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Abstract

Motivated by applications in the modeling of deformations of the DNA double
helix, we construct a continuum mechanics model of two elastically interacting
elastic strands. The two strands are described in terms of averaged, or macroscopic,
variables plus an additional small, internal or microscopic, perturbation. We call
this composite structure a birod. The balance laws for the macroscopic configura-
tion variables of the birod can be cast in the form of a classic Cosserat rod model
with coupling to the internal balance laws through the constitutive relations. The
internal balance laws for the microstructure variables also take a mathematical form
analogous to that for a Cosserat rod, but with coupling to the macroscopic system
through terms corresponding to distributed force and couple loads.

1. Introduction

The theory of elastic rods has a long history. There now exists a hierarchy of
detailed theories that both justify and generalize the original (most simplistic and
yet fundamental) model of Euler and the Bernoullis to encompass such effects
as shear, extension, non-uniformity, intrinsic curvature, and nonlinear constitutive
relations, in both the static and dynamic settings. A comprehensive survey of both
the history and contemporary state of the field can be found in Antman [2].

An inspection of the literature makes evident the unsurprising fact that the
primary motivation for the development of elastic rod theories has been the most
obvious application, namely to construct a simplified model whose governing equa-
tions can predict good approximations for the solutions of the full three-dimensional
field equations of macroscopic elasticity when the body at hand is appropriately
loaded and is long and slender, e.g., wires, ropes, cables or beams. Nevertheless,
over the last several decades, elastic rod models have been increasingly applied
to the microscopic problem of describing and understanding the deformations and
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supercoiling of fragments of DNA molecules at various length scales. Mirroring
the development of the original rod theories, the continuum mechanics models that
have been exploited within the DNA context have been of increasing sophistication,
and have successfully yielded ever more detailed information and insights, (see,
e.g., [5, 6, 16, 17, 24, 25, 28]).

At this time, there is a fundamental difficulty limiting the range of applicability
of continuum rod models to DNA. While understanding the folding and deforma-
tions of the DNA double helix as a single structure is undeniably important within
the biological context, the full biological function of DNA is inextricably linked
to the fact that it is a double helix, and the mechanisms for strand separation (also
called melting or unzipping) need to be better understood. Consequently, in the
past two decades, several works have been directed toward modeling the open-
ing of the DNA double helix. A survey of the literature reveals that there are two
major approaches to the strand separation problem, both based on discrete statisti-
cal mechanics. Benham [7] models the free energy required for the separation of a
given number of contiguous base pairs as the sum of the energy needed to nucleate
opening plus the energy needed to open a specified number of contiguous base
pairs with a specific sequence. The necessary energy parameters are determined
from thermodynamical considerations and experimental results. Comparison with
experiment has shown that the numerical simulations based on this model are a
valuable tool in predicting sequence-dependent sites along the DNA molecule that
are particularly susceptible to strand separation [8].

In the second approach, Barbi et al. [4] use a geometric and dynamic model,
which they call the twist opening model, to study structural transitions of the DNA
double helix whose axis is constrained to be a straight line. In their model, each
base pair is represented by a simplified system with only two degrees of freedom,
the radius and an orientation angle. The hydrogen bonds linking the two bases in
a base pair are modeled by a Morse potential. Their description is a generalization
that combines the planar model of Peyrard & Bishop [20] describing transverse
DNA dynamics and the torsional model of Yomosa [35]. In the small-amplitude
approximation, the continuum limit of the difference equations of this model yields
differential equations that admit soliton solutions. There are also more elaborate
models that are extensions of that of Peyrard-Bishop, but we defer to the review
article [14] and Yakushevich [33, 34] for further details. See also Prohofsky [21]
who uses a model of chemical bond disruption to model DNA double helix melting.

It seems that there is a reasonable consensus within the field that it would
be desirable to strengthen the connections between models focused solely on base-
pair opening, and models focused solely on deformations of the actual double-helix,
with the objective of understanding how the overall deformations of DNA includ-
ing twist and bend waves and focusing effects interact, initiate and inhibit localized
melting of the double helix. It is currently impossible to decide whether or not such
melting phenomena can usefully be modeled by a continuum rod theory, for the
simple reason that, to the best of our knowledge, no appropriate double-stranded
continuum rod theory exists. Accordingly, the objective of this article is to develop
just such a theory. While our motivation is firmly rooted in the DNA application,
in this article we make only the first step of constructing the field equations for a
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double-strand continuum theory, and leave an investigation of the level of utility of
the model within the DNA (or any other) context to subsequent work. Consequently
there is no mention of DNA beyond the Introduction.

It should also be remarked that several authors have developed multi-strand rod
models of a different type, motivated both by DNA supercoiling and other physical
systems, such as spun ropes (see, e.g., [10, 12, 13, 27]). In DNA supercoiling a
plectoneme is formed when distinct parts of the DNA double helix deform in space
and touch each other, typically winding around each other to form a two-stranded
helical structure. However in that context, each of the two strands is itself a double
helix. The macroscopic analogy is two pieces of wire winding around each other,
but free to slide. This is a contact problem, with the feature that slithering can
occur, so that a specific point on one strand can change the point or points on the
other strand with which it interacts. The theory developed here is not appropriate
for such systems. Rather a macroscopic analogue of our model of the DNA double
helix would be two wires that are brought close to each other through bending
and twisting, and which are glued to each other with an elastic cement. Thus each
point on one strand (i.e., a specific base) has a distinguished partner on the other
strand. Our focus is the construction of a continuum model that allows an analysis
of the interaction of the overall macroscopic deformation of the structure and the
internal, or microscopic, strains and stresses, with the objective of understanding
when internal stresses could be focused in such a way that the glue fails, or the
DNA double helix melts.

In Section 2 we establish the kinematics of double-stranded systems. In par-
ticular we define the strains of an averaged structure that we call the macroscopic
variables, and the strains of an internal microstructure. We call the composite object
described by the macroscopic and microscopic strains a birod. The development
of the kinematics is not entirely straightforward because it entails taking appropri-
ate averages of rotations. It does lead naturally to a theory in which derivatives of
strain-like variables enter the kinematics.

Our development could be described as a mixture theory (see, e.g., [22]), appro-
priate for rods. The only prior work in this direction of which we are aware is the
mixture theory for stresses of an arbitrary number of rods described in [23]. But
that work differs from ours in that it is assumed that all rods are coincident in the
deformed configuration, and only the differences in the stresses are analyzed.

In Section 3 we derive the appropriate balance laws. Essentially by construc-
tion, the field equations governing the macroscopic composite variables for the
birod take precisely the form of the dynamics of a Cosserat rod. Moreover (in a
result unanticipated by us) the field equations for the internal microscopic variables
also take the form of Cosserat rod dynamics, but with the same macroscopic center
line and with terms which formally correspond to distributed loading by external
forces and moments (and which are in fact related to coupling with the macroscopic
system). In Section 4 we start our consideration of constitutive relations for birods.
In Section 5 we introduce an appropriate action principle for hyper-elastic birods,
and use it to compute specific energies that are invariant under Euclidean motions.
We clarify the circumstances in which the action principle implies the previously
obtained balance laws. The internal structure variables involve derivatives that are
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reminiscent of strain-gradient theories, but in our context it is the relative dis-
placements between strands which play the role of strains, and derivatives of these
relative displacements play the role of strain gradients. The action principle also
provides the appropriate natural boundary conditions for our birod. In Section 6 we
discuss in more detail the specific case of an energy that is a simple quadratic func-
tion of a natural set of variables. In Section 7 we make our theory concrete in some
very elementary, illustrative boundary-value problems. Our current conclusions and
possible directions for continuation are discussed in Section 8.

2. Kinematics

2.1. Preliminaries

Let {O; e1, e2, e3} be a fixed frame, with origin O and right-handed orthonor-
mal basis {e1, e2, e3}, of Euclidean space E 3. For any two vectors a, b ∈ E 3, the
scalar and vector products are denoted a · b and a × b. The Euclidean norm of a
vector a is denoted ‖a‖ = (a · a)1/2. The tensor product a ⊗ b of the vectors a
and b is the second-order tensor defined by (a ⊗ b)c = (c · b)a for all vectors
c ∈ E 3. For the vector a, we denote by a× the skew-symmetric tensor such that
(a×)b = a × b for all vectors b ∈ E 3. Throughout the article, the summation
convention for repeated Latin indices is employed with range 1 to 3.

2.2. Geometric description of birods

We consider a birod R composed of two thin elastic rods R+ and R− that are
bound together elastically. The two rods will be referred to as the strands of the
birod. Each strand is considered to be a special Cosserat rod [2] whose configura-
tion is described by specifying, for each s ∈ [0, L] and for each time t , a position
vector (from the point O) and a right-handed triad of orthonormal directors:

r+(s, t), position vector for R+, (2.1a)

{d+
1 (s, t), d+

2 (s, t), d+
3 (s, t)}, directors for R+, (2.1b)

r−(s, t), position vector for R−, (2.2a)

{d−
1 (s, t), d−

2 (s, t), d−
3 (s, t)}, directors for R−. (2.2b)

We will repeatedly make statements that apply equally to the + and − strands.
Therefore, we adopt once and for all notation such as r±(s, t) to refer simulta-
neously to either strand with the convention that the upper sign of any quantity is
associated with the upper sign of any other quantity.

The curves C ±(t) ≡ {r±(s, t), s ∈ [0, L]} represent the lines of centroids,
in the current configuration, of R±. We choose to parametrize these curves by a
common parameter s which need not be an arc length in either curve. The triads
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{d±
1 (s, t), d±

2 (s, t), d±
3 (s, t)} give the orientation of the material cross section at s

of R±. We take R±(s, t) to denote the proper orthogonal tensors

R±(s, t) = d±
i (s, t) ⊗ ei . (2.3±)

Throughout this article, quantities that are associated with the reference con-
figuration are denoted with the same symbol as those associated with the actual
configuration, but with a superposed circumflex, e.g., r and r̂ , etc. Thus, in the
reference configuration the position vector and the triad of directors of R± at s

are denoted by r̂±(s) and {̂d±
1 (s), d̂

±
2 (s), d̂

±
3 (s)}. We assume that d̂

±
3 (s) coincides

with the unit tangent t̂±(s) to the curve Ĉ ± ≡ {̂r±(s), s ∈ [0, L]}.
During the detailed development in this and the following section we shall

assume that at each s the material cross sections of both strands have mass densi-
ties given by

ρ±(s) = 1
2λ±(s)ρ(s), (2.4)

where the positive functions ρ(s) and λ±(s) are smooth, and that for all s

0 � λ±(s) � 2, λ+(s) + λ−(s) = 2.

