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Institut de Mathèmatiques, Universitè de Neuchâtel,
Rue Emile Argand 11, CH-2007 Neuchâtel, Switzerland
kloucek@mac.com

Abstract. This paper describes the solvability of Dirichlet problems for Laplace’s
equation when the boundary data is not smooth enough for the existence of a weak
solution in H 1(�). Scales of spaces of harmonic functions and of boundary traces
are defined and the solutions are characterized as limits of classical harmonic func-
tions in special norms. The generalized harmonic functions, and their norms, are
defined using series expansions involving harmonic Steklov eigenfunctions on the
domain. It is shown that the usual trace operator has a continuous extension to an
isometric isomorphism of specific spaces. This provides a characterization of the
generalized solutions of harmonic Dirichlet problems. Numerical simulations of a
model problem are described. This problem is related to the dewetting of thin films
and the associated phenomenology is described.

Key Words. Steklov eigenvalue problem, Trace spaces, Generalized harmonic
functions, Dewetting.

AMS Classification. 35P05, 35J05, 35J55, 46F99, 65N25, 76A20.

∗ The second author was supported in part by Grants NSF ACI-0325081 and NSF CCR-0306503 and by
the European Commission via MEXC-CT-2005-023843.



146 G. Auchmuty and P. Klouček

1. Introduction

This paper will describe “very weak” or “generalized” solutions of Laplace’s equation
when the boundary data is not sufficiently nice for the problem to have a weak solution
in H 1(�). We shall show that such solutions may be described spectrally via expansions
in terms of harmonic Steklov eigenfunctions of the region. Moreover, these spectral
approximations can be used to obtain good numerical simulations of the solutions. A
model problem with discontinuous boundary data related to the dewetting of thin films
is treated explicitly and the solution is interpreted physically.

To describe these results, the essential properties of harmonic Steklov eigenproblems
are summarized first. They are based on results in [1] and [2]. Then, in Section 3, a scale
of spaces of generalized harmonic functions is defined which includes the class of finite-
energy harmonic functions. In Section 4 certain trace spaces are defined as was done
in [2]. These definitions are intrinsic and apply to more general domains than the usual
theory of trace spaces. With these definitions, the boundary trace operator is shown to be
an isometric isomorphism between certain classes of (generalized) harmonic functions
on � and specific spaces of functions on the boundary ∂�. This result may also be
viewed as a description of the unique solvability of a Dirichlet problem for the Laplacian
on � and this is described in Section 5. An efficient computational implementation of
the Steklov spectral approach for the classical Dirichlet problem for Laplace’s equation
is described in [7].

For the unit disc in the plane, the Steklov eigenvalues and eigenfunctions are known
explicitly and a model problem with discontinuous boundary data is solved explicitly
in Section 6. The solution is a bounded function that is not of class H 1. Numerical
simulations and approximations are described. The behavior of these solutions as a
model for the dewetting of thin films is discussed in Section 7.

2. Harmonic Functions and Steklov Eigenproblems

In this section some basic assumptions and definitions are provided for use in this paper.
In particular the subspace H(�) of all weakly harmonic functions in H 1(�) will be
defined and a natural orthonormal basis of this space is described.

Let� be a non-empty, connected bounded open subset of Rn with boundary ∂� :=
�\� satisfying

(B1) ∂� is a finite union of connected, closed, Lipschitz surfaces, and each component
of ∂� has finite surface area.

Let H 1(�), resp. H 1
0 (�), be the usual real spaces of the Sobolev function on �.

The standard inner product on H 1(�) is defined by

〈u, v〉H 1 :=
∫
�

[∇u(x) · ∇v(x)+ u(x)v(x)]. (2.1)

All functions, and function spaces, in this paper are assumed to be real valued. (B1)
is sufficient to ensure that Rellich’s theorem that the embedding H 1(�) 	→ L2(�) is
compact holds; see [6]. Let dσ represent the Hausdorff (n− 1)-dimensional measure on
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∂�. Then the Lebesgue space L2(∂�, dσ) is a real Hilbert space under the inner product

〈u, v〉σ := 1

σ(∂�)

∫
∂�

uv dσ. (2.2)

When (B1) holds, then the trace operator 
: H 1(�) 	→ L2(∂�, dσ) will be com-
pact; see Section 4.3 of [5]. In fact the analysis of this paper will hold under the following
(weaker) assumption:

(B2) Rellich’s theorem and the compact trace theorem hold for H 1(�).

