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Abstract Neurons are spatially extended structures that
receive and process inputs on their dendrites. It is generally
accepted that neuronal computations arise from the active
integration of synaptic inputs along a dendrite between the
input location and the location of spike generation in the axon
initial segment. However, many application such as simula-
tions of brain networks use point-neurons—neurons with-
out a morphological component—as computational units to
keep the conceptual complexity and computational costs low.
Inevitably, these applications thus omit a fundamental prop-
erty of neuronal computation. In this work, we present an
approach to model an artificial synapse that mimics dendritic
processing without the need to explicitly simulate dendritic
dynamics. The model synapse employs an analytic solution
for the cable equation to compute the neuron’s membrane
potential following dendritic inputs. Green’s function formal-
ism is used to derive the closed version of the cable equation.
We show that by using this synapse model, point-neurons
can achieve results that were previously limited to the realms
of multi-compartmental models. Moreover, a computational
advantage is achieved when only a small number of simu-
lated synapses impinge on a morphologically elaborate neu-
ron. Opportunities and limitations are discussed.
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1 Introduction

Neurons are morphological structures: They have dendritic
branches on which most inputs are received and an axonal
tree through which the output signal is communicated with
other neurons. In this light, neuronal computations can be
seen as the integration of synaptic inputs along the dendrites
up to the axon initial segment where an output signal is gen-
erated. Hence, a key role in neuronal computation is taken
by the exact shape and composition of dendrites. Indeed, it
is known that the neuronal response is shaped by the precise
location and activation pattern of synapses (Branco et al.
2010; Torben-Nielsen and Stiefel 2010; Gidon and Segev
2012) and by the expression and distribution of (voltage-
gated) ion channels (Migliore and Shepherd 2002; Magee
1999; Torben-Nielsen and Stiefel 2010; Spruston 2008).

Despite this proven importance, dendritic processing is
usually ignored in network simulation (Gewaltig and Dies-
mann 2007; Brette et al. 2007; Richert et al. 2011), but see
(Markram 2006) for an exception. One reason is the com-
putational cost associated with multi-compartmental simu-
lations: a costs that, at the level of the model neuron, scales
with the morphological complexity of the dendritic arboriza-
tion. Related is the conceptual cost associated with building
detailed single-neuron models (Hay et al. 2013) with the spa-
tial distribution of conductances across the membrane and
localized nonlinearities. The key is to capture the somatic
voltage in response to synaptic inputs on the dendrites. Is
there an alternative to multi-compartmental models to sim-
ulate the effects of dendrites on synaptic potentials, without
large computational overhead?

To this end, two strategies are commonly adopted in
the literature. The first consist of performing a morpho-
logical reduction by reducing the number of dendritic seg-
ments while attempting to capture crucial characteristics of
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dendritic processing (Traub et al. 2005; Kellems et al. 2010).
A second strategy is to bypass multiple (dendritic) com-
partments altogether by using point-neurons and fit voltage-
kernels that matches the dendritic signal transformation shap-
ing the voltage waveform caused by a synaptic input at the
soma (Jolivet et al. 2004; Giitig and Sompolinsky 2006). The
fitted (Jolivet et al. 2004) or learned (Gitig and Sompolin-
sky 2006) kernel is then simply added to the somatic mem-
brane potential. While this strategy is computationally effi-
cient and some temporal effects of dendritic processing can
be captured, it is a rather crude approximation of what den-
dritic integration stands for and elementary features of den-
dritic processing, such as local interaction between inputs,
are impossible to achieve.