For convenience, we set λ(s) = 2−λ+(s) = λ−(s). The equal mass density theory
can be recovered by taking λ(s) = λ+(s) = λ−(s) ≡ 1.

In this study, we switch attention from the two individual strands to a composite
structure, which we call a birod, made up of an elastic rod describing the average
or macroscopic deformations of the two strands, plus an internal, or microscopic,
set of variables that capture the differences in deformations of the two strands.
This approach falls under the general umbrella of continuum models endowed with
internal microstructures [9] or mixture theories [22]. One justification for the intro-
duction of a birod is the implicit assumption that the microscopic strains are small,
in which case the macroscopic deformation of the birod already provides a good
approximation to both individual strands, and the microscopic variables provide a
correction.

The gross, macroscopic deformation of the birod is given by

r(s, t), position vector for the birod, (2.5a)

{d1(s, t), d2(s, t), d3(s, t)}, directors for the birod, (2.5b)

where the position vector r(s, t) is the weighted average of the position vectors of
the two strands, i.e.,

r(s, t) = 1
2 [λ+(s)r+(s, t) + λ−(s)r−(s, t)], (2.6)

and the triad {d1(s, t), d2(s, t), d3(s, t)} is given by

d i (s, t) = R(s, t)ei , i = 1, 2, 3, (2.7)
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where the proper orthogonal tensor R(s, t) is the particular average of the proper
orthogonal tensors R±(s, t) explicitly given by any of the four equivalent expres-
sions [19]

R(s, t) = R−(s, t)[R−(s, t)TR+(s, t)]1/2

= R+(s, t)[R+(s, t)TR−(s, t)]1/2

= [R+(s, t)R−(s, t)T ]1/2R−(s, t)

= [R−(s, t)R+(s, t)T ]1/2R+(s, t).

(2.8)

Here, for any proper orthogonal tensor Q, Q1/2 denotes the proper orthogonal
tensor solution ofX2 = Q for which the eigenvalues have the largest positive real
part. Such a square root is well defined and unique unless Q is an involution, i.e.,
a rotation through the angle π . The proper orthogonal tensor R(s, t) defined in
(2.8) is such that d(R,R+) = d(R,R−), where d(·, ·) is any properly invariant
distance function in the group of rotations. The rotation tensor R(s, t) has another
characterization: it is the polar factor in the polar decomposition of the tensor
[R+(s, t) +R−(s, t)], cf. [19].

The microstructure of the birod is described by a microdisplacement and a
microrotation. The translational microdisplacement is

w(s, t) = 1
2 [r+(s, t) − r−(s, t)], (2.9)

whereas the microrotation can be described either through

P (s, t) = [R+(s, t)R−(s, t)T ]1/2, (2.10)

or

O(s, t) = [R−(s, t)TR+(s, t)]1/2. (2.11)

If the birod is described by its center line r(s, t), the proper orthogonal tensor
R(s, t), the microdisplacement w(s, t) and either of the microrotations P (s, t)

or O(s, t), then the configurations of the two strands can be recovered from the
relations

r±(s, t) = r(s, t) ± λ∓(s)w(s, t), (2.12±)

R+(s, t) = P (s, t)R(s, t) = R(s, t)O(s, t), (2.13+)

R−(s, t) = P (s, t)TR(s, t) = R(s, t)O(s, t)T . (2.13−)

Because of the relations (2.13±), and in analogy with the polar decomposition of
the deformation gradient in continuum mechanics, we will call O(s, t) the right
microrotation and P (s, t) the left microrotation. We note that these two microro-
tations are related through

O(s, t) = R(s, t)TP (s, t)R(s, t). (2.14)
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We have consistently adopted the notation ± to refer to objects associated with
the plus and minus strands. To continue this convention it is convenient to introduce
the notation

P+:= P and P−:= P T = P−1,

so that from (2.13±) we have

R±(s, t) = P±(s, t)R(s, t). (2.15±)

From (2.3±), (2.7) and (2.15±) one can see that

P± = d±
i ⊗ d i ,

and hence the rotation tensor P± maps the directors {d i} associated with the center
line r onto the directors {d±

i } associated with the center line r±. Figure 1 illustrates
the relations between the different frames of directors. The rotation tensorO trans-
forms coordinates of vectors with respect to the three frames associated with R,
andR±. We shall not considerO any further, but instead work exclusively with P .

We shall assume that s is an arc-length parameter for the curve Ĉ , i.e., the
center line of the birod in its reference configuration. Let s± be arc-length param-
eters for the reference curves Ĉ ± with the same orientation as s. (We note that in
the standard forms of DNA the two strands are most naturally considered to be
anti-parallel, but that modeling decision can be incorporated later.) Because s is

e3

e2

e1

3d

1d
2d

−R
+R

d
+

1

d
+

2

d
+

3

PT PT

P2

R

d1
−

−

−

d2

d3
PP

Figure 1. Relations between the rotation tensors R, R±, and P , the director frames
{di}, {d±

i
}, and the fixed frame {ei}.



60 Maher Moakher & John H. Maddocks

an arc-length parameter for Ĉ we have, from (2.12±) evaluated on the reference
configuration,

r̂±
s (s) · r̂±

s (s) = 1 + (λ∓(s)ŵ(s))s · [(λ∓(s)ŵ(s))s ± 2̂rs(s)]. (2.16±)

We will assume that

−1 < (λ∓(s)ŵ(s))s · [(λ∓(s)ŵ(s))s ± 2̂rs(s)] < ∞,

so that the positive functions g±(s) defined by

g±(s)2 = 1 + (λ∓(s)ŵ(s))s · [(λ∓(s)ŵ(s))s ± 2̂rs(s)] (2.17±)

are smooth. Hence, the functions s±(s), relating the three arc-lengths, are one-
to-one with

ds±

ds
= g±(s). (2.18±)

The functions g±(s) will be called the relative stretches of the curves Ĉ ± with
respect to the curve Ĉ .

2.3. Strains and velocities

The kinematics associated with the center lines r(s, t) and r±(s, t) are given
by

v(s, t) := ∂r(s, t)

∂s
, (2.19)

v±(s, t) := ∂r±(s, t)

∂s± = 1

g±(s)

∂r±(s, t)

∂s
. (2.19±)

Using (2.12±) and (2.18±) we can relate the strains v±(s, t) to the macrostrain
v(s, t) and the microdisplacement w(s, t), i.e.,

v±(s, t) = 1

g±(s)
[v(s, t) ± λ∓(s)ws(s, t) ± λ∓

s (s)w(s, t)]. (2.20±)

Here and throughout the article, a subscript s or t denotes partial differentiation
with respect to the indicated variable.

The linear velocities γ±(s, t) ≡ r±
t (s, t) of the strands are related to the linear

velocity γ (s, t) ≡ r t (s, t) of the birod and the time derivative of the microdisplace-
ment w(s, t) through

γ±(s, t) = γ (s, t) ± λ∓(s)wt (s, t). (2.21±)

Let U(s, t) and U±(s, t) be the skew-symmetric tensors such that

∂

∂s
R(s, t) = U(s, t)R(s, t), (2.22)

∂

∂s±R
±(s, t) = U±(s, t)R±(s, t). (2.22±)
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With these skew-symmetric tensors we associate the corresponding Darboux vec-
tors u(s, t) and u±(s, t), i.e., for any vector a we have

U(s, t)a = u(s, t) × a, (2.23)

U±(s, t)a = u±(s, t) × a. (2.23±)

Similarly, let �(s, t) and �±(s, t) be the skew-symmetric tensors such that

∂

∂t
R(s, t) = �(s, t)R(s, t), (2.24)

∂

∂t
R±(s, t) = �±(s, t)R±(s, t), (2.24±)

and let ω(s, t) and ω±(s, t), be the angular velocities such that

�(s, t)a = ω(s, t) × a, (2.25)
�±(s, t)a = ω±(s, t) × a. (2.25±)

We define �±(s, t) and �±(s, t) to be the spatial and time rates of rotation of
P±(s, t),

∂

∂s
P±(s, t) = �±(s, t)P±(s, t), (2.26±)

∂

∂t
P±(s, t) = �±(s, t)P±(s, t), (2.27±)

and letψ±(s, t) and φ±(s, t) be the corresponding axial vectors, i.e., for any vector
a,

�±(s, t)a = ψ±(s, t) × a, (2.28±)

�±(s, t)a = φ±(s, t) × a. (2.29±)

Note that we have the relations

�±(s, t) = −P∓(s, t)T�∓(s, t)P∓(s, t), (2.30±)

�±(s, t) = −P∓(s, t)T�∓(s, t)P∓(s, t), (2.31±)

and

ψ±(s, t) = −P∓(s, t)Tψ∓(s, t), (2.32±)

φ±(s, t) = −P∓(s, t)T φ∓(s, t). (2.33±)

The skew-symmetric tensors U±(s, t) are related to the skew-symmetric tensor
U(s, t) through

U± = 1

g± [P±UP±T +�±] = 1

g±P
±[U −�∓]P±T . (2.34±)

Therefore, the strains associated with the directors of R± are

u± = 1

g± [P±u+ ψ±] = 1

g±P
±[u− ψ∓]. (2.35±)
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Similarly, the skew-symmetric tensors �±(s, t) are related to the skew-symmetric
tensor �(s, t) through

�± = P±�P±T +�± = P∓ [
�−�∓]P±T . (2.36±)

Therefore, the angular velocities associated with R± are

ω± = P±ω + φ± = P± [
ω − φ∓] . (2.37±)

For any vector-valued function b(s, t), we shall adopt the notation

b� = bs − u× b = bs −RsR
T , (2.38)

◦
b = bt − ω × b = bt −RtR

T . (2.39)

That is b� is the convected s-derivative of b relative to the moving frame

{d1(s, t), d2(s, t), d3(s, t)}, while
◦
b is the convected time derivative of b relative

to this frame.
We now give relations between ψ±(s, t) and φ±(s, t), and the spatial and

time rates of change of the rotation P±(s, t). Let k(s, t) be the unit vector such
that P (s, t)k(s, t) = k(s, t), and θ(s, t) be the angle of rotation of P (s, t), i.e.,
trP (s, t) = 1 + 2 cos θ(s, t). Then referring to [1, p. 44], we have

ψ± = ±θsk ± sin θks + (1 − cos θ)k × ks , (2.40±)

φ± = ±θtk ± sin θkt + (1 − cos θ)k × kt . (2.41±)