Another inner product on H 1(�) is defined by

[u, v]∂ :=
∫
�

∇u(x) · ∇v(x) dx + 〈u, v〉σ . (2.3)

This is an equivalent inner product on H 1(�)when (B1) or (B2) holds; see Corollary 6.2
of [1] or Theorem 21A of [11].

2.1. The SpaceH(�) of Weakly Harmonic Functions

A function u ∈ H 1(�) is said to be weakly harmonic on� provided it satisfies the usual
weak form of Laplace’s equation, namely∫

�

∇u(x) · ∇ϕ(x) dx = 0 for all ϕ ∈ C∞c (�). (2.4)

Here C∞c (�) denotes the space of all infinitely differentiable functions with compact
support in �. The subspace of H 1(�) of all functions that satisfy (2.4) is denoted by
H(�) and is a closed subspace of H 1(�). Sometimes it is called the space of finite-energy
harmonic functions on �.

This definition and the inner product (2.3) yield that

H 1(�) = H 1
0 (�)⊕∂ H(�), (2.5)

as H 1
0 (�) is the closure of C∞c (�) in H 1(�). Here⊕∂ indicates an orthogonal sum with

respect to the inner product (2.3). That is, a function u ∈ H 1(�) is weakly harmonic if
and only if it is ∂-orthogonal to H 1

0 (�).

2.2. Steklov Eigenvalues and Steklov Eigenfunctions

A non-trivial function s ∈ H 1(�) is said to be a harmonic Steklov eigenfunction on �
corresponding to the Steklov eigenvalue δ if it satisfies∫

�

∇s(x) · ∇ϕ(x) dx = δ〈s, ϕ〉σ for all ϕ ∈ H 1(�). (2.6)

Taking ϕ ∈ C∞c (�) one sees that any such eigenfunction is weakly harmonic on �.
Consequently it is inH(�). This equation (2.6) is the usual weak form of the boundary
value problem


s = 0 on � with ∇s · ν = δ

σ (∂�)
s on ∂�.
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The least eigenvalue of the Steklov eigenproblem (2.6) is δ0 = 0 corresponding to
the eigenfunction s0 ≡ 1. This eigenvalue is simple when � is connected. Successive
Steklov eigenvalues and the associated eigenfunctions may be described recursively
using variational principles; see Sections 6 and 7 of [1]. An efficient computational
approach to obtaining the Steklov eigenpairs via a generalized eigenvalue formulation
is developed in [7]. Let the Steklov eigenvalues be

0 = δ0 < δ1 ≤ δ2 ≤ · · · ≤ δk ≤ · · ·
and let S := {sk | k ≥ 0} be a corresponding family of eigenfunctions. They may be
chosen to be orthonormal with respect to the ∂-inner product (2.3) so that

[sj , sk]∂ =
{

1, if j = k,

0, otherwise.
(2.7)

In Theorems 7.2 and 7.3 of [1] it is proven that δk →+∞ as k →+∞ and that S is an
orthonormal basis inH(�).

When u ∈ H(�), then

u(x) :=
∞∑

k=0

[u, sk]∂ sk(x)

will be called the Steklov expansion of u with respect to S and the K th Steklov approxi-
mation of u will be the finite sum

uK (x) :=
K∑

k=0

[u, sk]∂ sk(x). (2.8)

The following theorem summarizes some important properties of these Steklov
approximations and depends on standard results from Hilbert space theory.

Theorem 2.1. Let S be a maximal ∂-orthonormal family of harmonic Steklov eigen-
functions on � as above. Suppose u ∈ H(�), then uK ∈ C∞(�) ∩ H(�) for each
K ≥ 1. Moreover, uK converges to u in H 1(�) as K →∞ and

‖u‖2
∂ =

∞∑
k=0

[u, sk]2
∂ . (2.9)

Proof. Each Steklov eigenfunction is weakly harmonic on � and in H 1(�). Hence,
it follows from Weyl’s lemma that sk ∈ C∞(�). Thus uK ∈ C∞(�) for any K ≥ 1.
The strong convergence in H 1(�) follows from the Riesz–Fischer Theorem since S is
a orthonormal basis ofH(�). Finally (2.9) follows from Parseval’s equality.

3. Hilbert Spaces of Generalized Harmonic Functions

The space H(�) defined in the preceding section is associated with the usual theory of
weak solutions of harmonic boundary value problems on �. Here we shall define some
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classes of generalized harmonic functions that are appropriate for solving harmonic
Dirichlet problems when the boundary data is not in H 1/2(∂�). These classes will be
defined via their Steklov series expansions. As in the previous section, S denotes a
maximal ∂-orthonormal family of harmonic Steklov eigenfunctions on �.

