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‘‘CONCAVE ISLANDS’’: HABITAT HETEROGENEITY OF PARAFLUVIAL PONDS
IN A GRAVEL-BED RIVER
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Abstract: Floodplain pond distribution, density, and diversity were investigated along the active river cor-
ridor of the Tagliamento River in northeastern Italy, the last major semi-natural river in Central Europe.
Along the corridor, ponds peaked in bar- and island-braided floodplains but were absent in constrained
sections. Within the main study area, a 1.0-km2 large braided floodplain, the number of ponds containing
water ranged between 18 and 39 depending on the water level in the main channel. Thermal properties and
water-level fluctuations were the most important variables determining pond characteristics and heteroge-
neity. Results from a PCA on environmental variables distinguished four groups of ponds distributed along
a hydrologic and thermal gradient. Parafluvial ponds are short-lived, discrete, aquatic ‘‘islands’’ within the
floodplain matrix. They are expected to contribute disproportionately to aquatic biodiversity; however, they
are very sensitive landscape elements that disappear as a consequence of river regulation, wood removal,
and flow control.

Key Words: reference river, braided, restoration, biodiversity, riparian, patch dynamics

INTRODUCTION

Riparian corridors are characterized by a large di-
versity of aquatic and terrestrial landscape elements
(Ward et al. 2002). Surface waters include lotic, semi-
lotic, and lentic water bodies distributed along an in-
undation continuum. Cut-and-fill alluviation, coupled
with ground- and surface-water interactions, create a
complex array of shallow lentic habitats, including
floodplain ponds. While lentic water bodies such as
vernal ponds, forested wetland ponds, prairie ponds,
man-constructed ponds, and small lakes have been ex-
tensively studied (Batzer et al. 1999, Schwartz and
Jenkins 2000, Brönmark and Hansson 2002, Brooks
and Hayahi 2002, Oertli et al. 2002), alluvial ponds
have been almost completely ignored (Drago 1989,
Homes et al. 1999).
Ponds are important for biodiversity conservation,

but they have been lost on a large scale during the
twentieth century, reaching 40–90% for Western Eu-
ropean countries and for the U.S.A. (Hull 1997, Mitsch
and Gosselink 2000, Wood et al. 2003). Ponds in dy-

namic floodplains are among the most endangered
landscape elements since they disappear rapidly as a
consequence of river regulation (Homes et al. 1999,
Gurnell and Petts 2002, Ward et al. 2002). Ecologi-
cally, floodplain ponds can be viewed as ‘‘concave
islands’’ that are embedded into the alluvial floodplain
matrix (cf. Holland and Jain 1981).
The main objectives of the present study were to

characterize the environmental conditions of alluvial
ponds and to quantify their physicochemical hetero-
geneity. Our focus was on parafluvial (sensu Fisher et
al. 1998) ponds within the active zone of the river
corridor and the riparian forest ponds. We recognized
three main questions. (1) Where do ponds peak in
number along the corridor? (2) How are pond density
and pond area related to river hydrology? (3) Which
environmental variables explain pond diversity within
the active plain? The semi-natural Tagliamento River
in northeastern Italy offers the rare opportunity to
study the density, diversity, and dynamics of paraflu-
vial ponds under near-natural conditions (Tockner et
al. 2003).
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Figure 1. The catchment of the Tagliamento and the location of study sites. I � Italy, SL � Slovenia, A � Austria. Numbers
(1–17) stand for the study segments of the longitudinal survey.