In this work, we present a true alternative based on apply-
ing the Green’s function formalism to cable theory. This way
we can exactly compute the effect of synaptic inputs located
in the dendrites on the somatic membrane potential (Koch and
Poggio 1985). By design, we thus compute the linear trans-
fer function between the site of the synaptic inputs and the
soma. The main advantage of this approach is that the effect
of synaptic inputs along a dendrite on the somatic membrane
potential can be calculated analytically. Consequently, sim-
ulations in our model are independent of the morphological
complexity and a full reduction to a point-neuron can be used,
as the entire effect of the morphology is captured in a transfer
function. This property sets our approach apart from existing
methods to model dendrites implicitly: The approach based
on the equivalent cable works only with geometrically tightly
constrained morphologies (Ohme and Schierwagen 1998),
while as in (Pelt 1992) all branch points of a dendritic tree
have to be modeled explicitly. Because we capture arbitrary
dendritic morphologies by means of transfer functions, our
synapse model is able to use dendrite-specific mechanism of
computation, such as delay lines (as Giitig and Sompolinsky
2006) but also local nonlinearities due to membrane satu-
ration. Hence, we can capture fundamental features of den-
dritic integration by directly deriving the Green’s function
from dendritic cable theory.

We implemented our synapse model in the Python pro-
gramming language as a proof of principle and validated it by
evaluating its correctness and execution times on two tasks.
First, we show that a morphology-less point-neuron equipped
with the proposed synapse model can exploit differential den-
dritic processing to perform an input-order detection task
(Agmon-Sniretal. 1998). We show that both for passive mod-
els and models with active currents in the soma, the agree-
ment with a reference NEURON simulation (Carnevale and
Hines 2006) is seamless. Second, we show that the proposed
neuron model is capable of accurate temporal integration of
multiple synaptic inputs, a result for which knowledge of the
precise neuronal morphology in relation to the synaptic loca-
tions is imperative. To this end, we construct a point-neuron
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model mimicking the dendritic processing in the dendrites
of a Layer 5 pyramidal cell. Again, we demonstrate that the
agreement with a reference NEURON simulation is seamless.
By providing this example, we demonstrate that our pro-
posed approach is highly suitable for the common scenar-
ios to investigate dendritic processing. In such scenarios, the
somatic response to a limited number of synapses located
in the dendrites is measured while changing the dendritic
properties.

2 Synapse model based on the Green’s function
formalism

The core rationale of this work is the simplification of a
passive neuron model by analytically computing the trans-
fer function between synapses and the soma. Solving the
cable equation for dendrites is not new, and several ways
are documented (Koch and Poggio 1985; Butz and Cowan
1974; Norman 1972). The application of the cable equa-
tion to simplify arbitrarily morphologically extended multi-
compartmental models to a point-neuron is, however, new.

By solving the cable equation, we thus substitute the
effects of an electrical waveform traveling down a dendrite
by a so-called pulse-response kernel. Conceptually, we think
of the neural response to a spike input as being charac-
terized by three functions: the conductance profile of the
synapse, the pulse-response kernel at the synapse and the
pulse-response transfer kernel between the input location and
the soma to mimic the actual dendritic propagation. The first
function is chosen by the modeler: Common examples are the
alpha function, the double exponential or the single decay-
ing exponential (Rotter and Diesmann 1999; Giugliano 2000;
Carnevale and Hines 2006). The second function captures the
decay of the voltage at the synapse given a pulse input, and
thus allows for a computation of the synaptic driving force,
whereas the third function allows for the computation of the
response at the soma, given the synaptic profile, driving force
and dendritic profile.

More formally, we write g (¢) for the synaptic conductance
profile, Gsyn(#) for the pulse-response kernel at the synapse
and Ggom () for the pulse-response kernel between synapse
and soma. Then, given a presynaptic spiketrain {#;} and a
synaptic reversal potential E,, the somatic response of the
neuron is characterized by:

da
g(t) = F(a()), E(t) = H(a(), {t;})
t
Veyn(t) = / dk Gsyn(t — k) g(k) (Vsyn(k) — E;)

—00
t

Viom () = / dk Gsom(t — k) g(k) (Vsyn(k) —E;),

—00

D
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where E, is the synaptic reversal potential, F(.) and H(.)
depend on the type of synapse chosen and a denotes the set
of synaptic parameters required to generate the conductance
profile g(¢). Our task is to compute Ggyn(f) and Gsom(?).
We will show that these functions follow from the Green’s
function formalism.