LetHF (�) be the class of all finite linear combinations of functions in S, then

HF (�) ⊆ C∞(�) ∩ H 1(�).

Moreover, H(�) is the closure of HF (�) with respect to the topology induced by the
∂-norm from Theorem 2.1 above.

Suppose u = ∑∞
j=0 cj sj (x) is in HF (�). For any real number s ∈ R, define the

s-norm of u by

‖u‖2
s :=

∞∑
j=0

(1+ δj )
2(s−1) c2

j . (3.1)

Here δj is the j th harmonic Steklov eigenvalue of the region � and this sum is finite as
there are only finitely many nonzero cj s.

Definition 3.1. For any s ∈ R, define Hs(�) to be the closure of the space HF (�)

with respect to the s-norm (3.1).

For s > 1, Hs(�) is a dense subspace of the space H(�) of weakly harmonic
functions on �.Hs(�) may be regarded as the class of all Steklov expansions

u :=
∞∑

j=0

cj sj (x)

for which the sum in (3.1) is finite. When u, v are inHs(�) and have Steklov coefficients
{cj , dj }, respectively, then

〈u, v〉s :=
∞∑

j=0

(1+ δj )
2(s−1) cj dj (3.2)

is an inner product onHs(�) and it will be a real Hilbert space under this inner product.
Note that with this definitionH1(�) = H(�). When s < 1 there will be generalized

functions in Hs(�) that are not H 1-functions on �. Such functions may not be weakly
harmonic in the sense of (2.4) but they are limits of classical C∞-harmonic functions in
this s-norm. Hence they will be called generalized harmonic functions. These definitions
define a scale of real Hilbert spaces with the following properties:

Theorem 3.2. Assume that the domain � satisfies either (B1) or (B2) and s1 < s2,
then

(i) Hs2(�) is dense inHs1(�),
(ii) the embeddingHs2(�) 	→ Hs1(�) is compact,

(iii) if s = (1− θ)s1+ θs2, θ ∈ [0, 1], the following interpolation inequality holds:

‖u‖s ≤ ‖u‖1−θ
s1
‖u‖θs2

for all u ∈ Hs2(�). (3.3)
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Proof. This follows from standard arguments for such sequence spaces. See Section 5
of [2] for a detailed proof of a similar result.

A natural question is whether the functions inHs(�) are in the usual spaces H s(�)

for some definition of such spaces when s �= 1 and the domain � has a sufficiently nice
boundary.

4. Boundary Traces of Generalized Harmonic Functions

There is a well-known theory for the boundary traces of H 1-functions described in
[9] and elsewhere. This theory requires considerable boundary regularity and is not very
amenable to computation. A somewhat different description of trace spaces using Steklov
eigenfunctions has recently been developed in [2]. This approach applies to somewhat
more general domains, is intrinsic and involves norms that just depend on the quantities
involved in Steklov expansions.

Let 
 be the trace operator as in Section 2. When the Steklov eigenfunctions satisfy
(2.7), then (2.6) yields

〈
sj , 
sk〉σ =
{
(1+ δk)

−1, if j = k,

0, otherwise.
(4.1)

This implies that the traces of the Steklov eigenfunctions on the boundary ∂� are or-
thogonal with respect to the standard L2-inner product on ∂�. For each j ≥ 0, define

gj (x) := √
1+ δj 
sj (x), x ∈ ∂�. (4.2)

Then S1 := {gj | j ≥ 0} is an orthonormal set in L2(∂�, dσ) and Theorem 9.4 of [2]
shows that S1 is maximal. That is S1 is an orthonormal basis of L2(∂�, dσ) and for any
f ∈ L2(∂�, dσ) the partial sums

fK (x) :=
K∑

m=0

〈 f, gm〉σ gm(x) (4.3)

will be well-defined functions in L2(∂�, dσ) such that fK → f as K → ∞ in the
L2-norm.