STUDY AREA

The Tagliamento is a large, gravel-bed river located
in northeastern Italy (Friuli-Venezia Giulia; 46�N,
12�30�E; Figure 1). The river originates at 1195 m
a.s.l. in the Carnian Alps and flows 170 km to the
Adriatic Sea. The catchment covers 2580 km2, with
more than 70% of its catchment located in the Alps.
The mountainous part of the catchment consists of
limestone and Flysch deposits, and the Friulian plain
is filled with Tertiary and Quaternary sediments (Petts
et al. 2000, Tockner et al. 2003). The riparian corridor
consists of five major landscape elements: surface wa-
ter (12.4 km2), bare gravel (38.7 km2), vegetated is-
lands (10.6 km2), riparian forest (32.0 km2), and to-
pographical low areas that are not forested (�50-km2,
Tockner et al. 2003). The Tagliamento has an average

discharge of �70 m3s�1, whereas floods with 2-, 5-,
and 10-yr recurrence intervals are estimated to be
1100, 1600, and 2150 m3s�1 (Petts et al. 2000). High
flow is caused by snowmelt (spring) and by heavy
rainfall (autumn), with discharge maxima of �4000
m3s�1 (Ward et al. 1999). The near-natural morpholog-
ical character of the Tagliamento is reflected by a com-
plex channel morphology structured by a dynamic hy-
drologic flood regime, an idealized longitudinal se-
quence of constrained, braided, and meandering sec-
tions, and low human impacts. In the braided section,
the active plain is up to 1.5 km wide and characterized
by a variable cover of vegetated islands (Petts et al.
2000, Arscott 2001, Gurnell et al. 2001, Van der Nat
et al. 2002).
The main study area is a 1-km2 flood plain in the
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middle section of the river corridor (Figure 1; river
kilometer 79.8–80.8; 135 m a.s.l.). It consists of lotic
and lentic water bodies (ponds), gravel bars, wooded
islands, and a fringing riparian forest. The local cli-
mate has an Alpine character, with much precipitation
(2000 mm yr�1 at Gemona at 215 m a.s.l., 1961–1990)
and a mean maximum air temperature of 17.6�C. De-
tailed information on the catchment and the main study
area are given by Ward et al. (1999), Arscott et al.
(2000), Gurnell at al. (2000), and Tockner et al.
(2003).

METHODS

In the present study, we defined ponds as isolated
water bodies with a surface area �2 m2 and a water
depth �10 cm. Hydrologically, ponds were divided
into three categories: permanent, ephemeral, and epi-
sodic. Permanent ponds carried water during the entire
investigation period, ephemeral ponds dried up for
some periods, and episodic ponds had surface water
only during short–term flow or flood pulses (sensu
Tockner et al. 2000).

Pond Dynamics in Space and Time

In spring 2002, around mean water level, pond den-
sity was systematically investigated within 17 seg-
ments of 1-km length; equally spaced (every 10 km)
along the entire corridor (Figure 1; see also Karrenberg
et al. 2003). Within each segment, all ponds were
mapped.
Between April and October 2001, all ponds in the

main study area were repeatedly mapped (total 46
dates). In addition to all ponds in the active zone, we
included ponds in the adjacent riparian forest (right
bank, in flow direction). The interval between individ-
ual sampling dates ranged from 3 to 12 days depend-
ing on the relative change of the water level (main
channel). The exact position, area, and distance to veg-
etated islands, main channel, and side channel were
measured for each pond using a Global Positioning
System (GPS, TCS 1, Trimble Inc., USA). On each
sampling date, shape, length, width, and maximum
depth were determined for all ponds that actually con-
tained water. The surface area of each pond was cal-
culated during filling and drying periods by multiply-
ing maximum length and maximum width. Further-
more, the degree of surface connectivity of individual
pond with channels was recorded.

Pond Hydrology

Water level was determined by installing simple
graduated staff gauges vertically at the deepest point

of each floodplain pond. Staff gauges were read man-
ually at each sampling date (totaling 46 dates). A per-
manent gauging station at a knick point 1.5-km down-
stream of our investigation site (location name: S. Pie-
tro) was used as a reference point in the main channel.
Stage data were used rather than discharge because
discharge data were not available for the investigation
period. A problem using stage data from a morpho-
logically dynamic river is that channel bed elevations
change frequently; these changes could affect the stage
discharge relationship. The gauging station from
which the data were obtained is located at a stable
bedrock constriction and therefore minimized instabil-
ity in the stage discharge relationship. Daily changes
and cumulative water-level fluctuations (sum of daily
change) were calculated for each pond.