2.1 The neuron model in time and frequency domains
2.1.1 Time domain

Here, we assume a morphological neuron models with
passive dendritic segments. Each segment, labeled d =
1, ..., N,is modeled as a passive cylinder of constant radius
ag and length Lg. It is assumed that all segments have an
equal membrane conductance g,,, reversal potential E, intra-
cellular axial resistance r, and membrane capacitance c,.
By convention, we label the locations along a dendrite by
x, with x = 0 and x = L, denoting the proximal and distal
end of the dendrite, respectively. Then, in accordance with
cable theory, the voltage in a segment d follows from solving
the partial differential equation (Tuckwell 1988):

2 a2
may; -V,
4= (1) — 2maagmValx, 1)
Fq OX
avV,
—2magen = (1) = L. 1), @)

where I;(x, t) represents the input current in branch d, at
time ¢ and at location x. We assume that the dendritic seg-
ments are linked together by boundary conditions that follow
from the requirement that the membrane potential is continu-
ous and the longitudinal currents (denoted by /;;) conserved:

Va(Lg,t) = Vi(0,1), i€%(d)
ha(La,t)= Y 1i(0,1) 3)
i€?(d)
where € '(d) denotes the set of all child segments of segment
d. The longitudinal currents are given by:
rras aVy
rg 0x

Different dendritic branches originating at the soma are
joined together by the lumped-soma boundary condition,
which implies for the somatic voltage Viom(?):

Lig(x,t) = X, 1). @)

Vsom(t) = Vq(0,1)  Vd € € (soma) (5)
and
% (soma) V.
2 1a0,0 = Iom(Viom(®) + Coom— 220, (6)
d=1

with I5om denoting the transmembrane currents in the soma,
that can be either passive or active. Note that, for all further

calculations, we will treat Isom (Vsom (¢)) as an external input
current, and apply the Green’s function formalism only on
a soma with a capacitive current. For segments that have no
children (i.e., the leafs of the tree structure), the sealed-end
boundary condition is used at the distal end:

Lig(Lg,t) =0 Vd. 7N
2.1.2 Frequency domain

Fourrier transforming this system of equations allows for the
time derivatives to be written as complex multiplications,
for which analytic (Butz and Cowan 1974) or semi-analytic
(Koch and Poggio 1985) solutions can be computed. Doing
so transforms Eq. (2) into:

32V,
dx2
where w is now a complex number and y;(w) is the
frequency-dependent space constant, given by

0, ®) = ya(@)*Va(x, 0) = La(x, o) ®)

Valw) = |4 )
Zmd ()

n’{‘l’z the dendritic axial impedance and z,,4 =
d

with z,4 =

1 . .
TragGenatan) the membrane impedance in branch d. The

lumped-soma boundary conditions (5) and (6) become

Vsom(w) = V4(0, o) vd (10)
and
N N
1 aVy 1
2 1a0,0) =3 ——2(0,0) = ——— Viom(®),
=1 il Zad 0X som (@)
(1D
where
1
Zsom(®) = - (12)
1 Csom®

is the somatic impedance. The sealed-end boundary condi-
tions are:

1
Iig(Lg, w) = Z—LVd(Ld, w)=0 (13)

with sealed-end impedance Z; = oo.

2.2 Morphological simplification by applying Green’s
function

Here, we will describe the Green’s function formalism for-
mally in the time domain to explain the main principles. In
the next paragraph, we will then turn back to the frequency
domain to compute the actual solution. For the argument,
we consider a general current input Iz(x, t). In the case of
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dynamic synapses, such a current input is obtained from the
synaptic conductances by the Ohmic relation:

la(x, 1) = g()(Er — Va(x, 1)) (14)

or, in the case of active channels, from the ion channel
dynamics
The cable Eq. (2) can be written formally as:

LaVa(x, 1) = La(x, 1) (15)
n 2
where Ly = %88722 — 2maggm — Znadcm% is a lin-

ear operator!, which means that for two arbitrary functions
Vi(x, t) and V;(x, t) the following identity holds:

La(aVi(x, 1) +bVa(x, 1) = alaqVi(x, 1) +bLaVa(x, 1)
(16)

The Green’s function of the system is then defined as the
solution of the following differential equation:

LaGaay (e, X' 1, 1) = 8(x —x)8(t — )84 (17)

which also justifies its name as “pulse-response kernel.” The
solution to the general input current I;(x, t) is then written
as

Ly t
Varon = 3 [ax' [ @t Gageox' o)),
d _o0

(18)

which can be verified by substituting this equation in (15)
and using the assumption of linearity (16).