For s > 0, define the subspace H s(∂�) of L2(∂�, dσ) to be the space of all
functions satisfying

‖ f ‖2
s,∂� :=

∞∑
j=0

(1+ δj )
2s〈 f, gj 〉2σ < ∞. (4.4)

Here the δj are harmonic Steklov eigenvalues on �. The space H s(∂�) is a real Hilbert
space under the inner product

〈 f, h〉s,∂� :=
∞∑

j=0

(1+ δj )
2s 〈 f, gj 〉σ 〈h, gj 〉σ . (4.5)
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When s = 0 this yields H 0(∂�) = L2(∂�, dσ). Suppose u ∈ HF (�) has a Steklov
expansion u =∑∞j=0 cj sj . Apply 
, then (4.2) yields


u(x) =
∞∑

j=0

cj√
1+ δj

gj (x) and, from (4.4), (4.6)

‖
u‖2
s,∂� =

∞∑
j=0

(1+ δj )
2s−1 c2

j . (4.7)

When u ∈ H(�), take s = 1
2 then 
u ∈ H 1/2(∂�) from Theorem 2.1, so this definition

agrees with the usual property of this trace space for the case of smooth ∂�.
More details of this construction are provided in [2]. This definition may be ex-

tended to the case s < 0 and then the spaces H−s(∂�) may be regarded as dual spaces
of H s(∂�). Most of the rest of this paper describes results based on the following the-
orem which characterizes the boundary trace properties of the classes of (generalized)
harmonic functions on �.

Theorem 4.1. The restriction of the trace operator 
: Hs+1/2(�) 	→ H s(∂�) is an
isometric isomorphism for any s ≥ 1

2 . The trace operator 
 has a continuous linear
extension 
s : Hs+1/2(�) 	→ H s(∂�), which is an isometric isomorphism, for each
s < 1

2 .

Proof. First consider the case s ≥ 1
2 and assume u = ∑∞j=0 cj sj ∈ Hs+1/2(�). From

(3.1),

‖u‖2
s+1/2 :=

∞∑
j=0

(1+ δj )
2s−1c2

j . (4.8)

Comparing (4.7) with (4.8), we see that ‖
u‖2
s,∂� = ‖u‖2

s+1/2, so 
 is an isometric map.
It remains to show the surjectivity of 
. Choose f ∈ H s(∂�) with the Steklov

expansion
∑∞

j=0 aj gj , and consider

ũ(x) :=
∞∑

j=0

aj (1+ δj )
1/2sj (x). (4.9)

Then 
ũ = f . Since f ∈ Hs(∂�),

‖ f ‖2
s,∂� =

∞∑
j=0

a2
j (1+ δj )

2s < ∞. (4.10)

Now

‖ũ‖2
s+1/2 =

∞∑
j=0

a2
j (1+ δj )

2s = ‖ f ‖2
s,∂� < +∞ (4.11)

so ũ ∈ Hs+1/2(�) and thus 
 is surjective.
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When s < 1
2 and u =∑∞j=0 cj sj ∈ Hs+1/2(�) then u is the limit of Steklov partial

sums uK taken in the norm ofHs(�). For each K ≥ 1 we have, see (4.6),


uK =
K∑

j=0

cj√
1+ δj

gj (x) ∈ L2(∂�, dσ),

‖
uM‖2
s,∂� =

K∑
j=0

c2
j (1+ δj )

2s−1. (4.12)

Moreover, u ∈ Hs+1/2(�) implies that {
uK | K ≥ 1} is a Cauchy sequence in H s(∂�).
Hence, there exists a unique f̂ ∈ H s(∂�) representing the limit of 
uK in the strong
topology in H s(∂�) as K →∞. Define the map 
s by the assignment


s : u 	→ f̂ , (4.13)

then (4.12) yields the following properties of 
s :

(i) 
s : Hs+1/2(�) 	→ Hs(∂�),
(ii) ‖
su‖s,∂� = ‖ f̂ ‖s,∂� = ‖u‖s+1/2 in view of (3.1) and (4.12b), and

(iii) 
s is surjective, which is proved just as for the case s ≥ 1
2 above.

It is worth noting that with these definitions when u ∈ HF (�) then 
u ∈ H s(∂�),
for all real s as the partial sums have only finitely many non-zero coefficients in their
Steklov expansion.

5. Generalized Harmonic Dirichlet Problem

The classical harmonic Dirichlet problem on � is, given a function f on ∂�, to find a
solution û ∈ C2(�) ∩ C0(�) satisfying

−
u(x) = 0 for all x ∈ �,
subject to u(x) = f (x) for all x ∈ ∂�. (5.1)

A necessary, but not sufficient, condition for this to have a classical solution is that f
be a continuous function. Our interest is in finding generalized solutions of this problem
when f is a Lebesgue integrable function on ∂� that need not be continuous.

