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Abstract. In a region D in R
2 or R

3, the classical Euler equation for the regular motion of an inviscid and incompressible
fluid of constant density is given by

∂tv + (v · ∇x)v = −∇xp, divxv = 0,

where v(t, x) is the velocity of the particle located at x ∈ D at time t and p(t, x) ∈ R is the pressure. Solutions v and p to
the Euler equation can be obtained by solving

⎧
⎪⎪⎨

⎪⎪⎩

∇x
{
∂tφ(t, x, a) + p(t, x) + (1/2)|∇xφ(t, x, a)|2}

= 0 at a = κ(t, x),
v(t, x) = ∇xφ(t, x, a) at a = κ(t, x),
∂tκ(t, x) + (v · ∇x)κ(t, x) = 0,
divxv(t, x) = 0,

(0.1)

where

φ : R ×D × R
l → R and κ : R ×D → R

l

are additional unknown mappings (l ≥ 1 is prescribed). The third equation in the system says that κ ∈ R
l is convected by

the flow and the second one that φ can be interpreted as some kind of velocity potential. However vorticity is not precluded
thanks to the dependence on a. With the additional condition κ(0, x) = x on D (and thus l = 2 or 3), this formulation
was developed by Brenier (Commun Pure Appl Math 52:411–452, 1999) in his Eulerian–Lagrangian variational approach
to the Euler equation. He considered generalized flows that do not cross ∂D and that carry each “particle” at time t = 0 at
a prescribed location at time t = T > 0, that is, κ(T, x) is prescribed in D for all x ∈ D. We are concerned with flows that
are periodic in time and with prescribed flux through each point of the boundary ∂D of the bounded region D (a two- or
three-dimensional straight pipe). More precisely, the boundary condition is on the flux through ∂D of particles labelled by
each value of κ at each point of ∂D. One of the main novelties is the introduction of a prescribed “generalized” Bernoulli’s
function H : R

l → R, namely, we add to (0.1) the requirement that

∂tφ(t, x, a) + p(t, x) + (1/2)|∇xφ(t, x, a)|2 = H(a) at a = κ(t, x) (0.2)

with φ, p, κ periodic in time of prescribed period T > 0. Equations (0.1) and (0.2) have a geometrical interpretation that
is related to the notions of “Lamb’s surfaces” and “isotropic manifolds” in symplectic geometry. They may lead to flows
with vorticity. An important advantage of Brenier’s formulation and its present adaptation consists in the fact that, under
natural hypotheses, a solution in some weak sense always exists (if the boundary conditions are not contradictory). It is
found by considering the functional

(κ, v) →
T∫

0

∫

D

{
1

2
|v(t, x)|2 +H(κ(t, x))

}

dt dx

defined for κ and v that are T -periodic in t, such that

∂tκ(t, x) + (v · ∇x)κ(t, x) = 0, divxv(t, x) = 0,

and such that they satisfy the boundary conditions. The domain of this functional is enlarged to some set of vector measures
and then a minimizer can be obtained. For stationary planar flows, the approach is compared with the following standard
minimization method: to minimize

∫

]0,L[×]0,1[

{(1/2)|∇ψ|2 +H(ψ)}dx for ψ ∈ W 1,2(]0, L[×]0, 1[)
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under appropriate boundary conditions, where ψ is the stream function. For a minimizer, corresponding functions φ and κ
are given in terms of the stream function ψ.
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1. Introduction

We first explain the formulation with usual functions, and then generalize it to vector measures, so that
the minimization problem we shall consider has a minimizer in the more general setting.

Let the section Σ ⊂ R
d−1 be the closure of a bounded, open, connected and non-empty set, where

d ∈ {2, 3} is the spatial dimension. Let D be the region

D = [0, L] × Σ, x = (y, z) ∈ D with y ∈ [0, L] and z ∈ Σ,

where L > 0 is its length.
The classical Euler equation for the regular motion of an inviscid and incompressible fluid of constant

density in the region D can be written

∂tv + (v · ∇x)v = −∇xp, divxv = 0, (1.1)

where v(t, x) ∈ R
d is the velocity of the particle located at x ∈ D at time t and p(t, x) ∈ R is the pressure

at x ∈ D at time t. We are concerned with flows that are periodic in time of prescribed period T > 0,
and that have prescribed flux through each point of the boundary ∂D of the bounded region D.

Solutions v and p to the Euler equation can be obtained by solving (0.1), where

φ : R ×D × R
l → R and κ : R ×D → R

l

are additional unknown mappings that are time periodic of period T (l ≥ 1 is prescribed).
If the flow is stationary (v and p do not depend on time), the Bernoulli equation states that 1

2 |v|2+p :=
H̃ is constant along stream lines, that is, each particle is associated with a particular value of H̃. In this
case, H̃ is called “the Bernoulli function” (or “hydraulic head”, “Bernoulli’s head”, “total pressure”, etc).

Given H : R
l → R, we add to (0.1) the requirement (0.2). Observe that −tH(a) cannot be added

to φ in general because of the periodicity condition on t. The function H amounts to H̃ when ∂tφ = 0
everywhere and therefore we shall call H the “generalized Bernoulli function”.

Concerning the boundary conditions on ∂D, we denote by n the outward unitary normal vector to
∂D (almost everywhere well defined on ∂D),

μ0(t, x) := −v(t, x) · n(x) for x ∈ {0} × int Σ
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and

μL(t, x) := v(t, x) · n(x) for x ∈ {L} × int Σ.

We shall require that

1. v(t, x) · n(x) = 0 for all x ∈]0, L[×∂Σ
(the flow does not cross ]0, L[×∂Σ),

2. μ0(t, x) ≥ 0 and μL(t, x) ≥ 0 are prescribed on {0} × int Σ and {L} × int Σ,
3. and κ(t, x) is prescribed on {0} × int Σ and {L} × int Σ

(that is, the ingoing flux through {0} × int Σ, the outgoing flux through {L} × int Σ and κ are
prescribed).

To understand the geometrical meaning of (0.1) and (0.2) when p, φ, κ and H are smooth, observe
that, given any smooth path

[0, 1] � s → γ(s) = (γt(s), γx(s)) ∈ R × intD

such that γ(0) = γ(1), the following integral

1∫

0

{ (−p(γ(s)) − (1/2)|v(γ(s))|2) γ′
t(s) + v(γ(s)) · γ′

x(s)
}
ds (1.2)

is invariant if we let the path evolve in R × intD accordingly to the flow defined by the velocity field
(1, v) ∈ R × R

d, as long as R × ∂D is not reached (the first component is the time variable). Indeed, this
flow is governed by the Hamiltonian

R × int D × R × R
d � (t, x, h, v) → h+ p(t, x) + (1/2)|v|2, (1.3)

where h is the variable conjugate to time, the convective derivative of which is equal to −∂tp(t, x). The
preservation of (1.2) is a consequence of the preservation of the Hamiltonian (1.3), which can therefore
be chosen to vanish everywhere, and of the integral

1∫

0

{h(γ(s))γ′
t(s) + v(γ(s)) · γ′

x(s) } ds.

The preservation of the latter integral is a consequence of the preservation of the standard symplectic
2-form on (R × R

d) × (R × R
d). When γt is constant, this amounts to the well known fact that the cir-

culation along a “material” loop is preserved. Let us now consider the case where, for each a, the subset
of R × R

d × R × R
d

Wa =
{(
t, x,−p(t, x) − (1/2)|v(t, x)|2, v(t, x)) :

(t, x) ∈ R × intD, κ(t, x) = a
}

is either empty or a smooth manifold. Note that Wa is globally invariant by the flow (the components
corresponding to a fluid particle stay in Wa as long as they remain in R × intD × R

1+d; indeed κ is
convected by the flow). If (0.1) and (0.2) are satisfied, for all smooth paths

[0, 1] � s → γ(s) = (γt(s), γx(s)) ∈ κ−1({a}) ∩ (R × intD) ⊂ R × R
d

such that γ(0) = γ(1) and that are smoothly contractible in κ−1({a}) ∩ (R × intD), it holds

1∫

0

{− (
p(γ(s)) + (1/2)|v(γ(s))|2) γ′

t(s) + v(γ(s)) · γ′
x(s)

}
ds = 0
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because
1∫

0

{ (−p(γ(s)) − (1/2)|v(γ(s))|2) γ′
t(s) + v(γ(s)) · γ′

x(s)
}
ds

=

1∫

0

{ (
H(a) − p(γ(s)) − (1/2)|v(γ(s))|2) γ′

t(s) + v(γ(s)) · γ′
x(s)

}
ds

=

1∫

0

{ ∂tφ(γ(s), a)γ′
t(s) + ∇xφ(γ(s), a) · γ′

x(s) } ds

=

1∫

0

d

ds
φ(γ(s), a)ds = φ(γ(1), a) − φ(γ(0), a) = 0.

The manifold Wa is therefore said to be isotropic (equivalently, the standard symplectic two-form on
R

1+d × R
1+d vanishes when restricted to each of its tangent spaces; see e.g. [1]).1 In fact this analysis

still holds if the paths are not necessarily contractible and we say therefore that this manifold is isotropic
and exact. On the other hand, consider a smooth path

γ = (γt, γx) : [0, 1] → κ−1({a}) ∩ (R × intD) ⊂ R × R
d

such that γt(0) = 0, γt(1) = T and γx(1) = γx(0) (1.4)

where T > 0 is the period. We now get
1∫

0

{ − (
p(γ(s)) + (1/2)|v(γ(s))|2) γ′

t(s) + v(γ(s)) · γ′
x(s)

}
ds = −TH(a)

because
1∫

0

{ (−p(γ(s)) − (1/2)|v(γ(s))|2) γ′
t(s) + v(γ(s)) · γ′

x(s)
}
ds = −TH(a)

+

1∫

0

{ (
H(a) − p(γ(s)) − (1/2)|v(γ(s))|2) γ′

t(s) + v(γ(s)) · γ′
x(s)

}
ds

= −TH(a).

If H(a) 	= 0, this means that, seen as a subset of ((R/TZ) × R
d) × R

1+d,Wa is not exact, and thus H(a)
is a measure of non-exactness in ((R/TZ) × R

d) × R
1+d (if such a path γ exists). Here R/TZ is regarded

as a compact one-dimensional manifold (a “circle”). If κ has no critical point on R ×D, then l ≤ 1 + d
and the dimension of Wa (if not empty) is 1 + d− l.