Two considerations allow us to simplify this system: First,
as a consequence of the fact that the operator Ly is transla-
tion invariant in the time domain, the Green’s function only
depends on temporal differences:

Gdd/(xs xlvtst/) :Gdd’(x’x/vt_t/)v (19)

second, in the case of neuronal dynamics, it often suffices

to consider inputs at a discrete number of locations, labeled
/ . . . .

xid , with d’ denoting the segment of the input location:

laGr, 1) = D LG, D8 (x = x{)8aar, (20)
d/

X

where I; can either denote a synaptic input current or an
active membrane current at a point like location (here we

! Note that formally, the operator Ly depends on x explicitly in a dis-
2
way 92

continuous way: for 0 < x < Lg: I:d(x) = T4a7 — 2waggm —
a
2
) .7 N Ta; g
2magep g, and for x = 0: Lg(x = 0) = 2, 745 — Gsom —
3
Csomm'
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only consider active currents at the soma). Given these con-
siderations, Eq. (18) reduces to

ZICOEDY / A Gaar (ol 1 = 1o ). g
d

X

Then it follows from equations (14) and (21) the mem-
brane potentials at the N synapses (labeled i) distributed on
dendritic branches d; at locations xf‘, el x,‘f" are

Va (x}ij ,1)

t
dj d; d;
:Z / dr’ Gaya; (37 xi' 1=1") gi (1)) (Er = Vg, (", 1)
i —0oQ

1

+ / dt/Gdidi (x;'iiv soma, f — t/)Isom(Vsom(t/))’ (22)

—00
whereas the potential at the soma is given by:
t
=> / A’ Gyyq; (soma, x", 1—1') (1) (Ep=Va(x", 1))
i —00

t
+ / dt’G(soma, soma, t — ") Isom (Vsom (). (23)

—00
2.2.1 Frequency domain solution for the Green’s function

Let us now turn to the calculation of the Green’s function for
a pulse input at time # = 0 and at a location x; in dendrite d.
Here, we perform this calculation in the frequency domain,
whereas in the next paragraph, we will show how the inverse
transform, back to the time domain, can be evaluated. To that
end, we use the algorithm described in (Koch and Poggio
1985). As an example, we describe this procedure for a sim-
plified morphology, where each dendritic branch arriving at
the soma is modeled as a single cylinder (we use this mor-
phology in Sect. 3.3 on input-order detection). In that case,
the dendrites that do not receive the pulse input merely serve
to modify the total somatic impedance. Application of rule
I of (Koch and Poggio 1985) allows us to represent these
dendrites (indexed by d’) as impedances:
Zed' (W)

“0 = bty @)L .

and rule II allows us to modify the somatic impedance as

-1
1
I (w)) (25)

d

1
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Thus, the entire effect of the rest of the morphology is sum- 1 Ml it
marized in the modified lumped-soma boundary condition Glx,xi, 1) = 2 Z Gx, xi, wj)e™, (30)
j=0
1
a0, ) = 7' (@) Vsom (). (260)  Wwhere w i = —wm + jAw. The choice of discretization
o step then fixes the timestep At = A}Zw. Upon evaluating

The Green’s function in the frequency domain at location
x then follows from solving Eq. (8) for boundary condi-
tions (26) and (13), with I;(x, t) = §(x — x;)8(¢), and thus
1(x, w) = §(x — x;). From (Butz and Cowan 1974) it fol-
lows that

Gad(x, xi, ®) = zea(@)*cosh(ya (@) (Lg — ;)

(sinh(ra(@)) + Zm cosh(yy (w)v))

Zed (@)
X . B ’
Ze(w)sinh(ya (@) La) + Zo (w)sinh(yq(w) La)