Thermal Heterogeneity

From April to October 2001, surface-water temper-
ature was recorded at hourly intervals. Temperature
data-loggers (VEMCO Minilog, Nova Scotia, Canada)
were installed at the deepest point of each pond (Ar-
scott et al. 2001, Uehlinger et al. 2003). The following
variables were calculated to characterize thermal het-
erogeneity: (i) average daily temperature, (ii) average
minimum daily temperature, (iii) diel temperature am-
plitude (maximum � minimum difference), (iv) sea-
sonal variation expressed as the difference between
minimum and maximum values during the investiga-
tion period, and (v) cumulative degree days (sum of
daily mean temperature).

Physicochemical Characterization

Oxygen (mg/l, % saturation) was measured with a
portable oximeter (Oxi 320, WTW, Germany), pH
with a portable pH meter (pH 340, WTW, Germany),
turbidity (Nephelometric Turbidity Units: NTUs) with
a portable turbidity meter (Cosmos, Züllig, Switzer-
land), and specific conductance (�S cm�1, Tref at 20�C)
with a portable specific conductance meter (LF 325,
WTW, Germany). All ponds were sampled between
8:00 and 11:00 a.m. at the central part of the pond to
minimize diel influences (at the location of tempera-
ture loggers).

Statistical Analyses

Synchrony was used to assess the seasonal patterns
in pond dynamics. Synchrony or temporal coherence
is a measure of the similarity between a pair of sam-
pling sites (e.g., Soranno et al. 1999, Kling et al. 2000,
Tockner et al. 2002). High synchrony is generated
when sites respond similarly to a common driver. For
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Figure 2. Number of ponds containing water per river-km
along the Tagliamento corridor (April 2002).

each variable, synchrony was calculated as the Pearson
product-moment correlation coefficient (r) between
time series of all data (n � 46) for each pair of ponds.
In order to classify individual pond types, a principal
components analysis (PCA; CANOCO 4.02, Ter Braak
and Smilauer 1998) was applied by integrating mor-
phological, physicochemical, and hydrologic variables.
To reflect the within- and between-pond heterogeneity,
we used ranges (maximum � minimum differences)
for turbidity, water-level fluctuation, specific conduc-
tance, oxygen, and pH.

RESULTS

Pond Dynamics in Space and Time

Along the active river corridor, density ranged from
0 to 22 ponds per 1-km study segment, with greatest
pond density in bar- and island-braided floodplain seg-
ments (Figure 2). In 8 out of 17 segments, ponds were
absent during the sampling campaign, either because
there was no surface flow or because the segment was
constrained naturally (canyon sections) or artificially
(canalization in the most downstream sections, Figure
2).
Of the 39 ponds in the main study area, 18 were

permanent, 18 ephemeral, and 3 episodic (Figure 3).
Based on their location, 31% of all ponds were asso-
ciated with vegetated islands, and 61% were bare-
gravel ponds, the latter mostly associated with large
wood accumulations. Three permanent ponds (8%)
were located in the riparian forest. Pond shape was
from near circular to extremely elongated, with length-
to-width ratios ranging from 1.1 to 23.3.
Pond density increased exponentially from 18 ponds

at a water level of 100 cm to 39 ponds at 230 cm
(Figure 4). At a specific water level, the density of
ponds varied considerably. For example, at a water
level of 190 cm, pond density in the main study area

ranged from 24 (1 May) to 32 (23 April). Based on
the observed relationship between water level and
pond density, an entire year of water-level data were
converted into a time series of pond densities (Figure
5). As expected from this relationship, pond density
strongly resembled the dynamic hydrograph, with an
expected peak at �250 cm, close to the maximum wa-
ter level sampled during the present study. However,
a sharp decrease in density was observed above a wa-
ter level of �250 cm (U. Karaus, personal observa-
tion). At this water level, around 50% of the floodplain
is inundated (Van der Nat et al. 2002). Based on this
prediction, about 50% of all ponds contained water
only during short periods, often only for 1–2 days after
flood events (Figure 5).
The aquatic surface area of all ponds combined in-