If we denote by θ(s, t) the principal rotation vector of P , i.e., θ(s, t) = θ(s, t)

k(s, t), then, after some algebra, we obtain

ψ± = (I − P±)u± sinc(θ/2)P±1/2θ� ± (k · θ�) (1 − sinc(θ/2)) k (2.42±)

and

φ± = (I − P±)ω ± sinc(θ/2)P±1/2
◦
θ ± (k · ◦

θ) (1 − sinc(θ/2)) k, (2.43±)

where sinc(·) is the cardinal sine function defined on the real line by sinc(x) =
sin(x)/x, if x �= 0 and sinc(0) = 1. The above formulæ are cumbersome. However,
if we introduce the Gibbs rotation vector

η(s, t) = tan(θ(s, t)/2)k(s, t), (2.44)

then we have the more compact formulæ

ψ± = (I − P±)u± αA±η�, (2.45±)

and

φ± = (I − P±)ω ± αA± ◦
η, (2.46±)

where

A± = I ± η×, (2.47±)
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and

α = 2

1 + ‖η‖2 . (2.48)

Substitution of (2.45±) into (2.35±) yields

u± = 1

g±
[
u± αA±η�] . (2.49±)

Similarly, substitution of (2.46±) into (2.37±) yields

ω± = ω ± αA± ◦
η. (2.50±)

The relations (2.49±) and (2.50±) are geometrically exact. From the analytical
point of view, the use of the Gibbs vector, also called Rodrigues parameters [32],
seems, in our case, to be preferable to any other parameterizations of the rotation
P = P+ = P−T . With other parameterizations the expressions relating the rate
of change of P with the rate of change of the parameter can be quite complicated.
For instance, the use of the principal rotation vector leads to (2.42±) and (2.43±).
The Gibbs vector provides a minimal parameterization of the rotation P , that only
becomes singular when P is a rotation through an angle π . And for the description
of an a priori small microstructure variables this restriction seems unimportant. We
note that the Gibbs vector is closely related to the singularity-free four-parameter
quaternion representation of rotation. In fact, if [q0, q] is the unit quaternion (also
known as the Euler parameters) of the rotation P , then the Gibbs vector η is simply
the vector q rescaled by the scalar part q0, i.e., η = q/q0.

In summary, the relevant kinematic variables are the strains v(s, t) and v±(s, t)

associated with the center lines, the strains u(s, t) and u±(s, t) associated with the
directors, the linear velocities γ (s, t) and γ±(s, t), the angular velocities ω(s, t)

and ω±(s, t), the vectors w(s, t), ws(s, t) and wt (s, t) associated with the inter-
nal microtranslation, and the vectors η(s, t), ηs(s, t) and ηt (s, t) associated with
the internal microrotation. Nevertheless, we find it more convenient, especially in

Section 5, to work with the convected derivatives w� and
◦
w instead of ws and wt ,

and with αη� and α
◦
η instead of ηs and ηt where the function α was introduced in

(2.48). At first sight the choice of the variable αη� for representing P s seems arti-
ficial in comparison to other possibilities. In particular, equations (2.45±) suggest
that the variable ϕ+ = αA+η� seems appropriate for representing P+

s , while the
variable ϕ− = αA−η� looks well suited for representing P−

s . But in our theory
we want variables that are symmetric with respect to + and − strands, so the appar-
ently unintuitive choice αη� = 1

2 (ϕ+ + ϕ−) is in fact natural, and yields compact
expressions. The same remark holds true for the choice of alternative variables to
parametrize P t . For the sake of uniformity of notation, we therefore introduce the
following variables

vc = w�, γ c = ◦
w, (2.51a)

uc = αη�, ωc = α
◦
η, (2.51b)

and refer to vc and uc as the microstrains, and γ c and ωc as the microvelocities.
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3. Balance laws

In this section we establish the equations of motion for the birod by adding and
subtracting the equations of motion of each of the individual strands.

3.1. Balance of linear momentum

Let n±(s, t) be the resultant forces (of the material with σ > s on the material
with σ < s) at time t acting across the cross sections at s of R±. Similarly, let
p±(s, t) be the densities of linear momenta of the two strands

p±(s, t):= ρ±(s)r±
t (s, t). (3.1±)

In the absence of a distributed external force, the balance of linear momentum in
R± yields

n±
s ∓ f = p±

t , (3.2±)

where f (s, t) is the force (per unit length of Ĉ ) exerted by R+ on R−. As stated
earlier, in this section we shall assume that at each s, ρ±(s) = 1

2λ±(s)ρ(s) and
that ρ(s) = ρ+(s) + ρ−(s). Define

n(s, t) := n+(s, t) + n−(s, t), (3.3a)

nc(s, t) := λ−(s)n+(s, t) − λ+(s)n−(s, t), (3.3b)

and

p(s, t) := p+(s, t) + p−(s, t) = ρ(s)r t (s, t), (3.4a)

pc(s, t) := λ−(s)p+(s, t) − λ+(s)p−(s, t) = ρ(s)wt (s, t). (3.4b)

Addition and weighted subtraction of the balance equations (3.2±) yields

ns = pt , (3.5a)

nc
s − (2f + λsn) = pc

t . (3.5b)

Note that while (3.5a) is the usual equation of balance of linear momentum of an
elastic rod with no distributed forces, equation (3.5b) is of the form of the equation
of balance of linear momentum of an elastic rod subject to distributed forces.

3.2. Balance of angular momentum

Letm±(s, t) be the resultant couples at time t acting across the cross sections at
s of R± about the points r±(s, t). Let π±(s, t) be the densities of angular momenta
at s and at time t of the two strands, so that

π±(s, t):= J±(s)ω±(s, t), (3.6±)

where J±(s) are the symmetric, positive-definite inertia tensors associated with the
material cross sections at s of the two strands.
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With use of (2.12±) and (3.2±), and in the absence of a distributed external cou-
ple, balance of angular momentum (about the point O) of the strands R± becomes

m±
s + r±

s × n± + w × f ∓ c = π±
t , (3.7±)

where c(s, t) is the couple (per unit length of Ĉ ) exerted by R+ on R−. Define

m(s, t) := m+(s, t) +m−(s, t) + w(s, t) × nc(s, t), (3.8a)

mc(s, t) := λ−(s)m+(s, t) − λ+(s)m−(s, t)

+w(s, t) × ((λ−(s))2n+(s, t) + (λ+(s))2n−(s, t)), (3.8b)

and

π(s, t) := π+(s, t) + π−(s, t) + w(s, t) × pc(s, t), (3.9a)

πc(s, t) := λ−(s)π+(s, t) − λ+(s)π−(s, t)

+w(s, t) × ((λ−(s))2p+(s, t) + (λ+(s))2p−(s, t)). (3.9b)

We defer consideration of the expressions relating π and πc to the macroscopic
and microscopic angular velocities until Section 6.

Addition and weighted subtraction of the balance equations (3.7±) and the use
of (3.5b) yields

ms + rs × n = π t , (3.10a)

mc
s + rs × nc − 2c = πc

t + r t × pc. (3.10b)

Note that while (3.10a) is the usual equation of balance of angular momentum of an
elastic rod with no distributed moments, equation (3.10b) is the equation of balance
of angular momentum of an elastic rod with the same center line configuration, but
with distributed moments. The extra term r t × pc in (3.10b) arises from the fact
that the linear momentum density pc is in general not parallel to r t . In (3.10a) the
corresponding term vanishes because of the particular form (3.4a).

For later reference, we gather the balance equations of linear and angular mo-
menta in the following system

ns = pt , (3.11a)

ms + rs × n = π t , (3.11b)

nc
s − 2f = pc

t , (3.11c)

mc
s + rs × nc − 2c = πc

t + r t × pc. (3.11d)

These are the equations of motion of the birod. Equations (3.11a,b) are the equations
of macromotion, while equations (3.11c,d) are the equations of micromotion.

For systems with one space dimension a balance law

Fs = It

is called a conservation law because, for suitable boundary conditions on the flux F ,
integration over the domain implies conservation of

∫
Ids. We can readily see that

(3.11a) expresses conservation of linear momentum. By taking the cross product
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of r with (3.11a) and adding the resultant equation to (3.11b), we obtain the law of
conservation of angular momentum

(m+ r × n)s = π t .

We remark that, in general, equations (3.11c,d) cannot be put into the form of con-
servation laws because of the additional terms. Nevertheless, in Section 5, we will
show that equations (3.11) are the Euler-Lagrange equations of a Euclidean action
principle.

4. Constitutive relations

Before discussing constitutive relations, we summarize the basic variables for
the description of the dynamics of the composite birod R. As noted earlier, there
are basically two ways to describe the configuration of this composite structure
made of two rods interacting elastically:

(i) as one elastic Cosserat rod endowed with two additional microstructure vari-
ables, i.e., as a birod.

(ii) as two special Cosserat rods which are bound together elastically, i.e., the
two-rod description.
The configuration space for description (i) is

C:= {(r,R,w,P ): [0, L] × [0, T ) 	→ IR3 × SO(3) × IR3 × SO(3)},

while the configuration space for description (ii) is C+ × C− where

C±:= {(r±,R±): [0, L] × [0, T ) 	→ IR3 × SO(3)}.

Thus the configuration spaces for both descriptions are equivalent.
In Box 1 we give a mapping which expresses the basic variables of the birod

description (i) in terms of the basic variables of the two-rod description (ii), and in
Box 3 we give the inverse mapping, i.e., we express the basic variables of descrip-
tion (ii) in terms of the basic variables of the description (i). In Boxes 2 and 4
we present the balance laws in the two-rod description and the birod description
respectively. It remains to postulate constitutive relations for the birod, which may
be done in either of the two different ways: we may postulate these relations in
terms of the basic variables of description (ii), and then derive constitutive rela-
tions for description (i), or we may postulate constitutive relations in terms of the
basic variables of description (i), and use them to obtain the constitutive relations
for description (ii). In Section 5 we will use an action principle to systematically
obtain the equations of motion and hyper-elastic constitutive relations for the birod
using the second approach. For simplicity, in that section we shall assume that the
strands have equal mass densities, i.e., ρ+ = ρ− = 1

2ρ, or, equivalently λ± ≡ 1.
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r

w

R

P






−→






r+ = r + λ−w
r− = r − λ+w
R+ = PR

R− = P TR

Configuration

v

ws

γ

wt

u

uc

ω

ωc






−→






v+ = [v + λ−ws + λ−
s w]/g+

v− = [v − λ+ws + λ−
s w]/g−

γ+ = γ + λ−wt

γ− = γ − λ+wt

u+ = [u+Auc]/g+
u− = [u−AT uc]/g−
ω+ = ω +Aωc

ω− = ω −AT ωc

Kinematics

of strains

n

nc

p

pc

m

mc

π

πc

f

c






−→






n+ = 1
2 [λ+n+ nc]

n− = 1
2 [λ−n− nc]

p+ = 1
2 [λ+p + pc]

p− = 1
2 [λ−p − pc]

m+ = 1
2 [λ+m+mc − λ−w × (λ+n+ nc)]

m− = 1
2 [λ−m−mc + λ+w × (λ−n− nc)]

π+ = 1
2 [λ+π + πc − λ−w × (λ+p + pc)]

π− = 1
2 [λ−π − πc + λ+w × (λ−p − pc)]

f

c

Stresses

where

g+ = ‖̂rs + λ−ŵs + λ−
s ŵ‖, g− = ‖̂rs − λ+ŵs + λ−

s ŵ‖,
A = I + η×, and η is the Gibbs rotation vector of P .