The usual weak form of this problem is to find a function û ∈ H(�) such that


û = f on ∂�. (5.2)

From the analysis of the previous section, this problem has a unique solution if and only
if f ∈ H 1/2(∂�).

When f ∈ H s(∂�) for some s < 1
2 but f is not in H 1/2(∂�), then the generalized

harmonic Dirichlet problem will be to find û ∈ Hs+1/2(�) satisfying


su = f on ∂�. (5.3)

Here 
s is the extension of the trace operator to the class Hs+1/2(�) of generalized
harmonic functions on�. This may be regarded as a spectral solution of this problem in
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that the generalized Fourier coefficients of the solution û with respect to the orthonormal
basis S1 of L2(∂�, dσ)must agree with those of f . This follows from (5.3) as û satisfies

〈
s û, gj 〉σ = 〈 f, gj 〉σ for all j ≥ 0. (5.4)

Here the pairing is between H s(∂�) and H−s(∂�) via the inner product on L2(∂�, dσ).
Theorem 4.1 implies the following result about this problem:

Theorem 5.1. Assume� satisfies (B2), s ∈ R and the spacesHs+1/2(�), H s(∂�) are
defined as above. For each f ∈ H s(∂�), there is a unique û ∈ Hs+1/2(�) which solves
(5.3). When f has the Steklov expansion, f =∑∞j=0 cj gj , this solution is

û =
∞∑

j=0

√
1+ δj cj sj , (5.5)

and the partial sums of this series converge in norm to û onHs+1/2(�).

Proof. This is just a restatement of the analysis in Theorem 4.1.

It is useful to detail this explicitly for the situation where the boundary data is L2.
Assume f ∈ L2(∂�, dσ) has the Steklov expansion

f (x) =
∞∑

j=0

〈 f, gj 〉σ gj (x).

It follows from Theorem 4.1 with s = 0 that there exists unique û ∈ H1/2(∂�), which
satisfies (5.2) and, moreover,

û(x) = lim
M→+∞

M∑
j=0

√
1+ δj 〈 f, gj 〉σ sj (x). (5.6)

For any integer M , we consider the function PM : �× ∂� 	→ R defined by

PM(x, y) =
M∑

j=0

√
1+ δj sj (x)gj (y). (5.7)

It follows from the properties of the Steklov eigenfunctions discussed above thatPM(·, y)
is harmonic and C∞ on � for each y ∈ ∂�. Multiply this by f and integrate to obtain

1

σ(∂�)

∫
∂�

PM(x, y) f (y) dσ(y)

=
M∑

j=0

√
1+ δj 〈 f, gj 〉σ sj (x) for all x ∈ �. (5.8)

Define

EM( f )(x) := 1

σ(∂�)

∫
∂�

PM(x, y) f (y) dσ(y). (5.9)
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Then EM( f ) is a harmonic function that is C∞ on � and Theorem 4.1 guarantees that
the unique solution of (5.2) will be such that

EM( f )→ û inH1/2(�), as M →+∞. (5.10)

This provides a sequence of smooth harmonic functions that converge strongly in
theH1/2-norm to a generalized solution of this harmonic Dirichlet problem that may not
be an H 1-solution. Note that the H1/2-norm is stronger than the L2 norm on �, so the
partial sums converge in L2(�). From (5.4), the boundary trace of the functions EM( f )
converges strongly to f in L2(∂�, dσ) as M →∞.

6. Steklov Eigenpairs on the Unit Disc

In this section the preceding analysis is used to obtain formulae for generalized solutions
of Dirichlet boundary value problems for Laplace’s equation on the unit disc B(0, 1) ⊂
R

2. For the unit disc, the Steklov eigenvalues and eigenfunctions are easily determined.
δ0 = 0 is a simple eigenvalue with corresponding eigenfunction s0 = 1. For k ≥ 1, the
Steklov eigenvalues occur in pairs, satisfying

δ2k−1 = δ2k = 2πk. (6.1)

The corresponding normalized eigenfunctions, in polar coordinates, are

s2k−1(r, θ) := ak rk sin (kθ), and s2k(r, θ) := ak rk cos (kθ), (6.2)

ak =
√

2

2πk + 1
. (6.3)

The coefficient ak here was chosen so that the orthogonality condition (2.7) holds.
The traces of these eigenfunctions are L2-orthogonal with respect to arc-length on

the boundary S1 = ∂B(0, 1)—which is the unit circle. The associated surface traces
defined as in (4.2) are g0(θ) ≡ 1 and

g2k−1(θ) =
√

2 sin (kθ) and g2k(θ) =
√

2 cos (kθ) for k ≥ 1 (6.4)

and these form an L2-orthonormal basis on the boundary with the inner product
from (2.2).