27)

for x < x;, where z.4(w) = V;‘zz) 5 is the characteris-
tic impedance of dendrite d. Evaluating this function at
x = x; yields the transfer function of synapse i, putting
x = xj (x; < x;) gives the transfer function between
synapse i and synapse j and x = O results in the transfer
function between synapse and soma. The Green’s function
for x > x; follows from interchanging x and x; in (27). To
compute the effect of a synaptic input on the driving force
in other branches (denoted by d”), we first use Eq. (27) (cor-
responding to rule IIT of Koch and Poggio 1985) to obtain
the pulse voltage response in the frequency domain at the
soma. Then, to compute the pulse voltage response in the
branch where the driving force needs to be known, we use
the following identity:

Gaa(x,0,0)Gq4(0, x', w)
G (soma, soma, )

Gaa (x,x', ) = , (28)

corresponding to rule IV of (Koch and Poggio 1985).

2.2.2 Transforming the Green’s function to the time domain

Given the conventions, we assumed when transforming the
original equation, the inverse Fourier transform has following
form:

o0
G(x,xi, 1) = 1 / do G(x, x;, w) &' (29)
s My _27_[ s My .

—00

If the Green’s function in the time domain rises continuously
from zero, which is generally the case if x # x;, it can be
approximated with negligible error by the standard technique
for evaluating Fourier integrals with the fast Fourier trans-
form (FFT) algorithm (Press et al. 2007): We choose a suf-
ficiently large interval [—wy,, @,,] (Where G(x, x;, Xwy,) is
practically 0), divide it in M = 2" pieces of with Aw = 2“’7’”
and approximate the integral by a discrete sum:

the Green’s function in the time domain at ; = [At, [ =
o,..., % — 1, expression (30) can be written in a form that
is suitable for the fast Fourier transform algorithm:

M—1
Aw . o
Glx,xi,m) = 5—e " 3 G xiope 7, (D)
j=0
and hence:
MAw —iwpt,
Gx,xi, 1) = =5 ¢ "IFFT(G (x, xi, wj))i (32)
T

The situation is different if we consider the Green’s func-
tion at the input location (x = x;). There, the function rises
discontinuously from zero at + = 0, which causes the spec-
trum in the frequency domain to have non-vanishing values
at arbitrary high frequencies. Hence, the effect of integrating
over a finite interval [—w,,, ®,,] will be non-negligible. For-
mally, this truncation can be interpreted as multiplying the
original function with a window function H (w) that is 1 in
the interval [—w;,, ®;,;] and O elsewhere, resulting in a time-
domain function that is a convolution of the real function and
the transform of the window:

G(w) = G(x;, xi, w) H ()

= G(1) = / G(xi,xi, T)H( — 7). (33)

—00

For the rectangular window, the transform H () has signif-
icant amplitude components for ¢+ # 0, an unwanted prop-
erty that will cause the Green’s function to have spurious
oscillations, a phenomenon that is known as spectral leakage
(Blackman and Tukey 1958). This problem can be solved
by choosing a different window function, which is 1 at the
center of the spectrum and drops continuously to zero at
—wy, and wy, . For this work, we found that the Hanning win-
dow,

1 Tw
H(w) = 5 (1 + cos (a)_)) , (34)

gave accurate results for ¢ % 0. For + = 0, the amplitude is
slightly underestimated as a consequence of the truncation
of the spectrum, whereas for # very close to, but larger than
0, the amplitude is slightly overestimated. However, these
errors only cause discrepancy in a very small window (< 0.1
ms) and thus have negligible effect on the neural dynamics.
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3 Model implementation & validation
3.1 Synapse model implementation

We implemented a prototype of the synapse model discussed
above in two stages. First, after specifying the morphology
and the synapse locations, the Green’s Function is evaluated
atthe locations that are needed to solve the system, thus yield-
ing a set of pulse response kernels. As modern high-level lan-
guages can handle vectorization very efficiently, these func-
tions can be evaluated for a large set of frequencies w quickly,
thus allowing for great accuracy. Second, we implemented a
model neuron that uses these Green’s functions, sampled at
the desired temporal accuracy. Then, given a set of synaptic
parameters, the somatic membrane potential is computed by
integrating the Volterra equations (22) and (23) (Press et al.
2007).