Hence if l ∈ {1, . . . , d − 1} and if equations (0.1) and (0.2) can be solved with smooth p, φ, κ and κ
without critical points on R ×D, then, given any a such that

{ (t, x) ∈ R × {0} × int Σ : κ(t, x) = a }
and

{ (t, x) ∈ R × {L} × int Σ : κ(t, x) = a }

1 As Wa is invariant, Wa is isotropic exactly when {(x, v(t, x)) : x ∈ intD} is isotropic in R
d × R

d for all t ∈ R. Indeed, for
every (t, x) ∈ R×intD such that κ(t, x) = a, the vector (1, v(t, x),−∂tp(t, x),−∇xp(t, x)) is tangent to Wa at (t, x,−p(t, x)−
(1/2)|v(t, x)|2, v(t, x)) ∈ Wa. Moreover the standard symplectic form in R

1+d ×R
1+d vanishes at the pair of tangent vectors

to Wa given by (1, v(t, x),−∂tp(t, x),−∇xp(t, x)) and (0, δx,−∇xp(t, x) · δx − v(t, x) · (∂xv(t, x)δx), ∂xv(t, x)δx) for all
appropriate δx ∈ R

d.
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are smooth manifolds of dimensions ≤ d− l, the above manifold Wa in R × R
d × R × R

d is of dimension
at least 2, isotropic, exact and

H(a) =
1
T

1∫

0

{ (
p(γ(s)) + (1/2)|v(γ(s))|2 )

γ′
t(s) − v(γ(s)) · γ′

x(s)
}
ds

for all smooth paths γ satisfying (1.4).
To sum up, in this context, the problem at hand can be approximately interpreted as the one of

“extending” manifolds defined in R × {0, L} × int Σ to invariant exact isotropic manifolds in R × intD×
R

1+d, in a way compatible with the above interpretation of H(a), with the boundary conditions on the
flux and with the Euler equation (in particular, in a compatible way with the existence of a pressure field
p and the equation divxv = 0). In the autonomous three-dimensional case, this is related to the problem
of extending Lamb’s submanifolds from the boundary to the full domain (see Sect. 3).

Given the continuous generalized Bernoulli function H : R
l → R, we consider the functional

(κ, v) →
T∫

0

∫

D

{
1
2
|v(t, x)|2 +H(κ(t, x))

}

dt dx

defined for κ and v that are T -periodic in t, such that

∂tκ(t, x) + (v · ∇x)κ(t, x) = 0, divxv(t, x) = 0,

and such that they satisfy the above boundary conditions.
The first step is to enlarge the class of admissible functions κ and v, so that a minimizer can be found

(the value of the infimum remains the same or decreases). Instead of classical flows, we shall look for,
and find, time-periodic “generalized flows” [8,18]. In a generalized flow, a particle at a given time is no
more necessary located at a point, but should rather be considered as a probability measure. Moreover
the supports of the measures corresponding to two different “particles” are not necessarily disjoint. We
denote by T > 0 the given time period and we replace the set of values of κ in R

l by a “space of labels”
A that we assume to be a compact metric space. It consists of Lagrangian labels allowing to distinguish
(more ore less finely) the “particles”; the variable a ∈ A has a Lagrangian nature; for example a can
represent the location and time of the “particle” when it crosses the section y = 0 if indeed each particle
crosses this section exactly once and at a precise point. The generalized Bernoulli function a → H(a) is
defined on A and will be given a priori.

We shall use the notations

Q = (R/TZ) ×D and Q′ = Q×A = (R/TZ) ×D ×A,

where t ∈ R/TZ denotes time defined up to a multiple of the period T .
More precisely, by “generalized flow”, we mean a pair (c,m) such that c is a Borelian measure on

Q′ with values in [0,∞), and m is a vector Borelian measure on Q′ with values in R
d (that is, each

component of m is a finite signed Borelian measure on Q′).
For such generalized flow (c,m),m may have a density v : Q′ → R

d with respect to c, that is,

m(E) =
∫

E

vdc, E ⊂ Q′

(E being restricted to be a Borelian subset). In this case, (t, x, a) → v can be interpreted as a generalized
vector field (generalized in the sense that it may depend on a too). If the generalized flow (c,m) corre-
sponds to a classical flow, then such a density v exists and there is a map κ : Q → A such that the flow
is carried by the graph of κ:

c({(t, x, a) ∈ Q′ : a 	= κ(t, x)}) = 0.
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In other words, the label of a particle at (x, t) is uniquely defined and, as there is no more way of
distinguishing various particles at (t, x), we can consider that there is only one particle at almost all
(t, x).

In order that (c,m) describes an incompressible flow with constant density, (c,m) has to satisfy other
conditions that we shall explain later. Moreover we would like the flow to behave in a given way at the
spatial boundary ∂D, but, as we now work with measures, the above functions μ0 and μL can be replaced
by measures too. More specifically, we shall require that the flow does not cross [0, L] × ∂Σ and that its
ingoing flux through {0} × Σ and its outgoing flux through {L} × Σ are given a priori. For a generalized
flow (c,m), the ingoing flux and the outgoing flux are described by measures

μ0 and μL on (R/TZ) × {0} × Σ ×A and (R/TZ) × {L} × Σ ×A (resp.)

with values in [0,∞).
Given the continuous generalized Bernoulli function H : A → R, we shall find generalized solutions

to the Euler equation (1.1) by minimizing
∫

Q′

{(1/2)|v|2 +H}dc (1.5)

over an appropriate convex set of generalized flows (c,m), where we consider the integral as equal to +∞
at (c,m) if m does not have a density v with respect to c. As this functional is convex in (c,m), the
existence of a minimizer is obtained by standard arguments if it is finite at least at one (c,m).

In Sect. 2, we shall develop more fully this variational approach by defining the functional space of
measures and by explaining a dual formulation analogous to the one by Brenier [8]. The dual problem
is the maximization over an appropriate class of admissible functions φ : Q′ → R and p : Q → R of the
functional

∫

(R/TZ)×{L}×Σ×A

φ(·, L, ·, ·)dμL −
∫

(R/TZ)×{0}×Σ×A

φ(·, 0, ·, ·)dμ0

+
∫

Q

p(t, x)dtdx

under the constraint

∂tφ+ p+ (1/2)|∇xφ|2 ≤ H everywhere on Q′. (1.6)

Under the hypothesis that there is indeed a maximizer (this is a delicate issue), a minimizer (c,m) of the
“primal” problem and a maximizer of the dual problem are related by

∂tφ+ p+ (1/2)|∇xφ|2 = H and v = ∇xφ c-almost everywhere. (1.7)

The gradient is with respect to the spatial variable x and φ can depend on a. In this relationship, found
in his setting by Brenier, there is a kind of velocity potential φ, but flows with vorticity can still be
described because of the dependence on a. The novelty here is the introduction of H and the fact that
initial and final conditions on the generalized flows in [8] are replaced by spatial boundary conditions and
periodicity in time. At the end of Sect. 2, we briefly recall Brenier’s setting.

A difficult issue is to check whether a minimizer of (1.5) corresponds indeed to a classical solution.
Our aim is more modest: firstly, we would like to get convinced that (1.7) is a generalization of Euler’s
equation (1.1), and a natural way of doing it is to show that (1.7) implies (1.1) for a minimizer that is not
merely a generalized flow but that corresponds to a classical velocity vector field (see Sect. 3). In passing,
we explain in Proposition 3.2 that, for such a classical minimizer, the path of each particle is a minimizer
of a related one-dimensional variational integral. Secondly, we would like to show that some well known
two-dimensional classical solutions seen as generalized flows do indeed minimize (1.5) (see Sects. 4 and
5). Moreover, for these examples, we would like to give a corresponding function φ explicitly in terms of
the stream function. We focus on two-dimensional steady flows (d = 2), but it should be possible to get
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analogous results for particular classes of three-dimensional flows with additional symmetries (so that the
problem is essentially two-dimensional).

In Sect. 4, we consider

d = 2, Σ = [0, 1], x = (y, z) ∈ D = [0, L] × Σ, A = [0, 1]

and H : A → R continuous. We then compare the minimization of
∫

(R/TZ)×D×A

{(1/2)|v|2 +H(a)}dc (1.8)

among all generalized flows (c,m) that satisfy appropriate spatial boundary conditions, with the
minimization of

L∫

0

1∫

0

{(1/2)|∇ψ|2 +H(ψ)}dy dz (1.9)

over all functions ψ : D → R that are regular enough and that satisfy the boundary condition ψ = ψ0 on
∂D, where ψ0 : D → R is such that

ψ0(y, 0) = 0 and ψ0(y, 1) = 1 for all y ∈ [0, L].

The latter problem is classical and used in many applications (see for example [5]). Under quite general
assumptions, a minimizer ψ exists and can be interpreted as the stream function of a steady flow satis-
fying the Euler equation (1.1). Seen as a generalized flow, we show that it is a minimizer of (1.8) and
give a corresponding φ, which satisfies (1.6) and (1.7) (for a precise statement, see Proposition 4.2 and
the remark that follows it).

However we rely on the technical hypothesis (4.6) below. We replace it by a standard convexity
hypothesis on H in Sect. 5 by minimizing (1.8) over a smaller class of generalized flows, namely flows
(c,m) that satisfy the additional condition

∫

A

ac(t, y, z, da) =

z∫

0

⎧
⎨

⎩

∫

A

vy(t, y, s, a)c(t, y, s, da)

⎫
⎬

⎭
ds (1.10)

for almost all (t, y, z), where vy denotes the first component of the two-dimensional velocity field v =
(vy, vz). The comparison between (1.8) and (1.9) becomes simpler. Moreover (1.10) is a linear condition
on (c,m) that has a natural interpretation when (c,m) corresponds to a classical flow: for a particle
located at (t, y, z), the value of a is the flux at time t through the section {y} × [0, z]. This is to be com-
pared with the meaning of the steady stream function ψ in (1.9): ψ(y, z) is the flux through the section
{y} × [0, z]. We believe that conditions similar to (1.10) may be helpful in three-dimensional problems
with symmetries. Equation (1.7) becomes

∂tφ+ p+ a∂zG+
1
2
|v|2 = H(a) and v = (∂yφ+G, ∂zφ) c-almost everywhere (1.11)

for some continuous functions φ : (t, x, a) → R and G : x = (y, z) → R with continuous derivatives ∇xφ
and ∂zG, and such that G(y, 1) = 0 for all y ∈ [0, L]. However, in order that (1.11) can be seen as a
generalization of (1.1), it is convenient to restrict (1.11) to steady flows (see the hypotheses in Proposition
5.2). The advantage of (1.11) over (1.7) is that, in (1.7), we cannot expect φ to be a-independent if there
is vorticity, whereas in (1.11) φ can be a-independent. In Proposition 5.3, for the classical minimization
problem (1.9), we explicitly give the new corresponding function φ, which indeed does not depend on a
anymore. When the vorticity is constant, such a φ is used and called “generalized velocity potential” in
works on Hamiltonian formalism for surface waves with constant vorticity [10,20].

