this sense our result is optimal.

In the proof below we were influenced by the proofs in [Ch] and [To] .

2 Proof of Theorem 1.1.

Before to prove Theorem 1.1 we need an intermediate result.

Lemma 2.1 LetΨ :Σ → B2
2(0)×B2p−2

2 (0) be aJ−holomorphic curve satisfying
(1.1). For any smooth function u whose average on each connected component of
Σ is zero, or any function u in C∞

0 (Σ2), the following inequality holds

(∫
Σ1

|u|2
) 1

2

≤ K

∫
Σ

|∇u| , (2.13)

where Σ1 is defined in (1.2), the metric on Σ is the pull-back by Ψ of g(·, ·) =
ω(·, J ·) and K is a constant depending only on d1(g), d2(g) and

∫
Ψ∗ω.
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Proof of Lemma 2.1. We present the proof in the case where the average of u
vanishes on each connected component of Σ (the other case u ∈ C∞

0 (Σ) being
more easy). Let Σk be a connected component of Σ intersecting Σ1. We divide
Σk into 2 subsurfacesΣk,+ (res.Σk,−) being the subset ofΣk where u is positive
(resp. negative). Using the coarea formula (see [Fe]) we have

∫
Σk,+

|∇u| =
∫ +∞

0
H1(u−1(s) ∩Σk) ds (2.14)

Since u is smooth and Σk is connected and since 0 is a value of u in Σk, for every
regular value s ∈ R

+ of u 2 cases may happen.

Case 1:

∃r ∈ [1, 2] such that ∂{x ∈ Σk
r ; u(x) ≥ s} = u−1(s) ∩Σk

r .

In that case, since Σr is an area minimizing surface in R
2p for the metric

g(·, ·) = ω(·, J ·), we have

(H1 (u−1(s) ∩Σk
r

))2 ≥ K−1
0 H2 (u−1([s,+∞)) ∩Σk

r

)
≥ K−1

0 H2 (u−1([s,+∞)) ∩Σk
1
)

.

(2.15)

where K0 is the isoperimetric constant of (R2p, g).
Case 2:

∀r ∈ [1, 2] ∂{x ∈ Σk
r ; u(x) ≥ s} �= u−1(s) ∩Σk

r .

This means that, in such a case, ∀r ∈ [1, 2] u−1(s) ∩ ∂Σk
r �= ∅. Since the

distance for g in R
2p between ∂Σk

1 and ∂Σk is larger thanK1 > 0, where
K1 only depends on g, we get

H1 (u−1(s) ∩Σk
2
) ≥ K1 . (2.16)

Let us denote K2 =
∫

Σ
Ψ∗ω = H2(Σ), where the Hausdorff distance in

Σ is computed acording to the pull-back metric by Ψ of g(·, ·) = ω(·, J ·).
We then have in that case(H1 (u−1(s) ∩Σk

2
))2 ≥ K2

1 ≥ K2
1K

−1
2 H2(Σ)

≥ K2
1K

−1
2 H2 (u−1([s,+∞)) ∩Σk

1
)

.

(2.17)

Combining (2.14), (2.15) and (2.17), we obtain the existence of K depending only
of d1(g), d2(g) and

∫
Σ
Ψ∗ω such that

∫
Σk,+

|∇u| ≥ K−1
∫ +∞

0
ds
[H2 (u−1([s,+∞)) ∩Σk

1
)] 1

2 (2.18)
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Observe that the right-hand-side of this last inequality is a multiple of the Lorentz
L2,1−norm of u in Σk,+

1 . We claim that the L2−weak norm of u+ = max{u, 0},
L2,∞ on Σk

1 can be bounded by ‖u‖L2(Σk,+
1 )

‖u‖L2,∞(Σk,+
1 ) = sup

s≥0
s
[H2 (u−1([s,+∞)) ∩Σk

1
)] 1

2 ≤ K3‖u‖L2(Σk,+
1 )

(2.19)

whereK3 only depends on d1(g), d2(g) and
∫

Σ
Ψ∗ω. Indeed, we consider inΣk the

pseudo-distance dg which is given by the distance in (B2
2(0)×B2p−2

2 (0), g) – Since
Σk is not necessarily embedded, it may happens that dg(x, y) = 0 and x �= y. For

this pseudo-distance in Σk, we consider the balls Bdg
r (x) := Ψ−1(B2p

r (x)) ∩Σk.
Since the current Ψ∗[Σk

1 ] is area minimizing in (B2
2(0) × B2p−2

2 (0), g) – it is
calibrated by ω -, using the monotonicity formula, we obtain that for every x ∈ Σk