creased exponentially from 1503 m2 at low water level
to 18204 m2 at 216 cm (y � 113.3 e0.022x, r2 � 0.92).
Area of the smallest permanent pond (39) was 3 m2 at
lowest measured water level and 48 m2 at highest wa-
ter level. Pond 92 was the largest pond at lowest water
level (618 m2). At highest measured water level, pond
82 was the largest pond (7965 m2). The area ratio of
high to low water level (Ahigh/Alow; Table 1) ranged
from 2 (pond 33) to 470 (pond 82).

Pond Hydrology

During the investigation period, the maximum
change in water level ranged from 11 cm (pond 93) to
72 cm (pond 84), compared to 116 cm in the main
channel (Figure 6). Cumulative water-level change
(sum of daily changes during the investigation period)
ranged from 56 cm (pond 93) to 311 cm (pond 94),
compared to 348 cm in the main channel. A distinct
hydrologic gradient occurred across the floodplain.
Ponds close to the right bank (in flow direction) had
small water-level fluctuations, ponds close to the main
channel and ponds located in former channels (ponds
82, 79) showed large amplitudes (Figure 6). Water-
level fluctuations in all permanent ponds except pond
102 were strongly related to the hydrograph of the
main channel (r � 0.5). Pond 102 had a very constant
water level.
At low water level (100 cm), 54% of the ponds were

dry and 46% remained disconnected. At mean water
level (189 cm), 31% were dry, 64% remained discon-
nected, and 5% were already connected. At about 340
cm, all water bodies (ponds and channels) merged into
a single channel (Figure 7).

Thermal Heterogeneity

Over the 6-month period (May to October 2001),
cumulative degree-days were from 1924�C (pond 102)
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Figure 3. Map of the main study area and location of permanent, ephemeral, and episodic ponds. In the active corridor, only
ponds within the large gravel bar / island complex were considered. Ponds 100 to 102 are in the riparian forest.

Figure 4. Relationship between water level of the main
channel (S. Pietro) and the number of ponds containing wa-
ter.

to 3308�C (pond 87). Across the floodplain, average
daily temperature difference between the coolest and
the warmest pond ranged from 4.0�C to 16.1�C, with
an average difference of 9.8�C. Within individual
ponds, average daily temperature (May until October)
ranged from 13.4�C (pond 102) to 22�C (pond 92), and
average diel amplitude was from 0.9�C (pond 102) to
11.6�C (pond 92). Maximum diel amplitude was be-
tween 1.3�C (pond 102) and 26.2�C (pond 39). Indi-
vidual ponds can be arranged across a gradient from
small to large diel and seasonal amplitudes (Figure 8).
Diel and seasonal temperature patterns (based on hour-
ly measurements) illustrate differences in thermal re-
gimes across the floodplain (Figure 9). Pond 33, for
example, had low diel variation but a distinct seasonal
variation. A similar seasonal variation, but with larger
daily fluctuations, was observed in pond 36A. Distinct
diel temperature fluctuations were measured in ponds
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Figure 5. A: Water level (S. Pietro) from May 2001 to June
2002. B: Number of ponds predicted from the water level—
pond number relationship (see Figure 4) for this time period.

Table 1. Area (m2) of selected floodplain ponds at low water level
(Alow; 103 cm) and high water level (Ahigh; 216 cm), and area
variation (ratio Ahigh/Alow).