Box 1. Transformation from birod to two-rod description.

n+
s − f = p+

t

m+
s + r+s × n+ + 1

2 (r+ − r−) × f − c = π+
t

}

Balance laws for R+

n−
s + f = p−

t

m−
s + r−s × n− + 1

2 (r+ − r−) × f + c = π−
t

}

Balance laws for R−

Box 2. Balance laws for the two-rod description.
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r+
r−
R+
R−






−→






r = 1
2 [λ+r+ + λ−r−]

w = 1
2 [r+ − r−]

R =
[

R+R−T
]1/2

R−

P =
[

R+R−T
]1/2

Configuration

v+
v−
γ+
γ−
u+
u−
ω+
ω−






−→






v = 1
2 [h+(λ+v+ + λ+

s r
+) + h−(λ−v− + λ−

s r
−)]

ws = 1
2 [h+v+ − h−v−]

γ = 1
2 [γ+ + γ−]

wt = 1
2 [γ+ − γ−]

u = 1
2 [h+BT u+ + h−Bu−]

uc = 1
2 [h+u+ − h−u−]

ω = 1
2 [BT ω+ + Bω−]

ωc = 1
2 [ω+ − ω−]

Kinematics

of strains

n+
n−
p+
p−
m+
m−
π+
π−
f

c






−→






n = n+ + n−
nc = λ−n+ − λ+n−
p = p+ + p−
pc = λ−p+ − λ+p−
m = m+ +m− + 1

2 [r+ − r−] × [λ−n+ − λ+n−]
mc = λ−m+ − λ+m− + 1

2 [r+ − r−] × [λ−2
n+ + λ+2

n−]
π = π+ + π− + 1

2 [r+ − r−] × [λ−p+ − λ+p−]
πc = λ−π+ − λ+π− + 1

2 [r+ − r−] × [λ−2
p+ + λ+2

p−]
f

c

Stresses

where

h+ = ‖̂r+s ‖, h− = ‖̂r−s ‖,
B = I + ζ×, and ζ is the Gibbs rotation vector of

[

R+R−T
]1/2

.

Box 3. Transformation from two-rod to birod description.

ns = pt

ms + rs × n = π t

}

Macroscopic balance laws

nc
s − (2f + λ−

s n) = pc
t

mc
s + rs × nc − (2c + λ−

s m) = πc
t + r t × pc

}

Microscopic balance laws

Box 4. Balance laws for the birod.
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5. Variational formulation

5.1. Action density for a rod with microstructure

We consider a special Cosserat rod R endowed with two microstructure vari-
ables: a vector w and a rotation tensor P . Here w is a prototype of a vector and P
is a prototype of a rotation tensor. In the following analysis, we could include as
many variables of both types as we wish, but we explicitly consider only the case
of one of each type as it is the case pertinent for birods.

Let P denote the line segment s1 � s � s2 and let I be the time interval
t1 � t � t2. With every set P × I we associate the action A given by

A =
∫ t2

t1

∫ s2

s1

L̃(s, t; r, rs , r t ,R,Rs ,Rt ,w,ws ,wt ,P ,P s ,P t ) dsdt. (5.1)

Here the action density L̃ is a function of s, t and the macroscopic and microscopic
kinematical variables as well as their spatial and time derivatives.

As mentioned at the end of Section 2, it is more convenient to work with the
convected forms (as defined in (2.38)) of the microstrains vc := w� and γ c := ◦

w

instead of the space and time derivativesws andwt . There is no need to parametrize
the rotation tensor R because frame indifference will imply that the action density
has no explicit dependence on it. In contrast, we do need to parametrize the rota-
tion tensor P . The final equations of motion we obtain from an action principle are
equivalent whatever choice of variables we use to represent the spatial and tem-
poral rates of rotation of P . Nevertheless, the most suitable choice is problematic,
and it seems that there is no choice that systematically and directly yields the final
form of the equation of macromoment derived below. We proceed with the choice

η, uc:= αη� and ωc:= α
◦
η instead of P , P s and P t , where, as before, η is the

Gibbs rotation vector associated with the rotation tensor P , and α = 2/(1 + η · η).
Accordingly, we introduce a new action density L by

L(s, t; r, rs , r t ,R,Rs ,Rt ,w, vc, γ c, η,uc,ωc)

:= L̃(s, t; r, rs , r t ,R,Rs ,Rt ,w,ws ,wt ,P ,P s ,P t ). (5.2)

5.2. Invariance under Euclidean displacements

Following the pioneering work of the Cosserat brothers [11], we adopt invari-
ance of the action density under Euclidean displacements as a principle, see for
example [26, 29]. This is a weaker condition than the principle of material frame
indifference that is often adopted in classical continuum mechanics, but, as was
pointed out by Truesdell [30], it suffices for elasticity theory.

We now examine the effects of a Euclidean displacement characterized by a
constant orthogonal tensorQ and a constant translation vector b along with a time
shift t� = t +	 . As we can see, this is a special change of frame where the rotation
tensor and the translation vector are independent of time.



70 Maher Moakher & John H. Maddocks

In the remainder of this article, quantities associated with the configuration after
a Euclidean displacement will be denoted by a superposed �. The center line r(s, t),
and its spatial and time derivatives transform to

r�(s, t�) = Qr(s, t) + b, (5.3a)

r�
s(s, t

�) = Qrs(s, t), (5.3b)

r
�

t�
(s, t�) = Qr t (s, t). (5.3c)

As the directors d i (s, t) transform to

d
�
i (s, t

�) = Qd i (s, t), (5.4)

it follows that R(s, t), Rs(s, t) and Rt (s, t) transform to

R�(s, t�) = QR(s, t), (5.5a)

R�
s(s, t

�) = QRs(s, t), (5.5b)

R
�

t�
(s, t�) = QRt (s, t), (5.5c)

from which we conclude that u(s, t) and ω(s, t) transform as

u�(s, t�) = Qu(s, t), (5.6a)

ω�(s, t�) = Qω(s, t). (5.6b)

The microstructure vectors w(s, t) and η(s, t) transform to

w�(s, t�) = Qw(s, t), (5.7a)

η�(s, t�) = Qη(s, t). (5.7b)

From (5.6), (5.7) and the definitions (2.51) we obtain

vc�(s, t�) = Qvc(s, t), γ c�(s, t�) = Qγ c(s, t), (5.8a)

uc�(s, t�) = Quc(s, t), ωc�(s, t�) = Qωc(s, t). (5.8b)

For the action density L to be invariant under the group of Euclidean displace-
ments L must satisfy

L(s, t�; r�, r�
s, r

�
t ,R

�,R�
s,R

�
t ,w

�, vc �, γ c �, η�,uc �,ωc �)

= L(s, t; r, rs , r t ,R,Rs ,Rt ,w, vc, γ c, η,uc,ωc). (5.9)

Since the group of Euclidean displacements is a connected Lie group, to obtain
the necessary conditions for such invariance it suffices to consider infinitesimal
transformations [29]. It follows that L is invariant under the group of Euclidean
displacements if and only if

∂L

∂t
= 0,

∂L

∂r
= 0, M −MT = 0, (5.10)
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where the second order tensor M is

M = rs ⊗ ∂L

∂rs

+ r t ⊗ ∂L

∂r t

+R

(
∂L

∂R

)T

+Rs

(
∂L

∂Rs

)T

+Rt

(
∂L

∂Rt

)T

+w ⊗ ∂L

∂w
+ vc ⊗ ∂L

∂vc + γ c ⊗ ∂L

∂γ c + η ⊗ ∂L

∂η
+ uc ⊗ ∂L

∂uc + ωc ⊗ ∂L

∂ωc .

Conditions (5.10)1 and (5.10)2 imply that L must be independent of t and r , which
we accordingly drop from the list of arguments. Note that conditions (5.10)2 and
(5.10)3 express conservation of linear and angular momenta.

To get the appropriately reduced form of the action density we introduce the
reduced variables

v = RT rs , γγ = RT r t ,

u× = RTRs , ωω× = RTRt ,

w = RTw, vc = RT vc, γγ c = RT γ c,

ηη = RT η, uc = RT uc, ωωc = RTωc,

(5.11)

and the reduced function

L(s;R, v, γγ, u, ωω, w, vc, γγ c, ηη, uc, ωωc)

:= L(s; rs , r t ,R,Rs ,Rt ,w, vc, γ c, η,uc,ωc).

Of course, because v · ei = RT v · ei = v · Rei = v · d i , the components of the
vector v with respect to the fixed frame {ei} coincide with the components of
the vector v with respect to the moving frame {d i}. Similarly, the components
in the fixed frame {ei} of the vectors γγ, u, ωω, w, vc, γγ c, ηη, uc, and ωωc, coincide with
the components in the moving frame {d i} of the vectors γ , u, ω, w, vc, γ c, η, uc,
and ωc, respectively.

Then, using (5.10)1 and (5.10)2 in (5.9) and noting that v�: = R�T
r

�
s =

RTQTQrs = RT rs = v, etc., we conclude that the functional equation

L(s;R, v, γγ, u, ωω, w, vc, γγ c, ηη, uc, ωωc)

= L(s;QR, v, γγ, u, ωω, w, vc, γγ c, ηη, uc, ωωc),

must hold for all values of the arguments in the domain of L and for all orthogonal
tensors Q. Therefore, L must be independent of R, which will be dropped from
the list of arguments, and hence the final reduced form of the action density is

L(s; v, γγ, u, ωω, w, vc, γγ c, ηη, uc, ωωc)

:= L(s; rs , r t ,R,Rs ,Rt ,w, vc, γ c, η,uc,ωc).