3.2 Multi-compartmental and point-neuron model

To compare the performance between a multi-compartmental
model and a point-neuron model using the proposed synapse
model, we created two comparable neuron models. In
the multi-compartmental model, the dendrites are modeled
explicitly using NEURON (Carnevale and Hines 2006), while
in the point-neuron model, the dendrites are omitted and den-
dritic processing is carried out implicitly by the new synapse
model. The properties of both model neurons are listed in
Table 1. Evidently, the implicit model has no real morphol-
ogy, and the parameters related to the geometry are used to
instantiate the synapse model.

3.3 Input-order detection with differential dendritic filtering

To show the applicability of the new type of model synapse,
we use it to perform input-order detection: Suppose a neu-
ron with two dendrites and one synapse (or one group of
synapses) on either dendrite (shown in Fig. 1a). In the input-
order task, the neuron has to generate a strong response to the
temporal activation of the synapses 1 — 2, while generating
a weak response to the reversed temporal activation 2 — 1.
This behavior is achieved by differential dendritic filtering
and can thus not be achieved in a straightforward way by a
single-compartmental model.

We compared the implicit point-neuron model equipped
with the new synapse model to the explicit multi-compart-
mental model in the input-order detection task. The results are
illustrated in Fig. 1b. Somatic membrane voltages are shown
for the point-neuron model and the multi-compartmental
model, after synapse activation in the preferred (left) and null
temporal order (right). Because the traces are nearly identi-
cal, this result validates our approach and the implementation
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Table 1 Model neuron parameters

Physiology
Cpn 1 wF/cm?
gm 0.02 mS/cm?
Ta 100 Qcm
E; —65mV
Morphology
Soma length 25 pm
Soma diam 25 um
Fig. 1b Fig. 1c
Dend 1 Dend 2 Dend 1 Dend 2
Ly 950 pm 450 pm 900 pm 500 pm
aq 0.25 pm 0.5 pm 0.25 pm 0.5 pm
Synapses
syn 1 syn 2 syn 1 syn 2
E, 0mV 0mV 0mV 0mV
T 1.5 ms 1.5 ms 1.5 ms 1.5 ms
g 5nS 2nS 20 nS 9nS

The multi-compartmental model explicitly simulates the dendritic struc-
ture, while the point-neuron is equipped with our model synapse based
on Green'’s functions and implicitly simulates the dendritic structure

of the synapse model based on the Green’s function solution
to the cable theory.

3.4 Voltage-gated active currents

The most prominent nonlinear neuronal response is the action
potential. Since it is possible in our synapse model to include
any non-linear conductance mechanism, as long as it is spa-
tially restricted to a point like location, we built a prototype
containing the Na™ and K+ conductances required to gen-
erated action potentials. By computing the kernels needed
to run the upgraded point-neuron model in the input-order
detection task and by adjusting the synaptic weights, we
yielded a point-neuron model able to generate a spike in
response to the preferred activation pattern, while remain-
ing silent in response to the reversed temporal activation.
Note that the active somatic currents shorten the timescale of
the neuron’s response compared to the passive model. The
timescale of the t-axis in Fig. 1c¢ was scaled accordingly. In
order to validate these outcomes, we again built an equivalent
multi-compartmental model in NEURON in which we inserted
the same Na™ and KT conductances into the soma. The
multi-compartmental model generated identical results, as
shown in Fig. 1c. Thus, in principle, we can include conduc-
tance descriptions to obtain hallmark neuronal nonlinearities.
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Fig. 1 Comparison between a reference multi-compartmental neuron
model and a point-neuron model equipped with the new synapse model
implicitly simulating dendritic processing. a Schematic of the input-
order detection task: The neuron has to respond as strong as possible to
the temporal activation 1 — 2 and as weak as possible to the reverse tem-
poral order. b The input-order detection task for a completely passive
neuron. Left and right panels contain the somatic membrane potential
when the synapses were activated in the preferred (1 — 2) and null