6.1. Boundary Data with Singularities

Consider the function

f (r, θ) = log(−log(r(1− r)+ θ(2π − θ)/(2π)2))r2 on B(0, 1).

The function f is in H 1(B(0, 1)) but has a singularity at θ = 0 or 2π and r = 1. In
other words, it is not in L∞(S1) but it does belong to H 1/2(S1). Since the function is
symmetric around θ = π , all coefficients in the Steklov expansion corresponding to sin-
terms are zero. Hence the expansion only involves the cosine terms. The result, shown at
Figure 1, exhibits a large number of oscillations near the singularity, corresponding to the
Gibbs phenomenon. These oscillations diminish with increasing number of terms in the
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Figure 1. Plot shows the trace 
 f (r, θ) = log(−log(θ(2π − θ)/(2π)2)) and the trace of the Steklov
approximation on the boundary of the unit disk. We used 200 terms in the Steklov expansion to obtain this
result combined with high precision numerical integration to evaluate the Steklov coefficients.

expansion but never disappear. The oscillations in the Steklov approximation decrease
rapidly inside the unit disc.

6.2. Boundary Data not in H 1/2(∂B(0, 1))

Consider the problem of finding a generalized solution of Laplace’s equation on the unit
disc subject to the boundary data

u(1, θ) = f2(θ) = (θ/2π)2,
where 0 ≤ θ ≤ 2π . This function has a finite jump at (1, 0) but satisfies 0 ≤ f2(θ) ≤ 1
on S1, so it is in L∞(S1) and L2(S1). It is straightforward to show that the Fourier series
of this function is

f2(θ) = 1

3
+ 1

π2

∞∑
k=1

1

k2
(cos kθ − kπ sin kθ). (6.5)

Thus in terms of the basis defined by (6.4), we have

f2(θ) = 1
3 g0 + 1√

2π2

∞∑
k=1

1

k2
[g2k(1, θ)− kπg2k−1(1, θ)]. (6.6)

It follows that f2 is in H s(∂B(0, 1)) for all s < 1
2 from the definitions of Section 4

and standard convergence results. Thus, from Theorem 5.1, the generalized harmonic
function that has f2 as its trace on the unit circle is

u(r, θ) := 1

3
+ 1

π2

∞∑
k=1

rk

k2
[cos(kθ)− kπ sin(kθ)]. (6.7)

This function is in the spaceHs(B(0, 1)) for all s < 1 but it is not weakly harmonic.
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Using the definition (4.4) of the norm onHs(S1), define

‖ f2‖2
s,M,S1

= 1
3 + (2π)−4

M∑
k=1

(1+ 2πk)2s+1

((
1

2π

∫ 2π

0
θ2
√

2 sin(kθ) dθ

)2

+
(

1

2π

∫ 2π

0
θ2
√

2 cos(kθ) dθ

)2
)

= 1
3 +

M∑
k=1

(1+ 2πk)2s+1

((
1√
2πk

)2

+
(

1√
2π2k2

)2
)
. (6.8)

Take M = 103 in (6.8) then∣∣∣‖ f2‖2
0,1000,S1

− ‖ f2‖2
L2(S1)

∣∣∣ < 5.1× 10−5.

We note that the above inequality is the only way to examine the correctness and the
truncation error of the representation formula (6.8) if the boundary datum is not in
H 1/2(S1); see [7] for details.

7. Dewetting of a Thin Film

In order to provide some intuitive understanding of the generalized harmonic function
solving a Dirichlet problem with boundary data not in H 1/2(�) presented in Section 6.2,
we consider an idealized thin (e.g., liquid) film attached to a wire frame that is broken
at some point. We begin by admitting that, in principle, the generalized minimal surface
problem cannot model the rupture on the micro-scale as it is missing two fundamental
ingredients: the chemical potential and surface energies. The rupture occurs in the pres-
ence of the disjoining pressure, and its kinetics depend strongly on contribution from
the membrane density [3]. From the energetics point of view, the process of rupture
occurs when the kinetic energy of the oscillating membrane (due to braking the frame)
exceeds the surface and elastic energies of the system. The surface (interfacial) energies
correspond to liquid–air and liquid–metal–air interfaces. Microscopically, the surface
energies are due to the molecular mixture of different chemical compounds at points of
their contact. Close to the wire frame, the surface energy of the liquid–metal interface
must be higher than the energy needed to separate the molecules of the thin liquid film,
for otherwise the membrane would not exist. In other words, there exists a layer, very
close to the wire frame, with physical properties, such as elastic modulus, very different
from that of liquid film. Mathematical description of the layer and its role has been
established by Klouček and Romerio in [8].