To proceed further, we assume that L has the separated form

L(s; v, γγ, u, ωω, w, vc, γγ c, ηη, uc, ωωc)

= K(s; γγ, ωω, w, γγ c, ηη, ωωc) − W(s; v, u, w, vc, ηη, uc), (5.12)

where K is the kinetic energy density and W is the strain energy density. It is usu-
ally assumed that the kinetic energy is a quadratic form in velocities, but we do
not make such an assumption at this point (see the remark at the end of Section 5.4
below).
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5.3. Hamilton’s principle

According to Hamilton’s principle the equations of motion for a rod with the
action given in (5.12) should coincide with Euler-Lagrange equations that have the
weak variational form

δA(P × I ) = 0, (5.13)

with respect to the independent field variables r , R, w and η. With (5.12), the
variational equation (5.13) becomes

∫ t2

t1

∫ s2

s1

[
∂K
∂γγ

· δγγ + ∂K
∂ωω

· δωω + ∂K
∂w

· δw + ∂K
∂γγ c · δγγ c

+∂K
∂ηη

· δηη + ∂K
∂ωωc · δωωc − ∂W

∂v
· δv − ∂W

∂u
· δu

−∂W
∂w

· δw − ∂W
∂vc · δvc − ∂W

∂ηη
· δηη − ∂W

∂uc · δuc
]

dsdt = 0.

(5.14)

For a field variable, say χ(s, t), we consider a smooth one-parameter family of
curves χε(s, t) such that χ0(s, t) = χ(s, t), and we denote by δχ the derivative of
χε with respect to the parameter ε evaluated at ε = 0, i.e., δχ = d

dε
χε

∣
∣
ε=0.

From the orthogonality condition RRT = I , it follows that δRRT should be a
skew-symmetric tensor. Therefore, there exists a vector δq such that

(δq)× = δRRT . (5.15)

Use of (5.15) along with an interchange of mixed (ε, s) and (ε, t) derivatives implies
that we can express variations of the variables in (5.11) in terms of the variations
δr , δq, δw and δη of the independent field variables

δw = RT [δw + w × δq], δηη = RT [δη + η × δq],
δv = RT [δrs + rs × δq], δvc = (RT δw)s + (RT [w × δq])s,
δγγ = RT [δr t + r t × δq], δγγ c = (RT δw)t + (RT [w × δq])t ,
δu = RT δqs , δuc = α

{[RT (δη + η × δq)]s − (η · δη)RT uc
}
,

δωω = RT δq t , δωωc = α
{[RT (δη + η × δq)]t − (η · δη)RTωc

}
.

For smooth variations δr , δq, δw and δη that vanish at the boundary ∂D of the
domain

D := {(s, t), s1 � s � s2, t1 � t � t2},
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the condition (5.14), expressing the vanishing of the first variation of the action A,
becomes after some integrations by parts

∫ t2

t1

∫ s2

s1

{[

−
(

R
∂K
∂γγ

)

t

+
(

R
∂W
∂v

)

s

]

· δr

+R
[
∂K
∂w

−
(

∂K
∂γγ c

)

t

− ∂W
∂w

+
(
∂W
∂vc

)

s

]

· δw

+
[

−
(

R
∂K
∂ωω

)

t

− r t ×
(

R
∂K
∂γγ

)

− w×R
(
∂K
∂w

−
(

∂K
∂γγ c

)

t

)

−η×R
(
∂K
∂ηη

−
(

α
∂K
∂ωωc

)

t

)

+
(

R
∂W
∂u

)

s

+ rs ×
(

R
∂W
∂v

)

+w×R
(
∂W
∂w

−
(
∂W
∂vc

)

s

)

+ η×R
(
∂W
∂ηη

−
(

α
∂W
∂uc

)

s

)]

· δq

+
[

R

(
∂K
∂ηη

−
(

α
∂K
∂ωωc

)

t

− ∂W
∂ηη

+
(

α
∂W
∂uc

)

s

)

−α

(

ωc ·R ∂K
∂ωωc − uc ·R ∂W

∂uc

)

η

]

· δη

}

dsdt = 0. (5.16)

Because L is written in terms of the “quasi-velocities” u and ωω [3] and not in terms
of the “velocities” Rs and Rt as in L̃, the Euler-Lagrange equations are called
Euler-Poincaré equations [18, p. 9, and Chap. 13 for a detailed historical account],
or simply Poincaré equations as in [3, p. 13].

From (5.16) it follows that the Euler-Poincaré equations of the action A are

(

R
∂W
∂v

)

s

−
(

R
∂K
∂γγ

)

t

= 0, (5.17a)

(

R
∂W
∂u

)

s

+ rs ×R
∂W
∂v

−
(

R
∂K
∂ωω

)

t

− r t ×R
∂K
∂γγ

+w ×R

[
∂W
∂w

−
(

∂W
∂vc

)

s

− ∂K
∂w

+
(

∂K
∂γγ c

)

t

]

+η ×R

[
∂W
∂ηη

−
(

α
∂W
∂uc

)

s

− ∂K
∂ηη

+
(

α
∂K
∂ωωc

)

t

]

= 0, (5.17b)

R

[
∂W
∂w

−
(

∂W
∂vc

)

s

− ∂K
∂w

+
(

∂K
∂γγ c

)

t

]

= 0, (5.17c)

R

[
∂W
∂ηη

−
(

α
∂W
∂uc

)

s

− ∂K
∂ηη

+
(

α
∂K
∂ωωc

)

t

]

+α

(

ωc ·R ∂K
∂ωωc − uc ·R ∂W

∂uc

)

η = 0. (5.17d)

If we define the functional K̄ by

K̄(s; γγ, ωω, w, wt , ηη, ηηt ):= K(s; γγ, ωω, w, γγ c, ηη, ωωc),
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and the functional W̄ by

W̄(s; v, u, w, ws , ηη, ηηs):= W(s; v, u, w, vc, ηη, uc),

then equation (5.17c) is equivalent to
∂W̄
∂w

−
(

∂W̄
∂ws

)

s

= ∂K̄
∂w

−
(

∂K̄
∂wt

)

t

which

is similar in form to the equations obtained in strain-gradient elastic theories (also
known as theories of second grade materials) [31]. However, here the displacement
w plays the role of a strain, and the derivative ws of the displacement plays the role
of a strain gradient. In strain-gradient theories, by Euclidean invariance, the action
density can not depend on the displacement, whereas here the action density can
and does depend on w while respecting Euclidean invariance. Analogous remarks

are true for (5.17d) which is equivalent to
∂W̄
∂ηη

−
(

∂W̄
∂ηηs

)

s

= ∂K̄
∂ηη

−
(

∂K̄
∂ηηt

)

t

.

The condition (5.15) of vanishing of the first variation of the action yields the
Euler-Poincaré equations (5.17) which are expressed in the fixed frame. However,
if we use instead the variation (δq)× = RT δR as a variation of the rotation R,
the condition of the vanishing of the first variation of the action yields the Euler-
Poincaré equations written in the moving frame. We note that for the action density
given by (5.12), equations (5.17a) and (5.17b) are equivalent to (5.10)2 and (5.10)3
which express the principles of conservation of linear and angular momenta.

5.4. Equations of motion and constitutive relations

It is interesting to note that in (5.17b) the term containingw vanishes by (5.17c),
and that the term containing η vanishes by (5.17d). From these observations it fol-
lows after rearrangement that equations (5.17) are equivalent to

(

R
∂W
∂v

)

s

=
(

R
∂K
∂γγ

)

t

, (5.18a)

(

R
∂W
∂u

)

s

+ rs ×R
∂W
∂v

=
(

R
∂K
∂ωω

)

t

− r t ×R
∂K
∂γγ

, (5.18b)

(

R
∂W
∂vc

)

s

−
[

R
∂W
∂w

+ u×R
∂W
∂vc

]

=
(

R
∂K
∂γγ c

)

t

−
[

R
∂K
∂w

+ ω ×R
∂K
∂γγ c

]

, (5.18c)

(

R
∂W
∂uc

)

s

−
[

1

α
R

∂W
∂ηη

+ u×R
∂W
∂uc − uc ×

(

η ×R
∂W
∂uc

)]

=
(

R
∂K
∂ωωc

)

t

−
[

1

α
R

∂K
∂ηη

+ ω×R∂K
∂ωωc − ωc×

(

η×R∂K
∂ωωc

)]

. (5.18d)



A Double-Strand Elastic Rod Theory 75

In a formal Lagrangian way we introduce the variables

p = R
∂K
∂γγ

, π = R
∂K
∂ωω

, (5.19a)

pc = R
∂K
∂γγ c , π̆c = R

∂K
∂ωωc , (5.19b)

n = R
∂W
∂v

, m = R
∂W
∂u

, (5.19c)

nc = R
∂W
∂vc , m̆c = R

∂W
∂uc , (5.19d)

2σ = R
∂K
∂w

+ ω × pc, 2τ̆ = 1

α
R

∂K
∂ηη

+ ω × π̆c − ωc × (
η × π̆c) , (5.19e)

2f = R
∂W
∂w

+ u× nc, 2c̆ = 1

α
R

∂W
∂ηη

+ u×m̆c − uc×(
η×m̆c) . (5.19f)

In fact, equations (5.19a) and (5.19b) can serve as definitions for the macroscopic
and microscopic densities of linear and angular momenta, while equations (5.19c)
and (5.19d) are hyperelastic constitutive relations for the macroscopic and micro-
scopic forces and moments. The variables σ , f , τ̆ and c̆ are defined in (5.19e,f)
such that the equations of motion (5.18) assume the form

ns = pt , (5.20a)

ms + rs × n = π t + r t × p, (5.20b)

nc
s − 2f = pc

t − 2σ , (5.20c)

m̆c
s − 2c̆ = π̆c

t − 2τ̆ . (5.20d)

Equations (5.20) are the equations of motion for a special Cosserat rod endowed
with two microstructure vectors: a simple vector w and a Gibbs rotation vector η.
Equations (5.20a,b) will be called the equations of macromotion, and equations
(5.20c,d) will be called the equations of micromotion.

Now we specialize to the case where the rod with the microstructures w and η
is a birod that is composed of two special Cosserat rods bound together elastically.
In such a case, it is natural to assume that the dependence of W on u, v, ws and ηηs

enters only through its dependence on u± and v±, and the dependence of K on ωω,
γγ, vc and uc enters only through its dependence on ωω± and γγ±, where

v± = RTP±T v±, u± = RTP±T u±,

γγ± = RTP±T γ±, ωω± = RTP±Tω±.

We here note that the components in the fixed frame {ei} of the vectors v±, u±,
γγ±, ωω± coincide with the components in the moving frame {d±

i } of the vectors v±,
u±, γ±, ω±, respectively.