In Sect. 6, we extend (1.9) to a classical variational approach for three-dimensional stationary classical
flows. The stream function ψ is replaced by a pair of functions f and g, and the functional (1.9) is replaced
by
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∫

D

{(1/2)|∇f × ∇g|2 +H(f, g)}dx, (1.12)

where H : R
2 → R is smooth and D ⊂ R

3. The minimization problem (1.5) for three-dimensional station-
ary generalized flows can be then considered as a relaxation of (1.12), but the existence of a minimizer
of (1.5) is easy to ensure among generalized flows.

In the Conclusion, we briefly comment on the relationship with Mather’s measures.

2. Duality

We adapt Brenier’s theory to spatial boundary conditions and observe that rotational flows could emerge
in this way. We refer to [4] for an introduction to variational methods in hydrodynamics, and in particular
to Sections II.2. and IV.7.

Remember the notations

d ∈ {2, 3}, D = [0, L] × Σ, x = (y, z) ∈ D with y ∈ [0, L] and z ∈ Σ,
Q = (R/TZ) ×D and Q′ = Q×A = (R/TZ) ×D ×A,

where we assume that A is a compact metric space.
Let μ0 and μL be two Borelian measures that are non-negative and finite on (R/TZ) × Σ × A. Also

let H : A → R be continuous.

Admissible functions. The function φ : Q′ → R is said admissible if it is continuous, differentiable with
respect to the variables

(t, x) ∈ (R/TZ) × intD,

its derivatives having continuous extensions to Q′. The function p : Q → R is admissible if p ∈ C(Q)
(without necessarily having a zero spatial mean). Note that functions in C(Q) and C(Q′) are periodic
in t, as R/TZ is used in the definition of Q and Q′. We shall use the notations ∇x and ∂x without
distinguishing them, and also ∇z and ∂z.

Generalized flows. We shall call “generalized flow” a pair (c,m) such that c is a Borelian measure that
is finite and non negative on Q′,m is a vector Borelian measure on Q′ with values in R

d, and such that
∫

Q′

(∂tφ+ p)dc+
∫

Q′

∇xφ · dm =
∫

(R/TZ)×D

p(t, x)dtdx

for all admissible φ whose supports are included in (R/TZ)×]0, L[×Σ × A and for all admissible p.
This implies that the push-forward of c by the projection (t, x, a) → (t, x) is the Lebesgue measure on
(R/TZ) ×D.

Primal problem. We seek a finite Borelian measure c on Q′ and a vector Borelian measure m on Q′ with
values in R

d that realize the following infimum:

inf
∫

Q′

{(1/2)|v|2 +H}dc

over all c and m such that

• c is non negative,
• m has density v with respect to c, where v : Q′ → R

d is a Borelian vector field depending on m and
c,

• and, for all admissible φ and p,
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〈c, ∂tφ+ p〉 + 〈m,∇xφ〉 = 〈μL, φ(·, L, ·, ·)〉 − 〈μ0, φ(·, 0, ·, ·)〉
+

∫

Q

p(t, x)dtdx. (2.1)

The infimum is equal to +∞ if there is no (c,m) that can be considered. Equation (2.1) implies that
(c,m) is a generalized flow, but it also contains the boundary condition on (R/TZ) × {0, L} × Σ ×A, as
φ in (2.1) is not required to vanish on (R/TZ) × {0, L} × Σ ×A.

Notations.

• We use the shorter notations

〈c, ∂tφ+ p〉 + 〈m,∇xφ〉 =
∫

Q′

(∂tφ+ p)dc+
∫

Q′

∇xφ · dm

and

〈μL, φ(·, L, ·, ·)〉 =
∫

(R/TZ)×Σ×A

φ(·, L, ·, ·)dμL

• We shall use with the same meaning dc or c(dt, dx, da).
• The notation c(t, x, da) is for the disintegration of c with respect to the projection (t, x, a) → (t, x);

in other words,
∫

A
c(t, x, da) = 1 for almost all t and x (with respect to the Lebesgue measure), and

∫

Q′

f dc =
∫

Q

⎧
⎨

⎩

∫

A

fc(t, x, da)

⎫
⎬

⎭
dtdx for all f ∈ C(Q′).

For the notion of disintegration of measures, see e.g. Theorem 5.3.1 in [3] or Sect. 10.2 in [11].
• “m has density v with respect to c” means that

∫

Q′

Φ · dm =
∫

Q′

Φ · vdc for all Φ ∈ C(Q′,Rd),

where v : Q′ → R
d is assumed to be Borelian and such that

∫ |v|dc < ∞; we use the notation
dm = v dc or m = v c.

Dual problem. To study the supremum of

〈μL, φ(·, L, ·, ·)〉 − 〈μ0, φ(·, 0, ·, ·)〉 +
∫

Q

p(t, x)dtdx

over all admissible φ and p such that

∂tφ+ p+ (1/2)|∇xφ|2 ≤ H (2.2)

everywhere on Q′.

Inequality. If c,m satisfy all conditions of the primal problem and φ, p all conditions of the dual problem
(that is, they can be considered in the inf and sup), the following inequalities hold (where dm = v dc):

〈μL, φ(·, L, ·, ·)〉 − 〈μ0, φ(·, 0, ·, ·)〉 +
∫

Q

p(t, x)dtdx

= 〈c, ∂tφ+ p〉 + 〈m,∇xφ〉 (2.3)
≤ 〈c,−(1/2)|∇xφ|2 +H〉 + 〈m,∇xφ〉
= 〈c,−(1/2)|∇xφ|2 + v · ∇xφ+H〉 ≤ 〈c, (1/2)|v|2 +H〉
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with equalities if and only if

∂tφ+ p+ (1/2)|∇xφ|2 = H and v = ∇xφ (2.4)

c-almost everywhere.
Before stating the fundamental existence result for the primal problem, let us give a corollary of the

previous inequality that is useful to check that a given generalized flow is minimal.

Proposition 2.1. Let (c,m) be a generalized flow such that the boundary condition (2.1) holds and such
that m has the density v with respect to c.

Let p : Q → R and φ : Q′ → R be admissible such that

∂tφ+ p+ (1/2)|∇xφ|2 ≤ H

everywhere on Q′.
If (2.4) holds c-almost everywhere, then (c,m) is a minimizer for the primal problem and (φ, p) is a

maximizer for the dual problem.

The next proposition ensures the existence of (c,m) that realizes the infimum in the primal prob-
lem if this infimum is finite. Indeed, the functional (c,m) → ∫ {(1/2)|v|2 + H}dc is convex and lower
semi-continuous (it is equal to +∞ if c is negative on some Borelian set or if m does not have a density
with respect to c). In fact it is equal to the functional α∗ + β∗ appearing below in the proof of the
proposition. We choose to work on R/TZ to have some compactness available. As A is also compact, so
is Q′ = (R/TZ) ×D×A, and hence the topological dual space of C(Q′) is linearly isomorphic to the set
of finite signed measures on Q′ (see e.g. Thm 7.4.1 in [11]).

Proposition 2.2. The values of the inf in the primal problem and the sup in the dual problem are either
both +∞ or both finite and equal. If the value of the inf is finite, then it is attained and the inf is thus a
min.

Proof. If (c,m) is such that

〈c, ∂tφ+ p〉 + 〈m,∇xφ〉 = 〈μL, φ(·, L, ·, ·)〉 − 〈μ0, φ(·, 0, ·, ·)〉
+

∫

Q

p(t, x)dtdx

for all admissible φ and p, then the following push-forwards are trivial: Pt�(μL−μ0) = 0 and Pa�(μL−μ0) =
0 (the push-forwards by the projections (t, x, a) → Pt(t, x, a) := t and (t, x, a) → Pa(t, x, a) := a respec-
tively). To see it, choose φ of the form f(a) + g(t) with f and g continuous, g being C1 and T -periodic,
and p = −g′.

First assume that Pa�(μL − μ0) or Pt�(μL − μ0) is not trivial. Then the inf in the primal problem is
equal to +∞, because there is no (c,m) that can be considered in the primal problem. Moreover we can
choose f ∈ C(A) and g ∈ C1(R/TZ) such that

∫

{f(a) + g(t)}d(μL − μ0) > 0.

For λ > 0, we then set φ(t, x, a) = λ{f(a) + g(t)} and p = −λ∂tg + minH in the dual problem. Letting
λ → +∞, this shows that the sup in the dual problem is also +∞.

Secondly, assume that Pa�(μL − μ0) = 0 and Pt�(μL − μ0) = 0. We follow Brenier [8] and Villani [19]
(Thm 1.3 and Thm 1.9) by setting, for all F ∈ C(Q′) and Φ ∈ C(Q′,Rd),

α(F,Φ) =
{

0 if F + 1
2 |Φ|2 ≤ H over Q′,

+∞ else.

For all F ∈ C(Q′) and Φ ∈ C(Q′,Rd), we also set

β(F,Φ) = 〈μL, φ(·, L, ·, ·)〉 − 〈μ0, φ(·, 0, ·, ·)〉 +
∫

Q

p(t, x)dtdx
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if Φ, F are of the form F = ∂tφ + p and Φ = ∂xφ for some admissible φ and p, else β(F,Φ) = +∞. As
Pa�(μL − μ0) = 0 and Pt�(μL − μ0) = 0, the value of β(F,Φ) does not depend on the choice of p and φ.