1
and r < 1/2

πr2 ≤ H2(Bdg
r (x)) ≤ r2

∫
Σ

Ψ∗ω = r2K2

Therefore these balls satisfy the doubling property

4H2(Bdg
r (x))π−1K2 ≥ H2(Bdg

2r (x))

We then adapt to our case the proof of the covering lemma page 9 of [St] form being
the 2 Hausdorff measure restricted to Σk

2 and the balls being balls for the pseudo-
distance dg to get the corresponding statement to that lemma. We can now obtain
(2.19) by following the first part of the proof of Theorem 1 page 5 of [St], taking
for the covering of pseudo-balls Bdg

j given by the covering lemma but considering
this time the metric Ψ∗g on Σk. From (2.19) we deduce

‖u‖L2(Σk,+
1 )

∫ +∞

0
ds
[H2 (u−1([s,+∞)) ∩Σk

1
)] 1

2 ≥

K−1
3

∫ +∞

0
s ds

[H2 (u−1([s,+∞)) ∩Σk
1
)]

= ‖u‖2
L2(Σk,+

1 ) .

(2.20)

Combining now (2.18) and (2.20) we obtain the desired inequality (2.13) for Σk
·

instead ofΣ· = ∪kΣ
k
· . Observing that the number of componentsΣk having some

non empty intersection withΣ1 is bounded by
∫

Σ
Ψ∗ω times a constant depending

only of d1(g), d2(g) (this is a consequence of the monotonicity formula coming
from fact that Σk are area minimizing), then we get (2.13) for Σ· this time and
Lemma 2.1 is proved. ��
Proof of Theorem 1.1. Using local conformal coordinates ξ1 ξ2 in Σ, we have for
all k = 1 · · · 2p

∂Ψk

∂ξ1
= −

2p∑
l=1

Jk
l (Ψ)

∂Ψ l

∂ξ2
and

∂Ψk

∂ξ2
=

2p∑
l=1

Jk
l (Ψ)

∂Ψ l

∂ξ1
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Taking respectively the ξ1 derivative and the ξ2 derivative of these two equations
we obtain

∀k = 1 · · · 2p ∗ (∂∂Ψk) = ∆ΣΨ
k = ∗

( 2p∑
l=1

d(Jk
l (Ψ)) ∧ dΨ l

)
. (2.21)

Since Ψ + η is J0−holomorphic, using the canonical complex coordinates in R
2p,

we have ∂(Ψ + η) = 0 from which we deduce ∆Σ(Ψ + η) = 0 and therefore this
yields

∀k = 1 · · · 2p ∆Ση
k = − ∗

( 2p∑
l=1

d(Jk
l (Ψ)) ∧ dΨ l

)
. (2.22)

Since Ψ is an isometry for the induced metric, we then deduce from (2.22) that

∀k = 1 · · · 2p ‖∆Ση
k‖L∞(Σ) ≤ 4p ‖∇J‖∞

∫
Σ

Ψ∗ω . (2.23)

Let χ(t) be a smooth cut-off function equal to 1 in [0, 1] and equal to zero for t ≥ 2
with ‖χl‖∞ ≤ Kl. We define in B2

2(0) ×B2p−2
2 (0) the cut-off function – that we

also denote χ – χ(x) := χ(x2
1 + x2

2). For any function φ in B2
2(0) ×B2p−2

2 (0) we
denote by ∇Cφ the tangent vector field to Ψ(Σ) obtained by taking the orthogonal
projection of the gradient of φ for the metric g(·, ·) = ω(·, J ·). For any vector field
Y in B2

2(0) × B2p−2
2 (0) we denote by divΣY the divergence along Ψ(Σ) of that

vector-field (taking normal coordinates (y1, · · · , y2p) for g in a neighborhood of
x0 ∈ supp Ψ∗[Σ] we have divΣY (x0) =

∑2p
l=1 ∇ΣYl · ∂

∂yl
(x0). It is a classical

fact that, for a vector field Y normal to Ψ(Σ) one has divΣY = H · Y where H is
the mean curvature vector of Ψ(Σ) which is zero in our case. Therefore we have in
particular ∆Σχ := divΣ∇Σχ(x0) = divΣ∇χ(x0) =