For the sake of simplicity, in the following development we will consider the
case of a birod with equal mass densities, i.e., we take λ± ≡ 1 in (2.4). In such a



76 Maher Moakher & John H. Maddocks

case, from the kinematic relations (2.20±) and (2.49±), it follows that

v± = 1

g± P±T [v ± vc ± u × w], (5.21±)

u± = 1

g± P±T [u ± A±uc]. (5.22±)

Similarly, from the kinematic relations (2.21±) and (2.50±) we find that

γγ± = P±T [γγ ± γγ c ± ωω × w], (5.23±)

ωω± = P±T [ωω ± A±ωωc], (5.24±)

where P = RTPR and A = RTAR.
Now let W̃ be the functional defined by

W̃(s; v+, v−, u+, u−, w, ηη):= W(s; v, u, w, vc, ηη, uc), (5.25)

and let K̃ be the functional defined by

K̃(s; γγ+, γγ−, ωω+, ωω−, w, ηη):= K(s; γγ, ωω, w, γγ c, ηη, ωωc). (5.26)

Then, after the use of the chain rule for differentiation of composite functions, along
with the relations (5.21±), (5.22±), (5.23±) and (5.24±), the constitutive relations
(5.19) become (see Appendix B)

p = p+ + p−, π = π+ + π− + w × (p+ − p−), (5.27a)

pc = p+ − p−, πc = π+ − π− + w × (p+ + p−), (5.27b)

n = n+ + n−, m = m+ +m− + w × (n+ − n−), (5.27c)

nc = n+ − n−, mc = m+ −m− + w × (n+ + n−), (5.27d)

2σ = R
∂K̃
∂w

, 2τ = 1

α
R

∂K̃
∂ηη

− η × (w × 2σ ), (5.27e)

2f = R
∂W̃
∂w

, 2c = 1

α
R

∂W̃
∂ηη

− η × (w × 2f ), (5.27f)

where we have defined

p± = P±R ∂K̃
∂γγ± , π± = P±R ∂K̃

∂ωω± , (5.28a)

n± = 1

g±P
±R ∂W̃

∂v± , m± = 1

g±P
±R ∂W̃

∂u± , (5.28b)

which represent the densities of linear and angular momenta, and the internal forces
and moments of the individual strands.

Note that in the constitutive equations (5.27) we have used πc, mc, τ and c
defined by

πc = π̆c + w × p + η × (
π − w × pc) , (5.29a)

mc = m̆c + w × n+ η × (
m− w × nc) , (5.29b)

2τ = 2τ̆ + wt × p + r t × pc + [
η × (π − w × pc)

]

t
, (5.29c)

2c = 2c̆ + ws × n+ rs × nc + [
η × (m− w × nc)

]

s
, (5.29d)
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in lieu of π̆c, m̆c, τ̆ and c̆ used in the constitutive equations (5.19). The quantities
with superposed ˘ on the right-hand sides of (5.29) arise naturally in the equations
of micromoment of a rod with rather general microstructure, while the quantities
on the left-hand sides of (5.29) are more appropriate for the particular case of a
birod composed of two strands, because they have a direct physical interpretation.

The equations of motion (5.20) then become

ns = pt , (5.30a)

ms + rs × n = π t + r t × p, (5.30b)

nc
s − 2f = pc

t − 2σ , (5.30c)

mc
s + rs × nc − 2c = πc

t + r t × pc − 2τ . (5.30d)

When all quantities in the above equations are independent of the time t , the right-
hand sides all vanish and the equilibrium equations for the birod arise. We remark
that in the constitutive equations (5.27), and in the equations of motion (5.30), we
have the following exchange symmetry

s ↔ t, W ↔ K, v ↔ γ , u ↔ ω, η� ↔ ◦
η,

n ↔ p, m ↔ π , nc ↔ pc, mc ↔ πc, f ↔ σ , c ↔ τ .
(5.31)

Comparison of the equations of motion (5.30) derived from Hamilton’s princi-
ple with the equations of motion (3.11) obtained in Section 3 when λ± ≡ 1 reveals
that (5.30b–d) differ from (3.11b–d) by the final additional terms appearing in the
right-hand sides. To resolve these apparent discrepancies we need to specialize the
assumed form of the kinetic energy (5.26) even further. It is sufficient to consider
the kinetic energy (5.26) to be of the separated form

K̃(s; γγ+, γγ−, ωω+, ωω−, w, ηη)= 1

2
[ρ+(s)γγ+· γγ++ρ−(s)γγ−· γγ−]+J (s; ωω+, ωω−),

(5.32)

which is compatible with our definitions of the densities of linear and angular
momenta as given in Section 3. With the assumption ρ+ = ρ− = 1

2ρ, it follows
from (5.27a)1 and (5.28a)1 applied to the special case (5.32), that p = ρr t and
pc = ρwt which coincides with (3.4), which arose from the definition of the densi-
ties of linear momenta (3.1±) of the individual strands developed in Section 3. We
therefore have r t ×p = 0, and from (5.27e)1 and (5.27f)1, we obtain σ = 0, τ = 0.
Thus, in the case of a kinetic energy of the form (5.32), the equations of motion
(5.30) derived from Hamilton’s principle coincide precisely with the equations of
motion (3.11) obtained previously in Section 3.

5.5. Internal constraints

Up to now, we have tacitly assumed that the composite rod undergoes uncon-
strained deformations. In this section we will modify the constitutive relations
given previously to account for a priori restrictions on the deformation of the birod
such as inextensibility and unshearability of the constituent strands, and analogous
inter-strand constraints.
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An internal constraint may be written as a set of scalar equations each of the
form

C̃(r, rs ,R,Rs ,w,ws , η, ηs) = 0, (5.33)

where C̃ is a scalar-valued function of its arguments. Since material constraints
are unaffected by superposed rigid transformations, C̃ must be invariant under the
transformation (5.3). Using arguments similar to those exploited in Section 5.2 we
see that C̃ must be independent of r andR. Hence, the constraint (5.33) is equivalent
to the reduced form

C(v, u, w, vc, ηη, uc):=
C̃(RT r,RT rs ,R

TR,RTRs ,R
Tw,RTws ,R

T η,RT ηs) = 0. (5.34)

The scalar constraint (5.34) defines a hypersurface in the space (v, u, w, vc, ηη, uc).
Now assume that we have K scalar internal constraints given by Ck(v, u, w, vc,

ηη, uc) = 0, k = 1 . . . K . Then the constitutive relations (5.19)2 must be replaced
by

n = R

(

∂W
∂v

+
K∑

k=1

�k
v
∂Ck

∂v

)

, m = R

(

∂W
∂u

+
K∑

k=1

�k
u
∂Ck

∂u

)

, (5.35a)

nc = R

(

∂W
∂vc +

K∑

k=1

�k
vc

∂Ck

∂vc

)

, m̆c = R

(

∂W
∂uc +

K∑

k=1

�k
uc

∂Ck

∂uc

)

, (5.35b)

f = R

(

∂W
∂w

+
K∑

k=1

�k
w

∂Ck

∂w

)

+ u× nc, (5.35c)

c̆ = 1

2α
R

(

∂W
∂ηη

+
K∑

k=1

�k
ηη
∂Ck

∂ηη

)

+ u× m̆c − uc × (
η × m̆c) , (5.35d)

where �k
v, �k

u, �k
vc , �k

uc , �k
w and �k

ηη are arbitrary Lagrange multipliers called
reactive parameters. These multipliers are not derivable from material properties
and must be determined from the balance laws such that the constraints are satisfied.

In the present theory of birods, it is possible to consider both constraints on
the individual strands such as inextensibility and unshearability, and inter-strand
constraints. The constraints v± · d±

3 = 1 expressing inextensibility of the strands
can be written in reduced form as

Cv±
3
(v, u, w, vc, ηη, uc):= (P±e3) · (v ± vc ± u × w) − g± = 0,

while the constraints v±·d±
i = 0, i = 1, 2, expressing unshearability of the strands

can be written in reduced form as

Cv±
i
(v, u, w, vc, ηη, uc):= (P±ei ) · (v ± vc ± u × w) = 0, i = 1, 2.
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Here we recall that

P± = I ± 2

1 + ‖ηη‖2 [I ± ηη×]ηη×.

As for restrictions on the inter-strand deformation we can impose constraints
of the type w · d i = ŵi , i = 1, 2, 3, which restrict inter-strand translational defor-
mation, and which can be written in the form (5.34) with

Cwi
(v, u, w, vc, ηη, uc):= w · ei − ŵi = 0, i = 1, 2, 3.

Constraints of the type η ·d i = η̂i , i = 1, 2, 3, which restrict inter-strand rotational
deformation, can be written in the form (5.34) with

Cηi
(v, u, w, vc, ηη, uc):= ηη · ei − η̂i = 0, i = 1, 2, 3.

For a composite rod with some of the above mentioned constraints, equations
(5.35) enable us to derive appropriate constitutive relations. However, in the remain-
der of this article we will continue to work with the unconstrained theory.

5.6. Boundary conditions

For smooth variations δr , δq, δw and δη, vanishing at t = t1 and t = t2, but
otherwise arbitrary, the vanishing of the first variation of the action requires that in
addition to (5.16) we must have

∫ t2

t1

[(

R
∂W
∂v

)

· δr +
(

R
∂W
∂vc

)

· δw +
(

R
∂W
∂u

− w ×R
∂W
∂vc

−αη ×R
∂W
∂uc

)

· δq +
(

αR
∂W
∂uc

)

· δη

]s=s2

s=s1

dt = 0.

Therefore, in view of the constitutive relations (5.19), whenever an essential bound-
ary condition of the form

r|s=ξ1 = r∗, q|s=ξ2
= q∗,

w|s=ξ3 = w∗, η|s=ξ4
= η∗,

with prescribed vectors r∗, q∗,w∗ and η∗, is not imposed, we obtain natural bound-
ary conditions of the form

n|s=ξ1 = 0, nc|s=ξ3 = 0,

m− w × nc − αη × [mc − w × n− η × (m− w × nc)]|s=ξ2
= 0,

mc − w × n− η × (m− w × nc)|s=ξ4
= 0,

(5.36)

where ξi, i = 1, . . . , 4 is equal to either s1 or s2.
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6. Linearly-elastic constitutive equations

With the objective of making our general theory more concrete, in this section
we further develop the theory for the particular case of decoupled, linearly-elastic
constitutive relations in which the strain energy density (5.25) is taken to be of the
quadratic, decoupled form

W̃(s; v+, v−, u+, u−, w, ηη)=W̃+(s; v+, u+)+W̃−(s; v−, u−)+W̃c(s; w, ηη),

(6.1)

with

W̃±(s; v±, u±) = 1
2 (v± − v̌±

) · L±(v± − v̌±
) + 1

2 (u± − ǔ±
) · K±(u± − ǔ±

),

W̃c(s; w, ηη) = 1
2 (w − w̌) · H(w − w̌) + 1

2 (ηη − η̌η) · G(ηη − η̌η),

where L±(s), K±(s), H(s), and G(s) are symmetric, positive-definite tensor func-
tions of s only. Here v̌±

(s) and ǔ±
(s) denote quantities associated with the stress-

free configuration of the individual strands, which may or may not correspond to
the stress-free configuration of the birod. All quantities with a superposed ,̌ such
as w̌, are given shape parameters.