The above dual problem consists in studying the supremum

sup{−α(F,Φ) − β(−F,−Φ) : F ∈ C(Q′),Φ ∈ C(Q′,Rd)}.
As α is continuous at F̃ = minH − 1 and Φ̃ = 0, and as β is finite at −F̃ and −Φ̃ (in −F̃ = ∂tφ̃ + p̃,
choose φ̃ = 0 and p̃ = −F̃ ), we get that, if the sup is finite, its value equals the following minimum:

min{α∗(c,m) + β∗(c,m) : (c,m) is a R × R
d-valued Borel measure on Q′}, (2.5)

where α∗ and β∗ are the convex conjugates of α and β (see e.g. Thm I,11 in [9]). The minimization
problem (2.5) is in fact the above primal problem. Indeed

α∗(c,m) = sup{〈c, F 〉 + 〈m,Φ〉},
where the sup is taken over the F and Φ such that F + (1/2)|Φ|2 ≤ H. On the other hand,

β∗(c,m) = sup
{

〈c, F 〉 + 〈m,Φ〉 − 〈μL, φ(·, L, ·, ·)〉

+〈μ0, φ(·, 0, ·, ·)〉 −
∫

Q

p(t, x)dtdx
}
,

where the sup is taken over the F,Φ of the form F = ∂tφ+ p and Φ = ∂xφ. �

Brenier’s setting [8]. For d = 2 or 3, he is interested in incompressible flows inside the spatial domain
[0, 1]d defined on the time interval [0, T ] for a given T > 0. He also considers a compact metric space A
endowed with a Borelian measure (the space of Lagrangian labels).

In this setting, a function φ defined on

Q′ = [0, T ] × [0, 1]d ×A

is said admissible if it is continuous on Q′, differentiable with respect to (t, x) ∈ [0, T ] × [0, 1]d and such
that the derivatives ∂tφ and ∇xφ are continuous on Q′.

A generalized flow consists here in a non-negative and finite Borelian measure c on Q′ and a vector
Borelian measure m on Q′ with values in R

d such that

〈c, ∂tφ+ p〉 + 〈m,∇xφ〉 =
∫

[0,T ]×[0,1]d

p dtdx

for all p ∈ C([0, T ] × [0, 1]d) (p does not depend on a ∈ A) and for all admissible φ with support in
]0, T [×[0, 1]d ×A.

Given a fixed generalized flow (c̄, m̄), the primal problem consists in finding a generalized flow (c,m)
that realizes the following infimum:

inf

⎧
⎨

⎩

∫

Q′

(1/2)|v|2dc : v ∈ L2(Q′, dc)d, dm = v dc,

〈c̄− c, ∂tφ+ p〉 + 〈m−m,∇xφ〉 = 0

∀φ admissible ∀p ∈ C([0, T ] × [0, 1]d)

⎫
⎬

⎭
.

The given measures c̄ and m̄ are supposed to satisfy

c̄(0, x, da) = δ(x− i(a)), c̄(T, x, da) = δ(x− h(i(a))),

where i : A → [0, 1]d is a Borelian bijection, up to negligible sets, that preserves the measures, and
h : [0, 1]d → [0, 1]d is a Borelian map that preserves the Lebesgue measure.
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Intuitively, the fluid particle labelled by a is located at x = i(a) at time 0 and at h(x) at time T .
For t ∈]0, T [, a particle labelled by a is no more necessarily located at a point, but should rather be
considered as a probability measure.

In Brenier’s setting, given a continuous function H : A → R,
∫

Q′

H dc =
∫

Q′

H dc̄−
∫

Q′

H d(c̄− c)

=
∫

Q′

H dc̄−
∫

Q′

∂t(tH)d(c̄− c) −
∫

Q′

∇x(tH) · d(m̄−m) =
∫

Q′

H dc̄

is independent of c. Hence no new information is provided by simply minimizing
∫

Q′

{(1/2)|v|2 +H}dc.

There is a similar phenomenon in our setting, namely, given a continuous function H : (R/TZ)×A → R,
define H : A → R and Ĥ : (R/TZ) ×A → R by

H(a) =
1
T

T∫

0

H(t, a)dt and Ĥ(t, a) =

t∫

0

{H(s, a) −H(a)}ds.

Then
∫

Q′

H dc =
∫

Q′

∂tĤdc+
∫

Q′

H dc =
∫

Q′

(∂tĤ + ∇xĤ)dc+
∫

Q′

H dc =
∫

Q′

H dc,

which shows that no new information is provided by allowing H to depend on t in a periodic way. Analo-
gously,

∫

Q′ H dc does not depend on c when H is constant and we can therefore assume that
∫

Q′ H dc = 0
if convenient.

Brenier’s dual problem is given in terms of a continuous function p : Q → R and an admissible function
φ : Q′ → R. When d = 3, he then proves a striking result about uniqueness and partial regularity of the
pressure gradient for optimal solutions of the dual problem. We do not consider the analogous question
in our setting.

3. Classical Optimal Solution

We would like to check that, in case the pair of variational problems have a classical optimal solution
(c,m, φ, p), then it corresponds to a solution to the classical Euler equations (1.1). We shall say that
(c,m, φ, p) is a classical optimal solution if
1. (c,m) and (φ, p) can be considered in the inf and sup in the above primal and dual problems, and

the inequalities (2.3) are in fact equalities:

〈c, (1/2)|v|2 +H〉 = 〈μL, φ(·, L, ·, ·)〉 − 〈μ0, φ(·, 0, ·, ·)〉
+

∫

Q

p(t, x)dtdx < ∞;

as a consequence

∂tφ+ p+ (1/2)|∇xφ|2 = H and v = ∇xφ

c-almost everywhere.
2. A is a compact subset of a finite dimensional Euclidean space and there exists a Borelian map

κ : Q → A such that c(t, x, da) is the Dirac measure at κ(t, x); we denote by int(A) the interior of
A with respect to this finite dimensional Euclidean space.
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3. In this case, we can replace (t, x, a) → v(t, x, a) with

(t, x, a) → v(t, x, κ(t, x))

without loosing the relationship dm = v dc; we assume therefore, without of loss of generality, that
v does not depend on a.

4. If moreover p is of class C1, φ is of class C2, κ is of class C1 and κ(t, x) ∈int(A) for almost all
(t, x) ∈ Q, we shall call it “classical and regular”.

For a classical and regular optimal solution, we get divxv = 0 and

∂tκj + v · ∇xκj = 0 (3.1)

for each component κj of κ (that is, κ is preserved by the flow defined by the vector field v). To see it, let
l ≥ 1 and A ⊂ R

l have non-empty interior in R
l. For all f compactly supported in (R/TZ) × int(D) × R

l

and C1, we have
∫

{∂1f(t, x, κ(t, x)) + ∂2f(t, x, κ(t, x)) · v(t, x)}dt dx = 0.

Hence, for all f independent of a,
∫ ∇xf(t, x) · v(t, x) dt dx = 0 and therefore divxv = 0. For fixed

j ∈ {1, . . . , l} and all f̃ that depend on t and x, we set f(t, x, a) = f(t, x, aj) = aj f̃(t, x) and get

0 =
∫

{∂1f(t, x, κ(t, x)) + ∂2f(t, x, κ(t, x)) · v(t, x)}dt dx

=
∫

{∂tf(t, x, κj(t, x)) − ∂3f(t, x, κj(t, x))∂1κj(t, x)

+∇xf(t, x, κj(t, x)) · v(t, x) − ∂3f(t, x, κj(t, x))∇2κj(t, x) · v(t, x)}dt dx
= −

∫

∂3f(t, x, κj(t, x)){∂1κj(t, x) + ∇2κj(t, x) · v(t, x)}dt dx

= −
∫

f̃(t, x){∂1κj(t, x) + ∇2κj(t, x) · v(t, x)}dt dx,
which implies ∂tκj + v · ∇xκj = 0.

If in addition Σ has a smooth boundary, by considering f compactly supported in (R/TZ)×]0, L[×Σ
and of class C1, we get

∫
∂xf(t, x)·v(t, x) dt dx = 0 for all such f . Together with divxv = 0, the divergence

theorem implies that v(t, x) is tangent to the boundary of ]0, L[×Σ for all x ∈]0, L[×∂Σ.

Proposition 3.1. For H of class C1, let (c,m, φ, p) be a classical and regular optimal solution. We assume
that A ⊂ R

l, int(A) is understood relatively to R
l, a = κ(t, x)c-almost everywhere, v does not depend on

a, and that κ and p are of class C1, and φ of class C2.
Then

∂ajtφ+ v · ∂aj∇xφ = ∂ajH at a = κ(t, x) (3.2)

for all j ∈ {1, . . . l} and all (t, x) ∈ Q. Moreover the Euler equation for inviscid and incompressible fluid
with constant density holds, namely

∂tv + (v · ∇x)v = −∇xp

everywhere on Q.

Proof. As

∂tφ+ p+ (1/2)|∇xφ|2 ≤ H on Q′

with equality c-almost everywhere, and as a = κ(t, x) ∈ int(A)c-almost everywhere, we deduce that, for
all (t, x) ∈ Q and for a = κ(t, x),

0 = ∂aj{∂tφ+ p+ (1/2)|∇xφ|2 −H} = ∂ajtφ+ (∇xφ) · (∂aj∇xφ) − ∂ajH

= ∂ajtφ+ v · (∂aj∇xφ) − ∂ajH
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In the same way, ∇x{∂tφ+ p+ (1/2)|∇xφ|2} vanishes at a = κ(t, x) for almost all (t, x) ∈ Q and thus for
all (t, x) ∈ Q. This gives

0 = ∂t∇xφ+ ∇xp+ {(∇xφ) · ∇x}∇xφ = ∂t∇xφ+ ∇xp+ (v · ∇x)∇xφ

= ∂tv + ∇xp+ (v · ∇x)v −
l∑

j=1

(∂aj∇xφ){∂t + (v · ∇x)}κj

= ∂tv + ∇xp+ (v · ∇x)v

(see (3.1)). �

Application: computation of vorticity in R
3. For j ∈ {1, . . . , l}, we obtain

rotv = (∂z1vz2 − ∂z2vz1 , ∂z2vy − ∂yvz2 , ∂yvz1 − ∂z1vy)

=
l∑

j=1

(
∂ajz2φ∂z1κj − ∂ajz1φ∂z2κj , ∂ajyφ∂z2κj − ∂ajz2φ∂yκj , ∂ajz1φ∂yκj − ∂ajyφ∂z1κj

)

=
l∑

j=1

∇xκj × ∂aj∇xφ.

Moreover, by the first part of the proposition, ∂ajtφ+ v · ∂aj∇xφ = ∂ajH and therefore

v × rotv =
l∑

j=1

v × (∇xκj × ∂aj∇xφ)

=
l∑

j=1

{〈v, ∂aj∇xφ〉∇xκj − 〈v,∇xκj〉∂aj∇xφ}

=
l∑

j=1

{(∂ajH − ∂ajtφ)∇xκj + ∂tκj∂aj∇xφ}

= ∇x(H ◦ κ) +
l∑

j=1

{−∂ajtφ∇xκj + ∂tκj∂aj∇xφ}.