∑2p
l=1 ∇Σ( ∂χ

∂yl
) · ∂

∂yl
(x0),

still using the normal coordinates in (R2p, g) about x0. Since |∇ ∂χ
∂yl

|(x) ≤ ‖χ‖C2 ,
we then deduce that there exists a constant K independent of the variables of our
problem such that

|∆Σχ|∞ ≤ K . (2.24)

Finally we have, using (2.23) and (2.24)

|∆Σ(χηk)| ≤ K1Σ√
2

[
|ηk| + |∇ηk| + ‖∇J‖∞

∫
Σ

Ψ∗ω
]

(2.25)

where K only depends on p and where 1Σ√
2

is the characteristic function equal to
1 on Σ√

2 and 0 outside. Using (2.25) and Lemma 2.1 ( for Σ√
2 instead of Σ1) –

having chosed ηk with average 0 on each connected component of Σ – we finally
have ∫

Σ√
2

|∆Σ(χηk)|2 ≤ K ‖∇J‖2
∞. (2.26)
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where K only depend on d1(g), d2(g) and
∫

Σ
Ψ∗ω.

We denote by Ga the Green Function of ∆Σ on Σ√
2 for the zero boundary

condition on ∂Σ√
2 (recall that each connected component of Σ√

2 has a boundary
since it is an area minimizing surface and therefore posses a Green function – see
[FK]). Precisely Ga solves



∆ΣGa = δa in Σ√

2

Ga = 0 on ∂Σ√
2 ,

(2.27)

where δa denotes the Dirac mass at a. From the strong maximum principleGa > 0
on the connected component of Σ√

2 containing a whereas Ga ≡ 0 elsewhere.
Since supp(χηk) ⊂ Σ√

2, we have

∀a ∈ Σ√
2 χηk(a) =

∫
Σ√

2

Ga(x) ∆Σ(χηk)(x) dx . (2.28)

For 0 ≤ s1 ≤ s2 ≤ +∞, we denote

Gs1,s2
a := {x ∈ Σ√

2 ; s1 ≤ Ga(x) ≤ s2} .

Using the coarea formula (see [Fe]), we have∫
Gs1,s2

a

|∇Ga|2 =
∫ s2

s1

ds

∫
G−1

a (s)
|∇Ga|(x) dH1 . (2.29)

Using the fact that for regular values s of Ga, for x ∈ G−1
a (s) |∇Ga|(x) =

−∂Ga

∂ν (x) where ν is the outward unit normal to Gs,∞
a and the fact that

∫
G−1

a (s)
−∂Ga

∂ν
(x) dH1 =

∫
Gs,∞

a

∆ΣGa = 1 , (2.30)

we finally obtain ∫
Gs1,s2

a

|∇Ga|2 = s2 − s1 . (2.31)

Let δ > 0, we deduce from (2.31)

1
δ

=
∫ +∞

s=1
s−2−δ

∫
G0,s

a

|∇Ga|2

=
1

1 + δ
+

1
1 + δ

∫ +∞

1
s−1−δ

∫
G−1

a (s)
|∇Ga|

=
1

1 + δ
+

1
1 + δ

1( 1
2 − δ

2

)2
∫

G1,∞
a

|∇G 1
2 − δ

2
a |2

(2.32)
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Thus, taking δ = 1
2 , we have∫

G1,∞
a

|∇G 1
4
a |2 ≤ 48 . (2.33)

Let f be a smooth function equal to t on [0, 1
2 ] and equal to t

1
4 on [1,+∞]. Since

f(Ga) = 0 on ∂Σ√
2, we can use one by one the arguments of Lemma 2.1 to obtain

[∫
Σ√

2

|f(Ga)|8
] 3

8
[∫

Σ√
2

|∇f(Ga)| 8
5

] 5
8

≥
∫

Σ√
2

|f(Ga)|3|∇f(Ga)| ≥ 1
4

∫
Σ√

2

|∇f4(Ga)| ≥
∫ +∞

0
H1(f4(Ga)−1(s)) ds ≥ K

∫ +∞

0
ds
[|x ; f4(Ga)(x) ≥ s|] 1

2

= K‖f(Ga)4‖L2,1(Σ√
2) ≥ K

[∫
Σ√

2

f(Ga)8
] 1

2

(2.34)

Combining (2.33 and (2.34) we obtain that∫
ΣG1,+∞

a

|Ga|2 ≤ K . (2.35)

where K has the usual dependence in d1(g), d2(g) and
∫

Σ
Ψ∗ω. Using the coarea

formula again (2.28) becomes

χηk(a) =
∫ +∞

0
s ds

∫
G−1

a (s)

∆Σ(χηk)
|∇Ga| . (2.36)