The kinetic energy density (5.26) is taken to be of the form

K̃(s; γγ+, γγ−, ωω+, ωω−, w, ηη)= 1
2 {ρ+γγ+· γγ++ ωω+· J+ωω++ ρ−γγ−· γγ−+ ωω−· J−ωω−},

(6.2)

where J±(s) are symmetric, positive-definite tensor functions of s only.
Using (5.27a,b) and (5.28a)1 we find that the macroscopic and microscopic

densities of linear momentum are given by
(
p

pc

)

= ρ

(
r t

wt

)

, (6.3)

where ρ = ρ(s) = ρ+(s) + ρ−(s). While in Section 3 we took (3.4) as the defi-
nitions for the macroscopic and microscopic densities of linear momentum, the
development of Section 5 reveals that they also naturally follow from a constitutive
assumption in which the kinetic energy is an isotropic quadratic form in the mac-
roscopic and microscopic linear velocities as in (6.2). To obtain expressions for the
macroscopic and microscopic densities of angular momentum, we introduce the
symmetric tensors

J = J+ + J−, J c = J+ − J−, (6.4)

where the symmetric positive-definite tensors J±, given by

J± = P±RJ±RTP±T ,

represent the moment of inertia contributions, in the current configuration, of the
strands R± to the moment of inertia of the birod R. Then, with (5.27) and (5.28a)2
we find

(
π

πc

)

=
(
J J c

J c J

)(
ω + η × ωc

ωc

)

+
(
w × pc

w × p

)

. (6.5)
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It is worthy to note that the coefficient matrices RT JR and RT J cR are configu-
ration dependent, but that this dependence is only through the microrotation ηη.

From (5.28b)1 and (6.1) it follows that the components of the internal forces of
the individual strands are given by

n± = 1

g±P
±RL±[v± − v̌±]. (6.6±)

Similarly, from (5.28b)2 and (6.1), it follows that the components of the internal
moments of the individual strands are given by

m± = 1

g±P
±RK±[u± − ǔ±]. (6.7±)

With the constitutive equations (6.6±) for n± we can compute expressions for
n and nc. We introduce the symmetric tensors

L = L+ + L−, Lc = L+ − L−, (6.8)

where the symmetric, positive-definite tensors L±, defined by

L± = 1

(g±)2P
±RL±RTP±T ,

represent the stiffness (in extension and shear) contributions, in the current config-
uration, of the strands R± to the stiffness of the birod R. Then, with (5.21±) and
(6.6±), we conclude that n and nc are given by

(
n

nc

)

=
(
L Lc

Lc L

){(
v

vc + w × u

)

−
(

g+PRv̌+ + g−P TRv̌−

g+PRv̌+ − g−P TRv̌−
)}

. (6.9)

We note that the effective stiffnesses for shear and extensionL andLc again depend
on the present configuration, but only through the microrotation variable η.

Similarly, to compute the expressions form andmc from the constitutive equa-
tions (6.6±) for m±, we introduce the symmetric tensors

K = K+ +K−, Kc = K+ −K−, (6.10)

where the symmetric, positive-definite tensors K±, given by

K± = 1

(g±)2P
±RK±RTP±T ,

represent the stiffness (in bending and twisting) contributions, in the current con-
figuration, of the strands R± to the stiffness of the birod R. Then, with (5.22±)
and (6.7±), we conclude that m and mc are given by

(
m

mc

)

=
(
KKc

KcK

){(
u+ η × uc

uc

)

−
(

g+PRǔ+ + g−P TRǔ−

g+PRǔ+ − g−P TRǔ−
)}

+
(
w × nc

w × n

)

. (6.11)



82 Maher Moakher & John H. Maddocks

Once again we remark that the effective stiffnesses for bending and twistingK and
Kc are configuration dependent.

Finally, from (5.27f) it follows that the components of the inter-strand force
and couple are given by

2f = RHRT [w −Rw̌], (6.12a)

2c = 1

α
RGRT [η −Rη̌η] − η × (w × 2f ). (6.12b)

A few remarks are in order. First, the term η × (w × 2f ) in (6.12b), which can be
rewritten as 1

2α
(P−P T )(w×2f ), is somehow counterintuitive. This term captures

the interplay between rotational and translational microdisplacements. We note that
this term vanishes when f is parallel to w, or when η is parallel to the moment
w × f of the force f about r . Such is the case for planar birods. Second, in the
case where the elastic energy associated with the microrotation is assumed to be
1
2 (θθ − θ̌θ) · Ḡ(θθ − θ̌θ), i.e., quadratic in θθ = 2 arctan ‖ηη‖

‖ηη‖ ηη, which is perhaps more

natural than being quadratic in ηη as in (6.1), then, with the chain rule, we obtain

2c = 1

α
RTḠRT [θ −Rθ̌θ] − η × (w × 2f ), (6.13)

where

T = 1

‖θθ‖2

{

αθθ ⊗ θθ + ‖θθ‖
tan 1

2‖θθ‖[‖θθ‖2I − θθ ⊗ θθ]
}

.

7. Boundary-value problems

In this section we formulate and solve some very simple, illustrative, boundary-
value problems for configurations of a birod that is made by bonding two uniform,
linearly elastic strands. We assume a single common bending rigidity K for both
strands, and, when they are extensible, we denote by L their common stretching
rigidity. We assume that the strands in their intrinsic stress-free shape are arcs of
circles of equal lengths, but with different curvatures (possibly zero) that we denote
by κ±.

7.1. Biring

We consider a birod that is made of two linearly elastic, isotropic (κ± = 0)
strands for which the unstressed reference configuration is described by

r̂ = se3, ŵ = d̂e2, R̂ = I , P̂ = I ,

with s ∈ [0, 2πR]. There are then exactly two equilibrium configurations such that
the center line r is circular:
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i) A biring with low strain energy for which the configuration is described by

r = R
(

cos
s

R
e1 + sin

s

R
e3

)

, w = d̂e2, P = I ,

andR is a rotation through the angle s/R about e2, while the forces and moments
are given by

n = 0, nc = 0, m = 2K

R
e2, mc = 0.

In this case the two strands are each unstretched and are non-interacting.

ii) A biring with high strain energy for which the configuration is described by

r = R
(

cos
s

R
e2 + sin

s

R
e3

)

, w = d

R
r, d = Gd̂

L/R2 + G
, P = I ,

andR is a rotation through the angle s/R about e1, while the forces and moments
are given by

n = 0, nc = Ld

R
rs , m = 2(K + Ld2)

R
e1, mc = 0.

Here one strand is uniformly stretched and the other is uniformly shortened.
The strands interact with a transverse, radial force 2f = nc

s = −Ld
R3 r .

7.2. Stress-free configuration of a planar birod

Given the stress-free shapes of the strands, the problem of finding the stress-
free configuration of the birod is in general already a non-trivial boundary-value
problem. For such a problem, we seek the position vector r̂ , the microdisplacement
vector ŵ, the rotation tensor R̂, and the microrotation tensor P̂ of the birod that
solve the equilibrium equations

n̂s = 0, m̂s + r̂s × n̂ = 0, (7.1a)

n̂
c
s − 2f̂ = 0, m̂

c
s + r̂s × n̂

c − 2ĉ = 0, (7.1b)

subject to the free or natural boundary conditions

n̂(s1) = 0, n̂(s2) = 0, m̂(s1) = 0, m̂(s2) =0, (7.2a)

n̂
c
(s1) =0, n̂

c
(s2) =0, m̂

c
(s1) =0, m̂

c
(s2) = 0. (7.2b)

Boundary conditions (7.2) are the appropriate simplification of the natural bound-
ary conditions (5.36) where there are no imposed boundary conditions. Equations
(7.1a) and boundary conditions (7.2a) integrate to imply n̂ = 0 and m̂ = 0. The
remaining equations taken together with the appropriate constitutive relations yield
a two-point boundary-value problem for the reference state.

We now formulate a specific problem for the case of a planar birod made by
gluing together two inextensible strands. Let x(s), y(s), a(s), b(s), ϑ(s), ϑc(s),
µ(s), ν(s) be real-valued functions such that r̂ = xe3 + ye1, ŵ = (ae3 + be1),
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and n̂c = K(µe3 + νe1). R̂ is the rotation through the angle ϑ about e2, and P̂ is
the rotation through the angle ϑc about e2. The constitutive equations (6.11) with

K± = K(d̂
±
1 ⊗ d̂

±
1 + d̂

±
2 ⊗ d̂

±
2 ) + K3d̂

±
3 ⊗ d̂

±
3 then yield

m̂ = K(ϑs − κ+ − κ−)e2 + ŵ × n̂
c
,

m̂
c = K(ϑc

s − κ+ + κ−)e2 + ŵ × n̂.

For the binding force and couple we use the constitutive relations (6.12a) with
H = HI and (6.13) with θ̌θ = 0, Ḡ = GI , and assume that T is close to the identity
tensor, to conclude

2f̂ = H(ŵ − R̂de2), 2ĉ = Gϑce2,

where G and H are positive constants.
Exploitation of symmetry about the midpoint implies that problem (7.1)–(7.2)

is equivalent to the following two-point boundary problem defined, after rescaling
if necessary, on the interval [0, 1], and composed of the differential equations

ϑss = (µ cos ϑ + ν sin ϑ) sin ϑc + hd(a cos ϑ + b sin ϑ), (7.3a)

ϑc
ss = (µ sin ϑ − ν cos ϑ) cos ϑc + gϑc, (7.3b)

µs = h(a + d sin ϑ), ν − s = h(b − d cos ϑ), (7.3c)

as = − sin ϑ sin ϑc, bs = cos ϑ sin ϑc, (7.3d)

xs = cos ϑ cos ϑc, ys = sin ϑ cos ϑc, (7.3e)

and the boundary conditions

ϑ(0) = 0, ϑc(0) = 0, a(0) = 0, x(0) = 0, y(0) = 0, ν(0) = 0, (7.3f)

µ(1) = 0, ν(1) = 0, ϑs(1) = 1
2 (κ+ + κ−), ϑc

s (1) = 1
2 (κ+ − κ−), (7.3g)

where we have set g = G/K and h = H/K .
Before presenting numerical solutions of this boundary-value problem, we note

that when κ+ = −κ− there are solutions of (7.3) such that the birod is straight, i.e.,
ϑ ≡ 0. Furthermore, for such solutions we must have ν ≡ 0, y ≡ 0, and a ≡ 0,
and ϑc, µ, b, x must be solutions of the reduced boundary-value problem

ϑc
ss = −ν cos ϑc + gϑc, νs = h(b − d), bs = sin ϑc, xs = cos ϑc, (7.4a)

with boundary conditions

ϑc(0) = 0, ϑc
s (1) = 1

2 (κ+ − κ−), ν(0) = 0, ν(1) = 0, x(0) = 0. (7.4b)

This boundary-value problem reduces to the following fourth-order differential
equation for ϑc,

(
ϑc

ss − gϑc

cos ϑc

)

ss

+ h sin ϑc = 0,

subject to the boundary conditions

ϑc(0) = 0, ϑc
ss(0) = 0, ϑc

s (1) = 1
2 (κ+ − κ−), ϑc

ss(1) = gϑc(1).