Pond Alow Ahigh Ahigh/Alow
3A
33
36A
39
79

36
173
6
3

289

239
408
85
48

2718

7
2
15
16
9

80
81
82
84
87

5
63
17
70
39

86
165
7965
321
150

18
3

469
5
4

92
94
98
98A

618
17
167
0 (dry)

4343
268
1345
64

7
16
8

�64

Figure 6. Relative daily water-level changes (cm) of all permanent ponds compared to the main channel (MC) during the
investigation period. Ponds are grouped according to the outcome of the PCA (see Figure 10).

88, 90, 92, and 94. Small temperature fluctuations at
the beginning of the investigation period and a contin-
uous increase during the investigation period were fea-
tured in pond 90. A weak seasonal temperature pattern
was shown in ponds 98 and 102.

Classification of Ponds

Average synchrony for all variables was 0.33. This
average was taken across all pairs of ponds. Synchrony
of individual ponds with all other ponds was low and
ranged from 0.21 (pond 100) to 0.47 (pond 84). Syn-
chrony between individual ponds and the lotic channel
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Figure 7. The shift of ponds from a dry (white) to a dis-
connected lentic (gray) and finally to a connected (black)
state with increasing water level in the main channel (S.
Pietro). Data from the water level 256 cm are obtained from
a preliminary sampling in March 2001.

Figure 8. Average daily temperature (May until October
2001) vs. diel amplitude for all permanent ponds (r2 � 0.58).

ranged from 0.15 (pond 15) to 0.53 (pond 53). Syn-
chrony of variables was 0.18 for turbidity, 0.22 for
specific conductance, 0.42 for pH, and 0.50 for dis-
solved oxygen.
The first two axes of the principal components anal-

ysis PCA explained 51% of the total variance within
the data matrix (14 environmental variables, 18 per-
manent ponds). Average, maximum, and minimum
daily temperature (73%, 64%, and 56%), water-level
fluctuation (67%), turbidity (42%), and specific con-
ductance (28%) accounted for the definition of the F1
axis (Figure 10). Average water depth (45%), average
diel temperature amplitude (45%), and pH (31%) ac-

counted for most of the definition of the F2 axis. Dis-
tance to channel and island (69 and 46%) and vari-
ability in surface area (40%) accounted for the defi-
nition of the F3 axis (not shown in Figure 10). Oxygen
(77%) explained the F4 axis (not shown). Results from
the PCA on these environmental variables distin-
guished four groups of ponds along the F1 and F2 axis
(Figure 10). Group 1 (39, 82, 87, and 92; see Figure
3 for location) was characterized by a large thermal
heterogeneity. In contrast, group 2 (3A, 93, 98, 101,
102) had a very low thermal heterogeneity. Group 3
(33, 79, 84, 94, 100) was hydrologically very dynamic
and had a wide range in specific conductance, turbid-
ity, pH, and oxygen values. Group 4 (81, 90, 91, 93)
had small water-level fluctuations and showed a nar-
row range in specific conductance, turbidity, pH, and
oxygen values. Pond 36A did not fit into any of the
groups.

DISCUSSION

The Tagliamento River offers the rare opportunity
to investigate ecosystem patterns and processes under
semi-natural conditions that can be studied almost no-
where else in Europe (Ward et al. 1999). The Taglia-
mento has a number of attributes that have not been
given due consideration in river ecology: (i) an im-
mense corridor of more than 150 km2, (ii) uncon-
strained floodplain segments, and (iii) a large number
of vegetated islands (Tockner et al. 2003). A high di-
versity of parafluvial ponds is considered as an addi-
tional key attribute along the dynamic river corridor
that has not yet been studied in detail.

Pond Dynamics in Space and Time

Along the active corridor of the Tagliamento, a
maximum of 22 ponds per river-km was quantified
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Figure 9. Hourly values of surface temperature in eight selected ponds (April to October 2001).