Since Ga is harmonic aside from a the zeros of ∇Ga are isolated points and then
for every s ∈ R

+
∗ G−1

a (s) is a union of finitely many smooth closed curves aside
eventually from isolated points. Therefore, since also χηk is smooth, we have
that s → ∫

Gs,∞
a

∆Σ(χηk) is continuous everywhere and smooth aside from finitely
many s corresponding to the values of the finitely many critical points ofGa. More-

over, aside from these points, it’s derivative is the function s → − ∫
G−1

a (s)
∆Σ(χηk)

|∇Ga| .
For all these reasons we have aBV function without jump points and without Cantor
parts in the derivative and the following holds in a distributional sense

d

ds

[∫
Gs,+∞

a

∆Σ(χηk)
]

= −
∫

G−1
a (s)

∆Σ(χηk)
|∇Ga| in D′(R∗

+) . (2.37)

Using a Taylor expansion of the smooth function χηk at a it is not difficult to justify
the following integration by parts∫ +∞

0
s ds

∫
G−1

a (s)

∆Σ(χηk)
|∇Ga| =

∫ +∞

0

∫
Gs,+∞

a

∆Σ(χηk) . (2.38)
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We then have, using also (2.26)

|χηk|(a) ≤
∫ +∞

0
ds
[H2(Gs,+∞

a )
] 1

2

[∫
Σ√

2

|∆Σ(χηk)|2
] 1

2

≤ K ‖∇J‖∞
∫ +∞

0
ds
[H2(Gs,+∞

a )
] 1

2

≤ K ‖∇J‖∞
∫ +∞

0
ds H1(G−1

a (s)) ,

(2.39)

where we have used the fact that, for s > 0, G−1
a (s) is contained in the interior of

Σ√
2, is the boundary of Gs,+∞

a and the fact that,Σ√
2 being an area minimizing sur-

face, it inerhits the isoperimetric constant of the ambiant space (R2p, g) depending
only on d1(g) and d2(g). We have, using (2.31)∫ +∞

0
ds H1(G−1

a (s)) =
∫

G0,1
a

|∇Ga| +
∫ +∞

1
ds H1(G−1

a (s))

≤ K +
∫ +∞

1

[∫
G−1

a (s)
|∇Ga|

] 1
2
[∫

G−1
a (s)

1
|∇Ga|

] 1
2

≤ K +
∫ +∞

1

[∫
G−1

a (s)

∂Ga

∂ν

] 1
2
[∫

G−1
a (s)

1
|∇Ga|

] 1
2

≤ K +
∫ +∞

1

1
s

[∫
G−1

a (s)

s2

|∇Ga|

] 1
2

≤ K +K

[∫
G1,+∞

a

G2
a

] 1
2

≤ K

(2.40)

where K is controlled by the usual quantities. Combining (2.39) and (2.40) we
obtain (1.5) and Theorem 1.1 is proved. ��

A Appendix

Definition A.1 A Riemann surface Σ is said to be finite if each connected com-
ponent Σk of Σ is an open subset of a closed Riemann surface Σ̃k and ∂Σk is a
non-empty finite union of closed regular curves embedded in Σ̃k.

We have the following classical proposition (see for instance [FK]).

Proposition A.1 Let Σ be a finite Riemann surface , then Σ is hyperbolic (admits
a Green function) and for every φ ∈ W

1
2 ,2(∂Sigma,C), there exists a unique

u ∈ W 1,2(Σ,C) such that 

∆u = 0 in Σ

u = φ on ∂Σ
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Observe that spaces and equations above are independant of the metric chosen
compatible with the complex structure onΣ. We consider the following Hermitian
scalar product on L2(Σ,C)

< ω1, ω2 >:=
∫

Σ

ω1 ∧ ∗ω2 , (A.1)

and the following antihermitian sesquilinear form on L2(Σ,C)

(ω1, ω2) :=
∫

Σ

ω1 ∧ ω2 . (A.2)

(recall that if ξ are local complex coordinates in Σ ∗dξ = idξ and ∗dξ = −idξ).
Recall that H0

±(Σ) denote the sets of holomorphic and antiholomorphic functions
in W 1,2(Σ,C). Let ∂H0

+(Σ) and ∂H0
−(Σ) be the sets of exact holomorphic and

antiholomorphic 1-forms. Let Γk for k = 1 · · · q be the connected components
of Σ. Denote H0(Σ) the set of harmonic functions in W 1,2(Σ,C). Let vi be the
solution of 


∆vi = 0 in Σ

vi = δik on Γk for k = 1 · · · q
(A.3)

(δik are the Kronecker Symbols). Finally we introduce the following notation

V := VectC {v1, · · · , vq} . (A.4)

The following proposition holds.