There is no solution of the boundary-value problem (7.3) for which ϑc ≡ 0
except in the trivial case of a straight birod made of intrinsically-straight strands,



A Double-Strand Elastic Rod Theory 85

κ+ =  0.6,  κ− = −0.2 κ+ =  0.4,  κ− = −0.4

κ+ = −0.3,  κ− =  0.1 κ+ = −0.2,  κ− =  0.2

κ+ =  1.0,  κ− =  0.5
κ+ =  0.6,  κ− = −0.4

Figure 2. Stress-free configuration of birods. Gray lines represent the birods. Solid black
lines represent the strands. Dotted lines show the shape of the strands before gluing them. The
dashed lines are d-equidistant from the gray lines. When the dashed and solid line intersect,
the transverse component of the gluing force changes sign.

i.e., when κ+ = κ− = 0, so we conclude that the reference state of the birod has a
non-trivial structure.

A shooting method can be used to numerically solve the two-point boundary
value problem (7.3) for general κ+ and κ−. In Fig. 2 we present the stress-free
configurations of birods made by gluing arcs of circles with the indicated intrinsic
curvatures for parameter values g = 1, h = 1, d = 0.05. The case κ+ = 0.6
and κ− = −0.4 exhibits an unphysical interpenetration of the strands. Such inter-
penetration could be avoided by using a more complicated constitutive equation
for the microstress than (6.12a). Fig. 3 gives plots of the components in the mov-
ing frame of the microforce nc as functions of s. As remarked previously, when
the strands have intrinsic curvatures of equal absolute value, but different sign,
the reference configuration of the birod is straight. In such cases, a solution of the
two-point boundary-value problem (7.3) corresponds to the solution of the reduced
two-point boundary-value problem (7.4a). In such cases, the numerical solutions
of both problems (7.3) and (7.4a) using the shooting method agree. Note that,
since nc

1 = ν cos ϑ − µ sin ϑ and nc
3 = ν sin ϑ + µ cos ϑ , the boundary conditions

µ(1) = 0, ν(0) = ν(1) = 0 and ϑ(0) = 0 yield nc
1(0) = nc

1(1) = 0 and nc
3(1) = 0.

If the strands are glued with the same concavities they tend to approach each
other at s = 0, and to separate at s = 1. On the other hand, if the strands are glued
with opposite concavities they tend to separate at s = 0 and to approach at s = 1.
In both cases, at s = s0 ∈ (0, 1) the transverse component f̂3 = f̂ · d̂3 of the
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−0.025

−0.02

−0.015

−0.01
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0.005

s

κ+ =  0.6,  κ− = −0.4

Figure 3. Components, in the moving frame, of the microforce n̂c for the planar birod com-
posed of two strands with the indicated intrinsic planar curvatures κ±. Solid lines represent
n̂c

1 = n̂c · d̂1 while dashed lines indicate n̂c
3 = n̂c · d̂3 (which vanish identically in the case

κ+ = −κ−).

force f̂ changes sign. In Fig. 4 we graph the two non-vanishing components in the
moving frame of the gluing force f̂ = n̂

c
s .

8. Conclusions

We have developed a new continuum mechanics theory of birods to describe
two, tightly bound, elastic rods interacting elastically. The configuration of a birod
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−0.1

−0.05

0

0.05

0.1

0.15

s

κ+ =  0.6,  κ− = −0.4

Figure 4. Components, in the moving frame, of the gluing force f̂ for the planar birod
composed of two strands with the indicated intrinsic curvatures κ+ and κ−. Solid lines are
for f̂1 = f̂ · d̂1 , and dashed lines are for f̂3 = f̂ · d̂3.

is given by average macroscopic variables (r,R) analogous to a classic Cosserat
rod, with the addition of internal variables (w,P ) to describe the perturbation of
each strand from the average. The dynamic balance laws (3.11a,b) for the macro-
scopic variables (r,R) correspond exactly to the form of those for a classic Cosserat
rod, although in general, and as shown explicitly for the linear case developed in
Section 6, the constitutive relations involve both macroscopic and microscopic
variables. The balance laws (3.11) for the microscopic variables take the form of a
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Cosserat rod subject to distributed forces and couples, with the simplification that
the center-line variable is the macroscopic one.

We derive the balance laws in two ways. First, in Section 3, we proceed directly
from the balance laws for the individual strands, and second, in Section 5.3 we start
from Hamilton’s principle with a rather general Lagrangian. Once an appropriate
frame indifference is assumed, and some further natural restrictions on the assumed
form of the kinetic energy terms in the Lagrangian are made, the Euler-Lagrange
equations of the action principle reduce to the previously derived balance laws. The
action principle approach is of interest because it clarifies the appropriate sense in
which a birod is hyper-elastic (which is not entirely straightforward because of the
presence of strain-gradient like terms), it provides the appropriate natural bound-
ary conditions (which for the microscopic variables are not entirely obvious), and
it opens the possibility of a variational analysis of stability properties of special
solutions.

With regards to future work and applications of birods, the balance laws we
derive are dynamic and, by choice of the constitutive relations, conservative. Thus
for some simple classes of constitutive relations there is the immediate possibility
of studying symmetry related, special solutions such as traveling waves. The static
birod equations are simply obtained by suppressing time-dependent terms, and sev-
eral interesting and non-trivial buckling problems immediately present themselves.
Indeed, as shown in Section 7, even for the simplest linear constitutive relations,
it is already non-trivial to compute the unstressed configuration of the birod struc-
ture, and resort must already be made to numerics. As already described in the
Introduction, our primary motivation for developing the theory of birods is as a
continuum approximation to rigid base models of DNA with sequence-dependent
constitutive relations. In that context it seems inevitable that numerics will be the
only way forward. Accordingly, the first challenge is to obtain sufficiently realistic,
sequence-dependent constitutive relations for a birod. With the theory presented
here it is possible to envision an approach to deriving appropriate constitutive rela-
tions for a continuum birod description of a rigid base model of DNA from molecular
dynamics simulation in an analogous fashion to that proposed in [15] for obtaining
continuum Cosserat rod parameters as an approximation to rigid base-pair models.

Appendices

A. Properties of the Gibbs rotation vector

Let η be the Gibbs rotation vector associated with the rotation tensor P . Then

P = I + α[−(η · η)I + η× + η ⊗ η],

where α = 2/(1+η ·η). From the identity (η×)2 = η⊗η− (η ·η)I it follows that
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P = I + αη×[I + η×] = I + α[I + η×]η×. (A.1)

These expressions for P are helpful in proving the various identities given in the
following lemmas, which are in turn useful in the development of our theory.

Lemma 1. Let P , η and α be as above, then for all vectors a and b the following
equations hold

i) I + η× = P (I − η×) = (I − η×)P .
ii) I − η× = P T (I + η×) = (I + η×)P T .

iii) a × P T b + α[(I − η×)a · P T b]η = a × b + α(η · a)(I − η×)b.
iv) a × Pb − α[(I + η×)a · Pb]η = a × b − α(η · a)(I + η×)b.

The proofs involve straightforward algebra and the use of (A.1).

Lemma 2. Let P , η and α be as above, and let a be a vector which is independent
of η. Then for any vector b,

i)

[
∂(Pa)

∂η

]T

b = α(I + η×)(a × P T b).

ii)

[
∂(P T a)

∂η

]T

b = −α(I − η×)(a × Pb).

Again, the proof of Lemma 2 is based on some algebra and Lemma 1.

B. Partial derivatives of the strain energy density

The use of Lemma 2, the definition (5.25) and the relations (5.21±) and (5.22±)
yields the following expressions for the partial derivatives of the strain energy
density W with respect to its arguments:

∂W
∂v

=
(

∂v+

∂v

)T
∂W̃
∂v+ +

(
∂v−

∂v

)T
∂W̃
∂v− = RT (n+ + n−),

∂W
∂u

=
(

∂u+

∂u

)T
∂W̃
∂u+ +

(
∂u−

∂u

)T
∂W̃
∂u− +

(
∂v+

∂u

)T
∂W̃
∂v+ +

(
∂v−

∂u

)T
∂W̃
∂v−

= RT
[
m+ +m− + w × (n+ − n−)

]
,

∂W
∂vc =

(
∂v+

∂vc

)T
∂W̃
∂v+ +

(
∂v−

∂vc

)T
∂W̃
∂v− = RT (n+ − n−),

∂W
∂uc =

(
∂u+

∂uc

)T
∂W̃
∂u+ +

(
∂u−

∂uc

)T
∂W̃
∂u−

= RT
[
m+ −m− − η × (m+ +m−)

]
,

∂W
∂w

= ∂W̃
∂w

+
(

∂v+

∂w

)T
∂W̃
∂v+ +

(
∂v−

∂w

)T
∂W̃
∂v−

= ∂W̃
∂w

−RT
[
u× (n+ − n−)

]
,
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∂W
∂ηη

= ∂W̃
∂ηη

+
(
∂v+

∂ηη

)T
∂W̃
∂v+ +

(
∂v−

∂ηη

)T
∂W̃
∂v− +

(
∂u+

∂ηη

)T
∂W̃
∂u+ +

(
∂u−

∂ηη

)T
∂W̃
∂u−

= ∂W̃
∂ηη

− αRT
{
v × (n+ − n−) + ws × (n+ + n−) + u× (m+ −m−)

−η × [
v × (n+ + n−) + ws × (n+ − n−) + u× (m+ +m−)

]

+η� × (P Tm+ + Pm−)
}

.

Expressions for the partial derivatives of the kinetic energy density K with respect to
its arguments are obtained from the above with the help of the variable interchange
(5.31).
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