(Figure 2). Ponds were absent in human-controlled
sections. Therefore, ponds can be considered as very
sensitive aquatic habitats that disappear rapidly as a
consequence of human impacts such as canalization or
flow control. Along the Isar River (Germany), inten-
sive hydrologic engineering has also led to a major

decrease in pond density and heterogeneity (Homes et
al. 1999).
Besides human impacts, changes in the hydrologic

and geo-morphological style along the river corridor
control pond density and diversity. In the headwater
section, a narrow floodplain, a steep channel slope
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Figure 10. Principal components analysis ordination based on fourteen environmental variables for the ponds. Circles with
numbers represent ponds and arrows indicate different variables. The ordination map illustrates the relationship of each variable
with the definition of either the F1 or F2 axis and of each sampling point (pond) with respect to the F1 and F2 axes (defined
by the variables). Average max daily temp � average maximum daily temperature; average min daily temp � average minimum
daily temperature; average daily temp � average daily temperature; cum wlf � cumulative water-level fluctuation; max range
wlf � maximum range of water-level fluctuation.

with coarse sediments, and a low alluvial reservoir
limit the formation of ponds. An increase in active
floodplain width, higher flow rates favor the formation
of floodplain ponds in the middle or braided sections.
In the meandering section, an increase of the active
channel width combined with a narrow active flood-
plain corridor, and a higher alluvium results in the for-
mation of fewer but larger ponds (Arscott et al. 2000).
Parafluvial ponds differ from woodland ponds,

marshy ponds, or prairie ponds. They are very young
habitats that are formed and shaped by repeated cut-
and-fill processes (Kohler et al. 1999, Arscott et al.
2002). Indeed, ponds are among the youngest habitats
in the Tagliamento channel, with average half-life ex-
pectancies of less than seven months (Van der Nat et
al. 2003). Gravel deposition, as well as erosion, is re-
sponsible for the low half-life expectancies of ponds.
Hydrologically, parafluvial ponds are closely linked to
the main channel. Therefore, water-level fluctuations

in the main channel control the number and areal ex-
tent of ponds (Figure 5). In the Tagliamento flood-
plain, an exponential relationship between water level
and pond density has been observed (Figure 4). There-
fore, even moderate flow fluctuations can have major
consequences for both pond density and area.

Pond Hydrology and Thermal Heterogeneity

The two most important factors that control pond
diversity are hydrology (source and pathway of water)
and temperature (see Figure 10). Hydrologic and ther-
mal differences among ponds can be explained by a
combination of flow paths (alluvial and hill-slope
ground water), pond location (shading, distance to the
channel), and topography (ratio of low-to-high water
surface area). For example, a decreasing trend in flow
variability from the main channel towards the riparian
forest was observed. The ‘‘forest ponds’’ (e.g., 102),
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which were almost completely shaded, deep, and fed
by hill-slope ground water, had almost no water-level
fluctuations.
The variability of water level affects area, which

again influences surface connectivity (lateral connec-
tivity) between ponds and the channel. Water-level
fluctuation, topography, and spatial location of each
pond create a heterogeneous pattern of connectivity
(Figure 7). During low water level, most ponds are
disconnected and expected to function ecologically as
(concave) islands. Flood events connect the islands
with the river and support the exchange of matter and
organisms between lotic and lentic habitats (Drago
1989), a primary factor for ecosystem dynamics and
functioning. Connectivity influences, for example, di-
versity and productivity across different hierarchical
scales (Amoros and Roux 1988, Ward and Stanford
1995, Stanford et al. 1996, Tockner et al. 1999, Ward
et al. 1999). Hydrologic connectivity, which includes
longitudinal, lateral, vertical, and temporal connectiv-
ity, as well as complex habitat gradients, are strongly
related to high species and life-history-strategy diver-
sity (Amoros and Bornette 2002).
The second most important factor controlling pond

diversity is temperature. The investigated ponds pro-
vided a diverse array of warm and cold water patches
within the active floodplain. In addition to longitudinal
patterns in water temperature, lateral (e.g., ponds,
backwaters) and vertical (e.g., within the substrate)
heterogeneity in temperature is increasingly recog-
nized as a potentially important aspect in habitat con-
ditions in streams and rivers (Poole and Berman 2001,
Arscott et al. 2002, Claret et al. 2002). In the main
study area, a lateral thermal difference of up to 17�C
at a specific day is as high as along the entire 170-km
long river corridor (Arscott et al. 2001). Temperature
is a primary factor that regulates ecosystem processes
and therefore structures biotic communities (Ward and
Stanford 1982, Ward 1992). It has a strong influence
on life history, species diversity, and abundance levels
(Ward and Stanford 1982).