Hence

∂tv + rotv × v = ∂t∇xφ− ∇x(H ◦ κ) +
l∑

j=1

∂ajtφ∇xκj

= ∇x

(
∂1φ(t, x, κ(t, x)) − (H ◦ κ)

)
. (3.3)

Suppose that φ and κj are independent of t and that H ◦ κ is not constant on Σ × {0}. Then v × rotv =
∇x(H ◦ κ) and thus rotv does not identically vanish.

Stationary flows in R
3. When d = 3 Euler’s equation (1.1) can be written

∂tv + rotv × v = −∇xH̃, H̃ = (1/2)|v|2 + p, divxv = 0

(see p. 153 in [17]). If the flow is stationary (that is, v and p do not depend on time) and ∇H̃ never
vanishes, the surfaces H̃ =constant are filled with stream lines and vortex lines that are transported
by the flow. By stream line, it is meant a curve that is everywhere tangent to v and, by vortex line,
a curve that is everywhere tangent to rot v. Whereas it is obvious that a stream line is transported by
the (stationary) flow, the same result for vortex lines is referred to as the second Helmholtz theorem
(see Sect. 25 in [17]). Serrin [17] calls the surfaces H̃ =constant “Lamb’s surfaces”. To give H̃ on the
boundary amounts to giving the intersections of the Lamb surfaces with the boundary. For a classical
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and regular optimal solution (c,m, φ, p) such that φ, p and κ are independent of time, the function H we
have introduced in the variational problem and H̃ are related by H̃(x) = H(κ(x)) on D (see (2.4) and
also (3.3)).

Proposition 3.2. Under the same hypotheses as in Proposition 3.1, let T0 > 0 and q ∈ C2([0, T0],D)
satisfy q′(t) = v(t, q(t)) over [0, T0]. Then

T0∫

0

{(1/2)|q̃′(t)|2 − p(t, q̃(t))}dt ≥
T0∫

0

{(1/2)|q′(t)|2 − p(t, q(t))}dt

for all q̃ ∈ C2([0, T0],D) such that q̃(0) = q(0) and q̃(T0) = q(T0).

Proof. Set a0 = κ(t, q(t)) ∈ A ⊂ R
l, which does not depend on t ∈ [0, T0]:

d

dt
κj(t, q(t)) = ∂1κj(t, q(t)) + ∂2κj(t, q(t)) · v(t, q(t)) = 0

for 1 ≤ j ≤ l, by (3.1). By (2.2) and (2.4), we get
T0∫

0

{(1/2)|q̃ ′(t)|2 − p(t, q̃(t))}dt−
T0∫

0

{(1/2)|q′(t)|2 − p(t, q(t))}dt

≥
T0∫

0

{(1/2)|q̃ ′(t)|2 + (1/2)|∇xφ(t, q̃(t), a0)|2 + ∂1φ(t, q̃(t), a0) −H(a0)}dt

−
T0∫

0

{(1/2)|q′(t)|2 + (1/2)|∇xφ(t, q(t), κ(t, q(t)))|2

+ ∂1φ(t, q(t), κ(t, q(t))) −H(κ(t, q(t)))}dt

=

T0∫

0

{(1/2)|q̃ ′(t)|2 + (1/2)|∇xφ(t, q̃(t), a0)|2 − (1/2)|q′(t)|2

−(1/2)|∇xφ(t, q(t), a0)|2}dt+

T0∫

0

{∂1φ(t, q̃(t), a0) − ∂1φ(t, q(t), a0)}dt

=

T0∫

0

{(1/2)|q̃ ′(t)|2 + (1/2)|∇xφ(t, q̃(t), a0)|2

−(1/2)|q′(t)|2 − (1/2)|∇xφ(t, q(t), a0)|2}dt

−
T0∫

0

{∇xφ(t, q̃(t), a0) · q̃ ′(t) − ∇xφ(t, q(t), a0) · q′(t)}dt

=

T0∫

0

{(1/2)|q̃ ′(t)|2 + (1/2)|∇xφ(t, q̃(t), a0)|2 − ∇xφ(t, q̃(t), a0) · q̃ ′(t)}dt

≥ 0

because q′(t) = v(t, q(t)) = ∇xφ(t, q(t), κ(t, q(t))) = ∇xφ(t, q(t), a0). �

Remark. Such kind of argument to show that an extremal is a minimizer of a variational integral is
standard; see e.g. Sect. 2.6 of Chap. 4 in [12].
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4. Comparison with the Stream-Vorticity Formulation in Dimension 2

Let us briefly describe a classical approach [5,13,14] to stationary, incompressible and rotational flows
in dimension 2 that we shall interpret in terms of generalized flows. Let Σ = [0, 1],D = [0, L] × Σ and
ψ ∈ C2(intD) ∩ C1(D) satisfy

Δψ = f(ψ) on intD,
ψ([0, L] × {0}) = {0}, ψ([0, L] × {1}) = {1}, ∂zψ([0, L]×]0, 1[) ⊂]0,∞[, (4.1)

for some given continuous function f : R → R. The vector field vψ = (∂2ψ,−∂1ψ) corresponds to the
velocity field of a stationary and incompressible flow, the stream lines being the level sets of ψ and the
vorticity being given by −Δψ (more precisely, this is the third component of the vorticity, the two first
vanishing). The PDE is nothing else than the preservation of vorticity along stream lines. Let H be a
primitive of f .

For A = [0, 1] and T > 0 arbitrarily chosen, we can associate to ψ the divergence-free vector field
vψ = (vψy, vψz) = (∂2ψ,−∂1ψ) and the generalized flow (cψ,mψ) on (R/TZ) ×D×A defined as follows:

〈cψ, E〉 + 〈mψ,Φ〉 =
∫

(R/TZ)×D

E(t, x, ψ(x))dtdx

+
∫

(R/TZ)×D

Φ(t, x, ψ(x)) · vψ dtdx (4.2)

for all E ∈ C((R/TZ) ×D ×A,R) and Φ ∈ C((R/TZ) ×D ×A,R2). As easily seen, the set

{(t, x, a) ∈ (R/TZ) ×D ×A : a = ψ(x)}
has full measure for cψ. Moreover the ingoing flux at y = 0 and the outgoing flux at y = L are given by
vψy at y = 0 and y = L as follows:

〈cψ, ∂tφ+ p〉 + 〈mψ,∇xφ〉 =
∫

Q

p(t, x)dtdx+
∫

(R/TZ)×Σ

φ(t, L, z, ψ(L, z))vψy(L, z)dtdz

−
∫

(R/TZ)×Σ

φ(t, 0, z, ψ(0, z))vψy(0, z)dtdz (4.3)

for all admissible φ and p.
Let us begin with a particular case that can be dealt with quite easily, and without convexity

assumption on H (a primitive of f). Let Ψ : [0, 1] → R be of class C2 and such that

Ψ(0) = 0, Ψ(1) = 1, min Ψ′ > 0.

Then Ψ−1 : [0, 1] → [0, 1] exists and is of class C2. Hence Ψ′′ = f ◦ Ψ, where f := Ψ′′ ◦ Ψ−1 is con-
tinuous (and can be extended to all R if wished). For L > 0 fixed, we shall set ψ(y, z) = Ψ(z) for all
x = (y, z) ∈ [0, L] × [0, 1] := D. Then ψ ∈ C2(D) satisfies (4.1) and, fixing T > 0 and setting A = [0, 1],
we can associate to it a generalized flow (cψ,mψ) as above. As the derivative of (1/2)Ψ′2−H(Ψ) vanishes,
(1/2)Ψ′2 −H(Ψ) is constant on [0, 1]. By choosing the right primitive H of f , it can be therefore assumed
that

(1/2)Ψ′2 −H(Ψ) = 0 on [0, 1]. (4.4)

The next result states that (cψ,mψ) is a minimizer of a relaxed problem among generalized flows (c,m)
with the same ingoing flux at y = 0 and outgoing flux at y = L as (cψ,mψ).
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Proposition 4.1. The generalized flow (cψ,mψ) just defined satisfies
∫

(R/TZ)×D×A

{(1/2)|vψ|2 +H(a)}dcψ ≤
∫

(R/TZ)×D×A

{(1/2)|v|2 +H(a)}dc

for all generalized flows (c,m) on (R/TZ) ×D ×A such that

〈c, ∂tφ+ p〉 + 〈m,∇xφ〉 =
∫

Q

p(t, x)dtdx+
∫

(R/TZ)×Σ

φ(t, L, z, ψ(L, z))vψy(L, z)dtdz

−
∫

(R/TZ)×Σ

φ(t, 0, z, ψ(0, z))vψy(0, z)dtdz (4.5)

for all admissible φ and p.
Let p = 0 over (R/TZ) ×D and define φ ∈ C1((R/TZ) ×D×A) by φ(t, y, z, a) = yΨ′(Ψ−1(a)). Then

(cψ,mψ, φ, p) is a classical optimal solution, the role of κ in the definition of a classical optimal solution
being played by ψ.

Proof. We apply the criterium of Proposition 2.1: let us check that, for p = 0 and φ defined at the end
of the statement,

(1/2)|∇xφ|2 ≤ H(a) on (R/TZ) ×D ×A

with equality if a = Ψ(z) and that ∇xφ = (∂zψ(x),−∂yψ(x)) = (Ψ′(z), 0) if a = Ψ(z).
In fact

(1/2)|∇xφ|2 = (1/2)|Ψ′(Ψ−1(a))|2 (4.4)
= H(a)

and equality always holds. Moreover, if a = Ψ(z), then

∇xφ(t, x, a)|a=Ψ(z) = (Ψ′(Ψ−1(Ψ(z))), 0) = (Ψ′(z), 0).

�

If H ∈ C2(R) and H is convex, ψ has the following standard variational characterization: for all
ψ̃ ∈ C2(intD) ∩ C1(D) such that ψ̃|∂D = ψ|∂D,

∫

D

{(1/2)|∇ψ̃|2 +H(ψ̃)}dx

≥
∫

D

{(1/2)|∇ψ|2 + ∇ψ · (∇ψ̃ − ∇ψ) + (1/2)|∇ψ̃ − ∇ψ|2 +H(ψ)

+f(ψ)(ψ̃ − ψ)}dx =
∫

D

{(1/2)|∇ψ|2 +H(ψ)}dx+
∫

D

(1/2)|∇ψ̃ − ∇ψ|2dx

+
∫

D

(−Δψ + f(ψ))(ψ̃ − ψ)dx ≥
∫

D

{(1/2)|∇ψ|2 +H(ψ)}dx

with equality exactly when ψ̃ = ψ everywhere. In the next proposition, this is interpreted in the framework
of Sect. 2, but the convexity assumption on H is replaced by condition (4.6) below.