Proposition A.2 LetΣ be a finite Riemann surface. Then the following orthogonal
decomposition of dH0(Σ) for < ·, · > holds

dH0(Σ) = ∂H0
+(Σ) ⊕ ∂H0

−(Σ) ⊕ dV . (A.5)

Remark A.1 Observe that the above decomposition (A.5) corresponds to a Sylvester
decomposition of dH0(Σ) for the Hermitian form i−1(·, ·). Precisely on ∂H0

+(Σ)
the sesquilinear form i−1(·, ·) is definite positive, on ∂H0

−(Σ), i−1(·, ·) is definite
negative and, on dV , (·, ·) is identically zero.

Proof of Proposition A.2. First of all we construct a particular basis of the de
Rham Group H1(Σ,R) by taking Poincaré-Lefschetz duals of some chosed basis
ofH1(Σ, ∂Σ). Since ∂Σ is non-empty and has a finite topology it is homeomorphic
(see [Ma]) to the disk D2 to which q − 1 disjoint subdisks, D1, · · · , Dq−1, that
we may assume to be included in D2

− := D2 ∩ {(x, y) ; x ≤ 0}, have been
removed, to which 2p other disjoint subdisks d1, d2 · · · d2p, that we may assume
to be included in D2

+ := D2 ∩ {(x, y) ; x ≥ 0}, have also been removed and
to which, finally, p Handels hl = S1 × [0, 1] l = 1 · · · p, have been glued by
identifying the two connected components of ∂hi with respectively d2i−1 and d2i.
We now chose the following basis for H1(Σ, ∂Σ). First for each l = 1 · · · p we
chose γl to be ∂d2l−1 and δl ⊂ D2

+ to be a closed curve in (D2
+ \ ∪ldl) ∪ hl
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made of the meridian {(0, 1)} × [0, 1] and a curve in (D2
+ \ ∪ldl) connecting the

two ends of this meridian. We can assume that the δl do not intersect each-other.
We then complete the famillies (γl)l=1···p and (δl)l=1···p by a collection of q − 1
curves ηl in D2

−, each curve ηl connecting the segment ∂Dl with the boundary
∂D2. (γl)l=1···p, (δl)l=1···p and (ηl)l=1···q−1 form a basis of H1(Σ, ∂Σ). If we
add this time the familly of circles (∂Dl)l=1···q−1 to (γl)l=1···p, (δl)l=1···p we get
a basis of H1(Σ). Consider one curve c taken among the two first types c = γl

or c = δl. Since the intersection number of c with the ηl is zero, by the standard
construction method (see [BT]), one gets the existence of a representant αc of the
Lefschetz-Poincaré dual of c in H1(Σ, ∂Σ) (see the relative to the boundary de
Rham cohomology pages 78-79 of [BT], corresponding here also to the compactly
supported de Rham cohomology) which is compactly supported in Σ :

∃αc ∈ C∞
0 (∧1Σ) ∩ Kerd s. t. ∀φ ∈ C∞(∧1Σ)

∫
Σ

αc ∧ φ =
∫

c

φ .

(A.6)

Among the representants of the class given by the Lefschetz-Poincaré we choose
the Coulomb Gauge minimizing the following problem

min



∫

Σ

|d∗α|2
α ∈ C∞(Σ) Kerd ι∗∂Σ ∗ α = 0

∀φ ∈ C∞(∧1Σ)
∫

Σ

αc ∧ φ =
∫

c

φ .


 (A.7)

where ι∂Σ is the canonical embedding of ∂Σ in Σ. The minimizer α0
c solves then



dα0
c = 0 in Σ

d∗α0
c in Σ

ι∗∂Σ ∗ α0
c

∀φ ∈ C∞(∧1Σ) ∩ Kerd
∫

Σ

α0
c ∧ φ =

∫
c

φ

(A.8)

(the uniqueness of α0
c comes from the following fact : if β solves dβ = 0 in Σ,

d∗β = 0 in Σ, ι∗∂Σβ = 0 and
∫

Σ
β ∧ φ = 0 for any φ ∈ C∞(∧1Σ) ∩ Kerd then

β = dh where h solves ∆h = 0 in Σ and ∂h
∂ν = 0 which clearly implies that h is

constant and therefore that β = 0). Take now f ∈ H0(Σ) and assume that

∀k = 1, · · · , q
∫

Γk

∗df = 0 . (A.9)