3.5 Multiple synapse interactions

We then checked the correctness of the integrative prop-
erties of our implicit point-neuron model by stimulating it
with realistic spiketrains at multiple synapses. To that end, we
added 15 synapses to a model of a Layer 5 pyramidal neuron
equipped with a experimentally reconstructed morphology.
The morphology was retrieved from the NeuroMorpho.org
repository (Ascoli et al. 2007) and originally published in
(Wang et al. 2002). We stimulated each synapse with Pois-
son spike trains of rate 10 Hz. The result is shown in Fig. 2.
Again, we compared the implicit model’s membrane poten-
tial traces to the traces obtained from a multi-compartmental

0 10 20 30 40 50 60 70
t (ms)

(2 — 1) temporal order, respectively. Colored lines represent the volt-
age in the point-neuron model and the black dashed line depicts the
reference trace (simulated with NEURON) for comparison. The wave-
form resulting from only activating the first synapse is also shown (left:
1 and right: 2). Vertical dashed-dotted lines denote the spikes arriving at
synapse 1 and 2 (left) or 2 and 1 (right). ¢ Same as (b), but now the soma
contained active Hodgkin—Huxley sodium and potassium currents

model. The agreement is excellent, as can be seen in Fig. 2b,
which also validates our approach when processing inputs
from multiple, interacting synapses.

3.6 Runtime

We established that the “implicit” model neuron equipped
with our new synapse model generated near-identical volt-
age traces as a reference multi-compartmental model. Next,
we compared the runtime of our implementation to the gold
standard in multi-compartmental modeling, the NEURON soft-
ware (Carnevale and Hines 2006). To this end, we simulated
a detailed multi-compartmental model (Fig. 2) in NEURON
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Fig. 2 Comparison between the “implicit” and “explicit” model neu-
rons of a pyramidal cell stimulated by Poisson spiketrains. a The neu-
ron morphology together with the synapse locations indicated by a red
dot. Synapses received a spiketrain of 10Hz. b The membrane poten-
tial traces at the soma, for the input locations shown in panel A (red
dots). Red full line and black dashed line represent the “implicit” (point-

as well as with our approach, for increasing numbers of
input locations. Because in our approach, the execution time
is independent of the morphological complexity but rather
scales with the number of input locations, it is expected that
for a low number of input locations, applying our model will
be much faster. As shown in Fig. 2C, for two input loca-
tions, our approach runs 20 times faster than NEURON, while
at 13 input locations, the execution time is equal. Note that
the computational cost of the NEURON-simulation is domi-
nated by the number of compartments (all else being equal)
and hence does not depend on the number of input loca-
tions. Keeping in mind (i) that our implementation is done in
Python, and (i) that often synapses can be grouped together
(Pissadaki et al. 2010), we consider this a good outcome.

4 Discussion

We presented a bridge between single-compartment and
multi-compartmental neuron models by creating a synapse
model that analytically computes the dendritic processing
between the synaptic input locations and the soma. We then
demonstrated that point-neuron models equipped with this
new synapse model could flawlessly perform the input-order
detection computation; a neuronal computation exploiting

@ Springer

neuron model, labeled “GF” for Green’s function) and “explicit” (multi-
compartmental neuron model, labeled “NEURON”). ¢ Comparison of the
runtime versus the number of input locations. For each datapoint, we
ran three simulations at an integration step of 0.1 ms (10kHz). The
errorbars were omitted when they were smaller than the size of the
markers. Color of labels as in (b)

differential dendritic processing (Agmon-Snir et al. 1998).
Thus, the new synapse model can be used to introduce com-
putations to point-neurons that previously only belonged to
the realm of multi-compartmental neuron models, with a
computational cost that does not depend on the morpholog-
ical complexity.