The framework presented in this paper allows us to define a “generalized” solution
of a Dirichlet problem with boundary datum having a boundary discontinuity, using The-
orem 5.1. From a physics point of view, we are modeling a “minimal surface” at the
infinitesimal moment after a rupture of the wire frame. In other words, interpreting the
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Boundary of the Unit Disk
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Figure 2. Three-dimensional plot of the generalized harmonic function solving the Dirichlet problem (5.1)
with the boundary data f2. The slope of the jump, visible on the drawing of the entire Steklov solution in the
left picture, is due to the number of terms used in the partial Steklov sum. The picture on the right shows a
slice through the surface of the Steklov solution to visualize the curvature of the surface.

“generalized” solution as a deformation, the deformation gradient, which is proportional
to internal forces, can be used to find a path of propagating rupture, for it is going to
happen at the material points of highest stress.

A three-dimensional drawing of the generalized solution of the Dirichlet prob-
lem (5.1) is shown in Figure 2. This figure also shows a slice through the surface
of the solution to visualize its curvature. Notice that the Steklov solution satisfies the
maximum/minimium principle, i.e.,

max
x∈B(0,1)

EM( f2)(x) = max
y∈S1

TM f2(y) and min
x∈B(0,1)

EM( f2)(x) = min
y∈S1

TM f2(y),

where TM indicates the M th partial sum of the Steklov expansion of a function on the
boundary.

7.1. Comparison of the Steklov and Finite Element Solutions

We illuminate some of the more important differences between the Steklov spectral
solution of the Dirichlet problem (5.1) and its Finite element solution. We have mentioned
already that this boundary value problem has a weak solution if and only if the boundary
data is in H 1/2(S1). This precludes finite jumps on the boundary, so for such data, even
if we can find a Finite element solution for any h > 0 we must observe

‖uh‖H 1(B(0,1))→+∞ as h → 0.

Thus no conclusions can be drawn from the discrete Finite element solution of (5.1).
The differences between the Steklov and the Finite element solutions are visualized
in Figures 3 and 4. Those figures show quite a substantial difference between the two
surfaces. The Finite element solution exhibits an excessive amount of curvature visible in
Figure 4. This is most likely responsible for the blow-up of the L2-norm of the gradients
in the above limit pass.

On the other hand, the Steklov solution that minimizes the ‖·‖s0+1/2-norm seems to
provide a solution with quite small curvature except near the boundary discontinuity.

We used a polygonal domain with 128 boundary nodes to approximate the Unit
Disk for the Finite element computations. We used bilinear, Q1-Finite elements. The
dimension of the Finite element space used is 5185.
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Steklov solution

Finite Element solution

Boundary of the Unit Disk

Finite Element solution

Steklov solution

Steklov solution

Section plane

Steklov solution

Finite element solution

Figure 3. Cross sections through the surfaces corresponding to the Finite element and the Steklov “solution”
of the Dirichlet problem (5.1) with the boundary data f2. The upper surface (lighter color) is generated using
finite elements and the lower surface (darker color) corresponds to the Steklov solution. Notice how different
the respective solutions are near the discontinuity on the boundary. The lower-left picture shows the section
plane used to obtain the cross sections of the superimposed Steklov and Finite element solutions. In all the
cases the section planes are parallel to each other.

Steklov solution

Finite Element solution Finite Element solution

Boundary of the Unit Disk

Steklov solution

Figure 4. Cross sections through the surfaces corresponding to the Finite element and the Steklov “solution”
of the Dirichlet problem (5.1) with the boundary data f2. Notice a profound difference in the curvature of the
two solutions. As in Figure 3, the lighter color corresponds to the Finite element solution and the darker color
corresponds to the Steklov solution.
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The Steklov solution is approximated by a partial sum E500( f2). All the boundary
integrals appearing in the Steklov formula are computed exactly.

Appendix

This section provides a summary of the definitions used in the paper as well as some
important relations.

Lemma A.1. We assume that � and ∂� satisfy (B2). Let Hs(�) be given by Defini-
tion 3.1, and let H s(∂�) be the closure of L2(∂�, dσ) with regard to the norm ‖·‖s,∂�.