518 B. Buffoni JMFM

Proposition 4.2. Let f ∈ C1(R) and ψ ∈ C3(D) satisfy (4.1) and ∂zψ > 0 on D. Remember the definition
(4.2) of (cψ,mψ) and define g ∈ C1(D) by

g(x) =

y∫

0

f(ψ(x))
∂2ψ(s, ζψ(x)(s))

ds

where ζa(s) ∈ R is defined implicitly by ψ(s, ζa(s)) = a for s ∈ [0, L] and a ∈ A. Then

∫

(R/TZ)×D×A

{(1/2)|vψ|2 +H(a)}dcψ <
∫

(R/TZ)×D×A

{(1/2)|v|2 +H(a)}dc

for all generalized flows (c,m) on (R/TZ) ×D ×A such that

∫

(R/TZ)×D×A

(a− ψ(x))∇g(x) · (v − vψ(x))dc

<

∫ {
1
2
|v − vψ(x)|2 +H(a) −H(ψ(x)) − f(ψ(x))(a− ψ(x))

}

dc (4.6)

and such that (4.5) holds for all admissible φ and p.
If f vanishes at least once on A = [0, 1], if minA f ′ > 0 and if

(max
A

f ′)2/(min
A
f ′)

is smaller than some positive real number depending on

max
D

{(∂zψ)−1 + |∇ψ| + |ψ′′|}

and on L, then condition (4.6) is fulfilled for all generalized flows (c,m) 	= (cψ,mψ) satisfying (4.5).

Proof. Observe that ζa : [0, L] → [0, 1] is such that ψ−1({a}) is the graph of ζa:

z = ζa(y) ⇔ ψ(y, z) = a,

that the map (y, a) → ζa(y) is of class C3(D ×A), that ζψ(y,z)(y) = z and that

ζ ′
a(y) = −∂1ψ(y, ζa(y))

∂2ψ(y, ζa(y))
, ∂aζa(y) =

1
∂2ψ(y, ζa(y))

.

We set

p = H(ψ) − |∇ψ|2/2

and define h ∈ C2(D) by

h(x) =

y∫

0

|∇ψ|2
∂2ψ

∣
∣
∣
∣
(s,ζψ(x)(s))

ds−
ζψ(x)(0)∫

0

∂1ψ(0, u)du.
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We get

∇h(x) = (∂2ψ(x),−∂1ψ(x)) +
∂1ψ(x)
∂2ψ(x)

∇ψ(x)

+

y∫

0

∂z

{ |∇ψ|2
∂2ψ

}
1
∂2ψ

∣
∣
∣
∣
(s,ζψ(x)(s))

ds∇ψ(x) − ∂1ψ(0, ζψ(x)(0))
∂2ψ(0, ζψ(x)(0))

∇ψ(x)

= (∂2ψ(x),−∂1ψ(x)) +

y∫

0

{

∂z

{ |∇ψ|2
∂2ψ

}
1
∂2ψ

+ ∂y

{
∂1ψ

∂2ψ

}

−∂z
{
∂1ψ

∂2ψ

}
∂1ψ

∂2ψ

}∣
∣
∣
∣
(s,ζψ(x)(s))

ds∇ψ(x)

= (∂2ψ(x),−∂1ψ(x)) +

y∫

0

Δψ
∂2ψ

∣
∣
∣
(s,ζψ(x)(s))

ds∇ψ(x)

= (∂2ψ(x),−∂1ψ(x)) +

y∫

0

f(ψ(x))
∂2ψ(s, ζψ(x)(s))

ds∇ψ(x)

= (∂2ψ(x),−∂1ψ(x)) + g(x)∇ψ(x)

and

∇g(x) = (f(ψ(x))/∂2ψ(x), 0) +

y∫

0

f ′(ψ(x))
∂2ψ(s, ζψ(x)(s))

ds∇ψ(x)

−f(ψ(x))

y∫

0

∂2
zzψ

(∂zψ)3

∣
∣
∣
∣
(s,ζψ(x)(s))

ds∇ψ(x).

We also define φ ∈ C1(D ×A,R) by

φ(x, a) = h(x) + (a− ψ(x))g(x),

the gradient of which is given by

∇xφ(x, a) = ∇h(x) − g(x)∇ψ(x) + (a− ψ(x))∇g(x)
= (∂zψ(x),−∂yψ(x)) + (a− ψ(x))∇g(x).

We obtain
∫

(R/TZ)×D×A

{(1/2)|vψ|2 +H(a)}dcψ = T

∫

D

{(1/2)|∇ψ|2 +H(ψ)}dx

= T

∫

D

{H(ψ) − (1/2)|∇ψ|2}dx+
∫

(R/TZ)×D×A

∇xφ(x, a) · (∂zψ(x),−∂yψ(x))dcψ

=
∫

p(x)dcψ +
∫

∇xφ(x, a) · vψ dcψ =
∫

p(x)dc+
∫

∇xφ(x, a) · v dc

for all generalized flows (c,m) satisfying (4.5). Hence
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∫

(R/TZ)×D×A

{(1/2)|vψ|2 +H(a)}dcψ

= T

∫

D

{H(ψ) − (1/2)|∇ψ|2}dx+
∫

{(∂zψ(x),−∂yψ(x)) · v

+(a− ψ(x))∇g(x) · v}dc
=

∫

{H(ψ) − (1/2)|∇ψ|2 + vψ · v + (a− ψ(x))∇g(x) · (v − vψ)

+(a− ψ(x))f(ψ(x))}dc
=

∫

{H(ψ(x)) + (a− ψ(x))f(ψ(x)) −H(a) − (1/2)|v − vψ|2

+(a− ψ(x))∇g(x) · (v − vψ)}dc+
∫

{(1/2)|v|2 +H(a)}dc

<

∫

{(1/2)|v|2 +H(a)}dc
if (c,m) satisfies (4.6).

To show the last statement, we set Z = maxD{(∂zψ)−1 + |∇ψ| + |ψ′′|}, and get maxA |f | ≤ maxA f ′

and

|∇g(x)| ≤ max
A

|f |Z + Lmax f ′Z2 + Lmax |f |Z5 = max
A

f ′Z(1 + LZ + LZ4).

On the other hand

H(a) −H(ψ(x)) − f(ψ(x))(a− ψ(x)) ≥ 1
2
(a− ψ(x))2 min

A
f ′.

Hence (4.6) holds true if (maxA f ′)2Z2(1 + LZ + LZ4)2 < minA f ′, that is, if

min
A
f ′ > 0 and

(maxA f ′)2

minA f ′ < Z−2(1 + LZ + LZ4)−2. (4.7)

�
Remark. If f vanishes at least once on A = [0, 1] and (4.7) holds, then it can be checked that the func-
tions p and φ introduced in the proof are such that p(x)+ (1/2)|∇xφ(x, a)|2 ≤ H(a) on D×A. Therefore
(cψ,mψ, φ, p) is a classical optimal solution, the role of κ being played by ψ.

5. A Variant of the Formulation in Dimension 2

We use the same notations as before, but we are concerned only with the dimension d = 2. We write
x = (y, z) ∈ D = [0, L] × [0, 1] ⊂ R

2 and we shall say that a continuous map G : D → R is admissible if
∂zG(y, z) exists for all (y, z) ∈ D, ∂zG is continuous over D and G(y, 1) = 0 for all y ∈ [0, L]. We assume
that A ⊂ R is compact.

Primal problem. We seek a finite Borelian measure c on Q′ and a vector Borelian measure m on Q′ with
values in R

2 that realize the following infimum:

inf
∫

Q′

{(1/2)|v|2 +H}dc

over all c and m such that c is non negative, dm = vdc, that satisfy the new additional condition
∫

A

ac(t, y, z, da) =

z∫

0

⎧
⎨

⎩

∫

A

vy(t, y, s, a)c(t, y, s, da)

⎫
⎬

⎭
ds (5.1)
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almost everywhere on Q (with respect to the Lebesgue measure, where vy denotes the first component of
v) and such that, for all admissible φ and p,

〈c, ∂tφ+ p〉 + 〈m,∇xφ〉 = 〈μL, φ(·, L, ·, ·)〉 − 〈μ0, φ(·, 0, ·, ·)〉
+

∫

Q

p(t, x)dtdx.

Observe that (5.1) amounts to
∫

Q′

a∂zGdc = −
∫

Q′

Gvy dc (5.2)

for all admissible G. In (5.2), we can replace vydc by dmy, where my denotes the first component of the
vector measure m.

Dual problem. To study the supremum of

〈μL, φ(·, L, ·, ·)〉 − 〈μ0, φ(·, 0, ·, ·)〉 +
∫

Q

p(t, x)dtdx

over all admissible φ, p and G such that

∂tφ+ p+ a∂zG+ (1/2)(∂yφ+G)2 + (1/2)(∂zφ)2 ≤ H

everywhere.

Inequality. If c,m satisfy all conditions of the primal problem and φ, p,G all conditions of the dual
problem (that is, they can be considered in the inf and sup), the following inequalities hold (where
dm = v dc):

〈μL, φ(·, L, ·, ·)〉 − 〈μ0, φ(·, 0, ·, ·)〉 +
∫

Q

p(t, x)dtdx

= 〈c, ∂tφ+ p〉 + 〈m,∇xφ〉
≤ 〈c,−a∂zG− (1/2)(∂yφ+G)2 − (1/2)(∂zφ)2 +H〉 + 〈m,∇xφ〉
= 〈c,−a∂zG− (1/2)(∂yφ+G)2 − (1/2)(∂zφ)2 + v · ∇xφ+H〉
≤ 〈c,−a∂zG+ (1/2)|v|2 −Gvy +H〉 (5.2)

= 〈c, (1/2)|v|2 +H〉
with equalities if and only if

∂tφ+ p+ a∂zG+ (1/2)(∂yφ+G)2 + (1/2)(∂zφ)2 = H and v = (∂yφ+G, ∂zφ) (5.3)

c-almost everywhere.

Proposition 5.1. The values of the inf in the primal problem and the sup in the dual problem are either
both +∞ or both finite and equal. If the value of the inf is finite, then it is attained and the inf is thus a
min.

Proof. Let us sketch the proof in the case that

Pa�(μL − μ0) = 0 and Pt�(μL − μ0) = 0.