Then the question arises when it would be advisable to
use our synapse model over the standard tools. Although a
quantitative comparison should be treated with care due to
the different implementation languages, we still found that
our Python prototype was much faster than the optimized,
C++-based NEURON-simulation when the number of input
locations was low. This, together with the fact that the com-
putational cost of our model does not depend on morpholog-
ical complexity, then defines the use case for our model. In
scenarios where the number of input locations is low, as is the
case in some (invertebrate) cells (Bullock and Horridge 1965)
and as in many in-silico scenarios, only few Volterra equa-
tions have to be integrated. There our model represents con-
siderable computational advantage. This argument also holds
when more complex neuron types are considered: While cor-
tical neurons receive often as many as 10,000 synapses, many
of those can be grouped together. To a good approximation,
small dendritic branches act as single units, both in terms
of short-term input integration (Poirazi et al. 2003; London
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and Hausser 2005) as in terms of long-term plasticity-related
processes (Govindarajan et al. 2011). Thus, one could group
all synapses in a small branch together and then compute the
Green’s function for that group of synapses as a hole. Such
a grouping would drastically reduce the number of Volterra
equations to be integrated and hence enhance performance
accordingly.

We assumed that the PSP waveform is transformed only
in a passive manner on its way to the soma. In reality, this
might sound like a drastic simplification as nonlinearity is
often cited as a hallmark of neuronal computation, not in
the least to generate output spikes. How can we evaluate our
synapse model in the light of nonlinear computations?

Non-linearities in neural response can occur in two ways.
First, at the synapse level, a nonlinear response can be gener-
ated principally through the recruitment of NMDA receptors
during repetitive synaptic activation (Branco et al. 2010). As
we assume the evolution in time of the synaptic conductance
to be of a known shape, we could—in principle—also mimic
a nonlinear synaptic conductance by using a more specific
description of the synaptic conductance evolution.

Second, nonlinearities can arise from voltage-gated con-
ductances in neuronal membranes, that are often distrib-
uted non-uniformly along the dendrite (Larkum et al. 1999;
Angelo et al. 2007; Mathews et al. 2010). The distrib-
uted nature of voltage-gated conductances leads to the view
that dendritic processing is nonlinear, and shaped by these
conductances and their spatial distributions. Recent work
actually challenges this view as it is known that in some
behavioral regimes, dendrites act linearly (Ulrich 2002;
Schoen et al. 2012). Since our Green’s function approach
relies only on the assumption of linearity, it is not intrinsi-
cally restricted to passive dendrites. Ion channels distributed
along a dendrite can be linearized (Mauro et al. 1970), and
thus yield a quasi-active cable (Koch 1998). We anticipate
that such a linearization procedure can be plugged into our
synapse model, so that the linear (but active) properties of
the membrane are captured in the Green’s function, yielding
accurate and efficient simulations of dendrites that reside in
their linear regime. Also, in some cases, the actual distribu-
tion of voltage-gated conductances along the dendrite does
not seem to have any effect as long as the time constant for
activation is slower than the spread of voltage itself, which
makes the actual location of the voltage-gated conductance
irrelevant (Angelo et al. 2007). Thus, in those cases were
the spread of voltage is faster than the activation of the con-
ductance, dendrites can act in a passive way, as long as the
appropriate nonlinearity is introduced at one or a few point
like locations. This can be introduced easily in our synapse
model (see Fig. 1c, with the soma as point like location with
active currents).

While dealing with neuronal nonlinearities, the focus is
often on supra-linear responses to inputs, despite the fact that

sub-linear responses are also intrinsically nonlinear. More-
over, recently it has been shown both in theory and experi-
ment that sub-linear response is used by neurons (Vervaeke
et al. 2012; Abrahamsson et al. 2012). Even in passive den-
drites, sub-linear responses can be generated when the den-
drite locally saturates: Due to high input resistance, the local
voltage response to an input can reach the reversal potential of
the membrane. At that moment, the driving force disappears
and a sub-linear response is generated to inputs. This sort of
sub-linear response can be generated in conductance-based
models with realistic morphologies. Because we implicitly
model dendritic morphology, our synapse model is capable
of generating these sub-linear responses.

In conclusion, we presented a new synapse model that
computes the PSP waveforms as if they were subject to den-
dritic processing without the need to explicitly simulate the
dendrites themselves. With this synapse model comes the
ability to simulate dendritic processing at a low computa-
tional complexity, that allows its incorporation in large-scale
models of neural networks. We thus made a first step to bridge
single- and multi-compartmental modeling.
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