We have

H−s(�) = Hs(�)
∗ and H−s(∂�) = H s(∂�)

∗ for any s ∈ R (A.1)

with the duality pairings provided by the inner products 〈·, ·〉1 and 〈·, ·〉σ , respectively.
(See Table 2 for their respective definitions.) Consequently, both spaces of generalized
harmonic functions and the associated trace spaces are reflexive for any s ∈ R.

Proof. Let f ∈ Hs(�), s ≥ 0, and let

〈F f , v〉0 := 〈 f, v〉0 for all v ∈ Hs(�).

It follows from the Schwarz inequality applied to the duality 〈·, ·〉0 that F f ∈ Hs(�)∗

forHs(�) ⊆ H0(�) if s ≥ 0; see Theorem 3.2.
Let F ∈ Hs(�)∗. Hs(�) are real Hilbert spaces with the inner products given by

(3.2). The Riesz Representation Theorem [4], [10] asserts that each Hilbert space is
isometrically isomorphic to its dual. Hence, there exists g ∈ Hs(�) such that

〈F, v〉0 := 〈g, v〉0 for all v ∈ Hs(�).

Let

gj := [g, sj ]∂ and vj := [v, sj ]∂ .

Then, using the Hölder inequality,

|〈g, v〉0|=
∣∣∣∣∣
∞∑

j=0

gjvj

∣∣∣∣∣=
∣∣∣∣∣
∞∑

j=0

(1+δj )
−(s+1)gj (1+ δj )

s+1vj

∣∣∣∣∣≤‖g‖−s‖v‖s . (A.2)

Hence F is bounded onHs(�) with equality in (A.2) if g ∈ H−s(�) has the expansion
coefficients given by [v, sj ]∂ , j ≥ 0. Since boundedness is synonymous with continuity
in the case of linear functionals, we conclude that F ∈ H−s(�) for any s ≥ 0.
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Table 1. Descriptions of the function spaces used in the paper. The inner products are defined in Table 2.

Notation Definition Remark

L2(∂�, dσ) Section 2 L2(∂�, dσ) = H0(∂�) w.r.t. {gj }
H1(�) Section 2.1 and [6] W 1,2(�) endowed with an alternative inner

product
HF (�) Finite linear combinations of sj sj are Steklov eigenfunctions such that

[sj , sk ]∂ = δjk

H(�) Section 2 H(�) = H1(�) and finite energy harmonic
functions

Hs(�) Closure ofHF (�) w.r.t. ‖·‖s
Hs(∂�) Closure of L2(∂�, dσ) w.r.t. ‖·‖2s,∂� If s < 0 then elements ofHs(∂�) are

generalized functions

Assuming existence of two elements g1, g2 ∈ Hs(�) representing F we get

〈g1 − g2, sj 〉s = 0, j = 0, 1, 2, . . . ,

where sj ∈ Hs(�) are Steklov eigenfunctions forming a basis inHs(�). Hence g1 = g2

inHs(�).
The duality for the trace spaces follows from Theorem 4.1. Namely, according to

this theorem,Hs+1/2(�) and H s(∂�) are isometrically isomorphic when H s(∂�) is an
image ofHs+1/2(�) under the trace operator

T :=




, s ≥ 1

2 , 
: H 1(�) 	→ L2(∂�, dσ) compact,
i.e., assumption (B2),

cont. lin. ext. of 
s s < 1
2 , 
s given by (4.13).

Thus the duality result for the generalized trace spaces follows from the first part of the
theorem.

Table 2. Dualities and inner products used in the paper. The function sj

is a Steklov eigenfunction corresponding to the j th eigenvalue of (2.6) and
normalized as in (2.7). The gj is the boundary trace of this eigenfunction

defined by gj (x) =
√

1+ δj 
sj (x), x ∈ ∂�.

Space Inner product

L2(∂�, dσ) 〈u, v〉σ := σ(∂�)−1
∫
∂�

uv dσ

H1(�) [u, v]∂ :=
∫
�
∇u(x) · ∇v(x) dx + 〈
u, 
v〉σ

H(�) 〈u, v〉1 := ∑∞
j=0 [u, sj ]∂ [v, sj ]∂

Hs(�) 〈u, v〉s :=
∑∞

j=0 (1+ δj )
2(s−1) [u, sj ]∂ [v, sj ]∂

Hs(∂�) 〈
u, 
v〉s,∂� :=∑∞
j=0(1+ δj )

2s+1〈
u, 
sj 〉σ 〈
v, 
sj 〉σ
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