Pond Heterogeneity and Ecological Role

Floodplain ponds had a wide range in size, shape,
and physicochemical properties. An average synchro-
ny among ponds of 0.33 indicates a low temporal co-
herence of ponds to a common driver (water source,
flow path, temperature). Furthermore, the low average
synchrony value between ponds and the lotic channel
(0.31) indicates that physicochemical parameters are
strongly influenced by local factors such as the topo-
graphic position of ponds, morphology, and their sub-
surface connectivity (i.e., ground-water exchanges).
An example of local influences was demonstrated us-

ing the relationships with specific conductance, which
can be used as an indicator of hydrologic connectivity.
In instances where specific conductance correlated
poorly between ponds and side channel, while water-
level fluctuation between ponds and the main channel
were highly correlated, the interpretation suggests hy-
drostatic effects, which indicate a hydrostatic water
connection but no water exchange between ponds and
channels.
The morphological, topographical, hydrologic, ther-

mal, and physicochemical heterogeneity, which is
strongly related to the local environment of each pond
leads to a unique pond mosaic (Figure 10). Floodplain
ponds are responsible for much of the variation in
chemical conditions and thermal variability across the
floodplain (Arscott et al. 2000). In contrast, they only
cover a tiny portion of total aquatic surface area. In
the main study area of the Tagliamento, for example,
ponds contribute �6.0% of the total aquatic surface
area at low water level and 	1.0% at high water level
(Van der Nat 2002). Despite this small aerial extent,
ponds are expected to play a crucial ecological role.
Floodplain ponds can provide habitat for a specific
fauna and flora as demonstrated in recent investiga-
tions along the Isar (Germany, Homes et al. 1999), in
the Luznize floodplain (Czech Republic, Pechar et al.
1996), along the Ain and Rhône Rivers (France, Cas-
tella et al. 1991), or along the Flathead River (Mon-
tana, J.A. Stanford and M. Lorang, pers. comm.). The
faunal community composition depends on pond age
(Schneider and Frost 1996), the frequency of flooding
and drying (Castella 1987), on area and spatial ar-
rangement within the landscape (Brönmark 1985,
Ward and Blaustein 1994, Oertli 2002), on depth and
width (Amoros 2001), and on the frequency, duration,
magnitude, and timing of flooding and drying (Brooks
2000). This supports our assumption that each pond
has an insular nature (‘‘concave island’’) with a char-
acteristic set of environmental properties. Lastly, many
ponds are associated with vegetated islands. Indeed,
the presence of vegetated islands enhances the diver-
sity of aquatic habitats (Arscott et al. 2000, Gurnell et
al. 2001, Gurnell and Petts 2002). Therefore, ponds
are expected to contribute to a greater invertebrate di-
versity within the active floodplain channel.

CONCLUSIONS

The present study characterized and quantified the
spatiotemporal dynamic that characterizes parafluvial
ponds. Basically, all ponds are strongly related to the
hydrologic regime of the channel. However, the mor-
phology, topography, and the physicochemical prop-
erties of each pond form a heterogeneous pattern in
space and time. Thereby, each pond contributes to the
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overall habitat diversity of the floodplain. The longi-
tudinal investigation not only showed ponds as part of
the corridor, but also emphasized the sensitivity of
ponds to anthropogenic impacts. Therefore, parafluvial
ponds can be used as sensitive indicators, similar to
vegetated islands (see Tockner et al. 2003), of the in-
tegrity of entire river corridors.
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