We set as in the proof of Proposition 2.2, for all F ∈ C(Q′) and Φ ∈ C(Q′,R2),

α(F,Φ) =
{

0 if F + 1
2 |Φ|2 ≤ H over Q′,

+∞ else,
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where Φ = (Φy,Φz) ∈ C(Q′,R2). For all F ∈ C(Q′) and Φ ∈ C(Q′,R2), we now set

β(F,Φ) = 〈μL, φ(·, L, ·, ·)〉 − 〈μ0, φ(·, 0, ·, ·)〉 +
∫

Q

p(t, x)dtdx

if Φ, F are of the form F = ∂tφ + p + a∂zG and Φ = ∂xφ + (G, 0) for some admissible φ, p and G, else
β(F,Φ) = +∞. As Pa�(μL − μ0) = 0 and Pt�(μL − μ0) = 0, the value of β(F,Φ) does not depend on the
choice of p,G and φ. To see it, it suffices to check that

〈μL, φ(·, L, ·, ·)〉 − 〈μ0, φ(·, 0, ·, ·)〉 +
∫

Q

p(t, x)dtdx = 0

if 0 = ∂tφ+ p+ a∂zG and 0 = ∇xφ+ (G, 0) for admissible φ, p,G. Clearly such a φ does not depend on
z,∇xφ neither and thus G neither. Hence 0 = ∂tφ + p and thus ∂tφ does not depend on a. We get, for
any fixed a0 ∈ A,

∫

Q′

p dt dx = −
∫

Q′

∂tφ(t, x, a0) dt dx = 0.

As ∂tφ depends only on t and y, we deduce that

φ(t, y, z, a) = φ1(t, y) + φ2(y, a) with φ1(0, y) = 0

(we already know that φ does not depend on z). As ∂yφ only depends on y, it follows that φ(t, y, z, a) =
φ3(t) + φ4(a) + φ5(y). Finally

φ′
5(y) = ∂yφ(t, y, 1, a) = −G(y, 1) = 0

and thus

φ(t, 0, z, a) = φ(t, L, z, a) = φ3(t) + φ4(a) + Const.

Hence 〈μL, φ(·, L, ·, ·)〉 − 〈μ0, φ(·, 0, ·, ·)〉 = 0.
The above dual problem consists in studying the supremum

sup{−α(F,Φ) − β(−F,−Φ) : F ∈ C(Q′),Φ ∈ C(Q′,R2)}.
As α is continuous at F̃ = minH−1 and Φ̃ = 0, and as β is finite at −F̃ and −Φ̃ (in −F̃ = ∂tφ̃+ p̃+ a∂zG̃,
choose φ̃ = G̃ = 0 and p̃ = −F̃ ), we get as previously that, if the sup is finite, its value equals the following
minimum:

min{α∗(c,m) + β∗(c,m) : (c,m) is a R × R
2-valued Borel measure on Q′}, (5.4)

where α∗ and β∗ are the convex conjugates of α and β. The minimization problem (5.4) is the above
primal problem. �

Classical optimal solution. We shall say that (c,m, φ, p,G) is a classical optimal solution if
1. (c,m) and (φ, p,G) can be considered in the inf and sup in the above primal and dual problems,

and the above inequality is in fact an equality.
2. There exists a Borelian map κ : Q → A ⊂ R such that c(t, x, da) is the Dirac measure at κ(t, x); we

denote by int(A) the interior of A with respect to R.
3. In this case, we can replace (t, x, a) → v(t, x, a) with

(t, x, a) → v(t, x, κ(t, x))

without loosing the relationship dm = v dc; we assume therefore, without of loss of generality, that
v does not depend on a.

4. If moreover G and ∂zG are of class C1, p is of class C1, φ is of class C2, κ is of class C1 and
κ(t, x) ∈int(A) for almost all (t, x) ∈ Q, we shall call it “classical and regular”.

For a classical and regular optimal solution, (5.1) gives ∂zκ = vy.
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Proposition 5.2. For H of class C1, let (c,m, φ, p,G) be a classical and regular optimal solution such that
κ does not depend on t and vy never vanishes on (R/TZ)×]0, L[×]0, 1[.

Then the Euler equation for inviscid and incompressible fluid with constant density holds, namely
∂tv + (v · ∇x)v is spatially a gradient:

∂tv + (v · ∇x)v = −∇x(p+ κ∂zG)

over Q.

Proof. As

∂tφ+ p+ a∂zG+ (1/2)|∂yφ+G|2 + (1/2)|∂zφ|2 ≤ H on Q′

with equality c-almost everywhere, we deduce that

∇x{∂tφ+ p+ a∂zG+ (1/2)|∇xφ|2 +G∂yφ+ (1/2)G2}
vanishes at a = κ(t, x) for almost all (t, x) ∈ Q and thus for all (t, x) ∈ Q. This gives

0 = ∂t∇xφ+ ∇xp+ κ∇x∂zG+ {(∇xφ) · ∇x}∇xφ+G∂y∇xφ+ ∂yφ∇xG+G∇xG

= ∂t{∇xφ+ (G, 0)} + ∇xp+ κ∇x∂zG+ (v · ∇x)∇xφ+ vy∇xG

= ∂t{∇xφ+ (G, 0)} + (v · ∇x){∇xφ+ (G, 0)} + ∇xp+ κ∇x∂zG

−(v · ∇xG, 0) + vy∇xG

= ∂tv + (v · ∇x)v − (∂a∇xφ){∂t + (v · ∇x)}κ+ ∇xp+ κ∇x∂zG+ (−vz∂zG, vy∂zG)
= ∂tv + (v · ∇x)v + ∇xp+ ∇x(κ∂zG)

where we have used (5.1), which gives here ∂zκ = vy, and

v · ∇xκ = ∂tκ+ v · ∇xκ = 0,

which then implies ∂yκ = −vz because vy is assumed to never vanish on (R/TZ)×]0, L[×]0, 1[. �

Let us go back to the classical approach to stationary, incompressible and rotational planar flows seen
in Sect. 4. Let Σ = [0, 1],D = [0, L]×Σ and ψ ∈ C2(intD)∩C1(D) satisfy (4.1) for some given continuous
function f : R → R. Remember that the vector field vψ = (∂2ψ,−∂1ψ) corresponds to the velocity field
of a stationary and incompressible flow, the stream lines being the level sets of ψ and the vorticity being
given by −Δψ. For A = [0, 1] and T > 0 arbitrarily chosen, we can associate to ψ the divergence-free
vector field vψ = (vψy, vψz) = (∂2ψ,−∂1ψ) and the generalized flow (cψ,mψ) on (R/TZ)×D×A defined
by (4.2). In addition to (4.3), it satisfies (5.1) (because ∂zψ = vψy).

The next result states that (cψ,mψ) is a minimizer of a relaxed problem among generalized flows
(c,m) with the same ingoing flux at y = 0 and outgoing flux at y = L as (cψ,mψ), and that satisfy the
additional condition (5.1).

Proposition 5.3. Let f ∈ C1(R),min f ′([0, 1]) ≥ 0 and ψ ∈ C3(D) satisfy (4.1) on D. We define H(s) =∫ s
0
f(σ)dσ,

p = H(ψ) − ψf(ψ) − |∇ψ|2/2,

G(y, z) = −
1∫

z

f(ψ(y, s))ds

and φ ∈ C2(D,R) (up to a constant) by

∇φ(x) = (∂zψ −G,−∂yψ).

Then (cψ,mψ, φ, p,G) is a classical optimal solution, the role of κ being played by ψ.
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Proof. In fact φ does not depend on t and a, and is well defined (up to a constant) because

∂z(∂zψ −G) − ∂y(−∂yψ) = Δψ − ∂zG = f(ψ) − f(ψ) = 0.

We have to check (5.3) cψ-almost everywhere and

∂tφ+ p+ a∂zG+ (1/2)(∂yφ+G)2 + (1/2)(∂zφ)2 ≤ H

everywhere. Clearly (5.3) holds cψ-almost everywhere by the definitions of p,G and φ. Moreover

∂tφ+ p+ a∂zG+ (1/2)(∂yφ+G)2 + (1/2)(∂zφ)2

= H(ψ) − ψf(ψ) − |∇ψ|2/2 + af(ψ) + (1/2)(∂zψ)2 + (1/2)(∂yψ)2

= H(ψ) − ψf(ψ) + af(ψ) = H(ψ) +H ′(ψ)(a− ψ) ≤ H(a)

because H is convex on A = [0, 1]. �

6. A Variational Problem in Dimension 3

In the previous sections, we studied a classical formulation in dimension 2. We now propose an analogous
formulation in dimension 3 for steady flows, such that the formulation in terms of generalized flows can be
seen as a relaxation of it. The existence of a stationary point for the classical formulation seems unsettled
in general.

Let D = [0, L] × Σ be a cylinder whose section Σ is bounded with smooth and connected boundary
∂Σ. We note x = (y, z, w) with (z, w) ∈ Σ.

A theorem by Euler (see [7]) ensures that all divergence-free vector fields v ∈ C∞(D) can be written
in the form v = ∇f × ∇g with f and g smooth, at least in a local way where v does not vanish. Such f
and g are then preserved by the flow generated by v.

Let S ⊂ R
2 be diffeomorphic to Σ and assume now that

∫

D

{(1/2)|∇f × ∇g|2 +H(f, g)}dx

is stationary at f̄ , ḡ ∈ C∞(D) in the space of all smooth functions f et g such that

(f(x), g(x)) ∈ ∂S, ∀x ∈ [0, L] × ∂Σ

and

(f(x), g(x)) = (f̄(x), ḡ(x)), ∀x ∈ {0, L} × Σ.

We also assume that (f̄ , ḡ) sends {0} × Σ and {L} × Σ in a diffeomorphic way onto S, with preserved
orientation, and that H : R

2 → R is smooth.
Under these conditions, v = ∇f × ∇g is divergence free2 and the component

vy = (∇f × ∇g) · (1, 0, 0) = ∂zf∂wg − ∂zg∂wf = ∂z f̄∂wḡ − ∂z ḡ∂wf̄

of v is prescribed on {0, L} × Σ. Observe that the total flux through {0} × Σ is equal to the area of
(f̄ , ḡ)({0} × Σ) = S (up to sign).