Then we claim that ∗df is exact in Σ.. For any c ∈ {γl} ∪ {δl} we have∫
Σ

∗df ∧ α0
c = −

∫
Σ

df ∧ ∗α0
c =

∫
Σ

f ∧ d ∗ α0
c −

∫
∂Σ

f ∗ α0
c = 0 . (A.10)
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Combining (A.9) and (A.10) we get that ∗df is null-cohomologic and is therefore
exact which proves the claim. Let then h such that dh = ∗f , we have

f =
1
2
(f + ih) +

1
2
(f − ih) ∈ H0

+(Σ) ⊕H0
−(Σ).

Thus, the codimension of dH0
+(Σ)⊕dH0

−(Σ) in H0(Σ) is at most q− 1 (because
we have to substract the relation 0 =

∫
Σ
d ∗ df =

∑q
k=1

∫
Γk

∗df ). Let vj one of
the function introduced in (A.3) and let f ∈ H0

+(Σ), then we have

< dvj , df >=
∫

Σ

dvj ∧ ∗df =
∫

Σ

dvj ∧ ∗d�f − i

∫
Σ

dvj ∧ d�f

=
∫

Σ

dvj ∧ d�f + i

∫
Σ

dvj ∧ d�f =
∫

Γj

d�f + i

∫
Γj

d�f = 0 .

(A.11)

Thus, we have that dV is perpendicular to dH0
+(Σ) and a similar argument shows

that it is also perpendicular to dH0
−(Σ). Thus dV ⊥ (dH0

+ ⊕ dH0
−). It is also

straightforward to check that the dimension of dV is q − 1. Therefore dH0 =
dV ⊕ dH0

+ ⊕ dH0
− and Proposition A.2 is proved. ��

Proposition A.3 Let Σ be a finite Riemann surface whose connected components
are denoted byΣk, k = 1 · · ·n. Letψ ∈ W 1,2(Σ,C), there exists a unique complex
valued function η ∈ W 1,2(Ω,C)



∂η = ∂ψ in Σ

η̃ ∈ H0
−(Σ) ⊕ V ,

∀Σk connected compo. of Σ ,
∫

∂Σk
η = 0

(A.12)

where η̃ is the harmonic extension of the restriction of η to ∂Σ insideΣ. Moreover
we have ∫

Σ

|∇η|2 ≤ 2
∫

Σ

|∂ψ|2 . (A.13)

Proof of Proposition A.3. Let ψ̃ be the harmonic extension of ψ restricted to
∂Σ inside Σ. From Proposition A.2, dψ̃ admits a unique decomposition dψ̃ =
dψ+ + dψ− + dψV where dψ± ∈ H0

±(Σ) and dψV ∈ dV . We chose η such that
dη = dψ−dψ+ with constant adjusted in such a way that ∀k = 1 · · ·n ∫

∂Σk
η =

0 where η̃ is the harmonic extension of η restricted to ∂Σ insideΣ. η clearly solves
(A.12). The uniqueness is given by the fact that a solution to


∂δ = 0 in Σ

δ̃ ∈ H0
−(Σ) ⊕ V

(A.14)
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is constant on each connected component of Σ. This is a direct consequence of
Proposition A.2 since ∂δ = 0 is equivalent to η̃ = η ∈ H0

+(Σ) and dH0
+(Σ) ∩

dH0
−(Σ) ⊕ dV = {0}.
Integration by parts gives∫

Σ

∣∣∣∣∂η∂z
∣∣∣∣
2

−
∣∣∣∣∂η∂z

∣∣∣∣
2

dz ∧ dz =
∫

Σ

dη ∧ dη

=
∫

∂Σ

η dη =
∫

∂Σ

η− + ηV d(η− + ηV )

=
∫

∂Σ

η− dη− =
∫

Σ

dη− ∧ dη−

= −
∫

Σ

∣∣∣∣∂η−
∂z

∣∣∣∣
2

dz ∧ dz ≤ 0

(A.15)

Therefore we have∫
Σ

∣∣∣∣∂η∂z
∣∣∣∣
2

dz ∧ dz ≤
∫

Σ

∣∣∣∣∂η∂z
∣∣∣∣
2

dz ∧ dz =
∫

Σ

∣∣∣∣∂ψ∂z
∣∣∣∣
2

dz ∧ dz

and Proposition A.3 follows. ��
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