Making variations in f and g, we get

−div(∇ḡ × (∇f̄ × ∇ḡ)) + ∂fH(f̄ , ḡ) = 0
and − div((∇f̄ × ∇ḡ) × ∇f̄)) + ∂gH(f̄ , ḡ) = 0. (6.1)

2 The following formulas are useful: �f×(�g×�h) = (�f ·�h)�g−(�f ·�g)�h, rot(λ�f) = (∇λ)× �f+λrot�f and div(�f×�g) = �g·rot�f− �f ·rot�g.
See p. 186 in [7].
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More precisely, we consider f and g of the form f̄ + δf and ḡ + δg, and keep the terms that are linear
with respect to δf and δg in

∫

D
{(1/2)|∇f × ∇g|2 +H(f, g)}dx, which yields

∫

D

{
(∇f̄ × ∇ḡ) · (∇δf × ∇ḡ) + (∇f̄ × ∇ḡ) · (∇f̄ × ∇δg)

+∂1H(f̄ , ḡ)δf + ∂2H(f̄ , ḡ)δg
}
dx

=
∫

D

{
∇δf · {∇ḡ × (∇f̄ × ∇ḡ)} + ∇δg · {(∇f̄ × ∇ḡ) × ∇f̄}

+∂1H(f̄ , ḡ)δf + ∂2H(f̄ , ḡ)δg
}
dx

Gauss=
∫

D

{
− div{∇ḡ × (∇f̄ × ∇ḡ)}δf − div{(∇f̄ × ∇ḡ) × ∇f̄}δg

+∂1H(f̄ , ḡ)δf + ∂2H(f̄ , ḡ)δg
}
dx

if δf = δg = 0 on ∂D. The assumption that (f̄ , ḡ) is a stationary point means that these integrals vanish
for all such (δf, δg), which gives (6.1).

Let us write ∂S in Cartesian form ∂S = {(u, v) ∈ R
2 : β(u, v) = 0}, where β is a smooth function

such that ∇β 	= 0 on ∂S. Let us denote by n a smooth field of outward unitary normal vectors to the
surface ]0, L[×∂Σ. If in the above computation we only require that δf = δg = 0 on {0, L} × Σ, we get
the additional boundary term

∫

]0,L[×∂Σ

(∇f̄ × ∇ḡ) · {n× (∇ḡδf − ∇f̄ δg)}.

Consider variations δf and δg that are also compatible with the constraint that ]0, L[×∂Σ is sent in ∂S,
in the sense that

∂1β(f̄ , ḡ)δf + ∂2β(f̄ , ḡ)δg = 0.

In this case, we get that vanishing of this boundary term amounts to vanishing of

(∇f̄ × ∇ḡ) · {n× (∂1β(f̄ , ḡ)∇f̄ + ∂2β(f̄ , ḡ)∇ḡ)}
at the boundary, which indeed vanishes since ∇x{β(f̄ , ḡ)} is colinear with n.

Equation (6.1) can also be written

∇ḡ · rotv̄ + ∂fH(f̄ , ḡ) = 0 and − rotv̄ · ∇f̄ + ∂gH(f̄ , ḡ) = 0, with v̄ = ∇f̄ × ∇ḡ.
It then follows that

v̄ × rotv̄ = (∇f̄ × ∇ḡ) × rotv̄ = (∇f̄ · rotv̄)∇ḡ − (∇ḡ · rotv̄)∇f̄
= ∂fH(f̄ , ḡ)∇f̄ + ∂gH(f̄ , ḡ)∇ḡ = ∇xH(f̄ , ḡ).

The identity (see e.g. p. 151 in [17])

∇(
1
2
|v̄|2) = v̄ × rotv̄ + (v̄ · ∇)v̄

gives

(v̄ · ∇)v̄ − ∇(
1
2
|v̄|2) + ∇xH(f̄ , ḡ) = 0,

which is indeed in the form

(v̄ · ∇)v̄ + ∇p̄ = 0 with p̄ = −1
2
|v̄|2 +H(f̄ , ḡ).

H(f̄ , ḡ) can be seen as the Bernoulli constant, which is preserved by the flow since ∇x(H(f̄ , ḡ)) · v̄ = 0.
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Let us check that v̄ is tangent to the boundary ]0, L[×∂Σ. For x ∈]0, L[×∂Σ, if ∇f̄(x) and ∇ḡ(x) are
linearly independent, then the unitary normal vector n is a multiple of ∇x{β(f̄ , ḡ)} and v̄ ·n is a multiple
of v̄ ·∇x{β(f̄ , ḡ)} = (∇f̄ ×∇ḡ) ·∇x{β(f̄ , ḡ)} = 0. If ∇f̄(x) and ∇ḡ(x) are linearly dependent, then v̄ = 0.
In any case, v̄ is tangent to the boundary ]0, L[×∂Σ. The fact that (f̄ , ḡ) is a stationary point has not
been used here.

Our adaptation of Brenier’s formulation can be seen as a relaxation in which v and (f, g) are the
unknowns, v being sought among vector measures and (f, g) becomes a ∈ A, where A is chosen such that
S ⊂ A ⊂ R

2 (this is similar to Young’s relaxation method [21]). When H(f, g) does only depend on f, f
alone could be replaced by a ∈ A ⊂ R.

7. Conclusion

In Sect. 2, the period T is fixed. The theory can of course be applied to any multiple nT of T (n ∈ N),
but, in some sense, nothing new is obtained in this way. To see it, we follow part of Sect. 6 in [6], where
Mather’s measures are interpreted in the framework of optimal transportation theory. For n ∈ N fixed, let

γn = n−1 inf
∫

Q′
n

{(1/2)|v|2 +H(a)}dc,

where the infimum is over c and m, like in Sect. 2, and Q′
n is defined like Q′, but with nT instead of T .

In the next proposition, we assume for simplicity that γ1 < ∞. The measures μ0 and μL are extended
periodically from (R/TZ) × Σ ×A to (R/nTZ) × Σ ×A.

Proposition 7.1. The value of γn is independent of n ∈ N. If (c1,m1) denotes any minimizer correspond-
ing to γ1, then, for each integer n ≥ 2, the vector measure (cn,mn) defined as follows is a minimizer
corresponding to γn:

∫

Q′
n

Fdcn +
∫

Q′
n

Φ · dmn =
n−1∑

i=0

∫

[0,T ]×D×A

F (i+ t, x, a)dc1(t, x, a)

+
n−1∑

i=0

∫

[0,T ]×D×A

Φ(i+ t, x, a) · dm1(t, x, a)

for all F ∈ C(Q′
n,R) and Φ ∈ C(Q′

n,R
d). Reciprocally, for n ≥ 2, let (c̃n, m̃n) be any minimizer corre-

sponding to γn and define the vector measure (ĉ1, m̂1) on Q′ by
∫

Q′

Fd ĉ1 +
∫

Q′

Φ · dm̂1 = n−1

∫

Q′
n

Fd c̃n + n−1

∫

Q′
n

Φ · dm̃n

for all F ∈ C(Q′,R) ⊂ C(Q′
n,R) and Φ ∈ C(Q′,Rd) ⊂ C(Q′

n,R
d). Then (ĉ1, m̂1) is a minimizer corre-

sponding to γ1.

Proof. Let (c1,m1) and (cn,mn) be as the statement. We denote the density of m1 relative to c1 by v1,
that is, dm1 = v1dc1. For each n ≥ 2, we get dmn = vndcn, where

vn(i+ t, x, a) = v1(t, x, a), i = 0, . . . , n− 1, t ∈ [0, T [,

and

γn ≤ n−1

∫

Q′
n

{1/2|vn|2 +H(a)}dcn =
∫

Q′

{1/2|v1|2 +H(a)}dc1 = γ1 < ∞
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Reciprocally, for n ≥ 2, let (c̃n, m̃n) be any minimizer corresponding to γn. For each j = 0, . . . , n− 1,
let (c̃n,j , m̃n,j) be its time translation by jT , that is,

∫

Q′
n

Fd c̃n,j +
∫

Q′
n

Φ · d m̃n,j =
∫

Q′
n

F (t− jT, x, a)d c̃n +
∫

Q′
n

Φ(t− jT, x, a) · d m̃n

for all F ∈ C(Q′
n,R) and Φ ∈ C(Q′

n,R
d). By convexity,

(ĉn, m̂n) =

⎛

⎝n−1
n−1∑

j=0

c̃n,j , n−1
n−1∑

j=0

m̃n,j

⎞

⎠

is also a minimizer corresponding to γn. Define the vector measure (ĉ1, m̂1) on Q′ by
∫

Q′

Fd ĉ 1 +
∫

Q′

Φ · d m̂1 = n−1

∫

Q′
n

Fd ĉ n + n−1

∫

Q′
n

Φ · d m̂n

= n−1

∫

Q′
n

Fd c̃n + n−1

∫

Q′
n

Φ · d m̃n

for all F ∈ C(Q′,R) ⊂ C(Q′
n,R) and Φ ∈ C(Q′,Rd) ⊂ C(Q′

n,R
d). If we denote the corresponding vector

densities by v̂n and v̂1, that is, d m̂n = v̂nd ĉn and d m̂1 = v̂1d ĉ1, then

γ1 ≤
∫

Q′

{1/2|v̂1|2 +H(a)}d ĉ1 = n−1

∫

Q′
n

{1/2|v̂n|2 +H(a)}d ĉ n = γn

because v̂n(t+ jT, x, a) = v̂1(t, x, a)ĉn-almost everywhere on [0, T [×D ×A for all j = 0, . . . , n− 1. �

Observe however that if (c̃n, m̃n) corresponds to a classical optimal solution, the statement does not
ensure that (ĉ1, m̂1) is classical too. In case no optimal solution for the period T were classical, it could
be therefore worth working with a larger period nT and even developing a functional setting that allows
one to study the limit n → ∞. This would give some insight into the relationship between generalized
optimal solutions and the chaotic behavior of the Euler equations (1.1) seen as a dynamical system, by
analogy with Mather’s measures reflecting chaotic dynamics in periodic Lagrangian systems. Thus it is
desirable to set the problem for more general domains, boundary conditions and dependence in time (not
necessarily periodic).

In [15], relabeling of particles is discussed in the framework of classical Hamiltonian fluid mechanics
and its relationship to preserved quantities is analyzed with the help of both Lagrangian and Eulerian
variables. It seems natural to try to merge this formalism with ours. See also [16]. The relationship with the
classical two-dimensional stream-vorticity formulation is only partially understood. In the three-dimen-
sional case, it may be worth investigating the classical three-dimensional variational formulation of Sect. 6
by relying on the present relaxed variational approach. Moreover the paper by Ambrosio-Figalli [2] is an
extension of the work by Brenier that should be adapted to the present setting. Finally approximation
results in the spirit of the work by Shnirelman [18] should be investigated too.
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