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Summary. For computations of planetary motions with special linear mul-
tistep methods an excellent long-time behaviour is reported in the literature,
without a theoretical explanation. Neither the total energy nor the angular
momentum exhibit secular error terms. In this paper we completely explain
this behaviour by studying the modified equation of these methods and by
analyzing the remarkably stable propagation of parasitic solution compo-
nents.

Mathematics Subject Classification (1991): 65L06, 65P10

1 Introduction

We are concerned with the long-time integration of second order ordinary
differential equations

Mq̈ = −∇U(q), q(0) = q0, q̇(0) = v0,(1.1)

with a potential U(q) and a positive definite mass matrix M . Typical exam-
ples areN -body problems such as those arising in astronomy or in molecular
dynamics.

As numerical integrator we consider linear multistep methods for second
order differential equations q̈ = f (q) (for f (q) = −M−1∇U(q)). They are
given by a formula of the form

k∑

i=0

αi qn+i = h2
k∑

i=0

βi f (qn+i ).(1.2)
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The simplest but very important special case is

qn+1 − 2 qn + qn−1 = h2f (qn),(1.3)

which, nowadays, is called the Störmer–Verlet method. Explicit methods of
the form (1.2), where the left hand expression is the same as for (1.3), have
first been considered by Störmer [18] for computations concerning the aurora
borealis. A general convergence theory has been developed by Dahlquist [3],
see also Henrici [14, Chapter 6] and Hairer, Nørsett and Wanner [13, Section
III.10]. Let us briefly recall some important facts.

It is usual to denote the generating polynomials of the coefficients of the
linear multistep method (1.2) by

ρ(ζ ) =
k∑

i=0

αi ζ
i, σ (ζ ) =

k∑

i=0

βi ζ
i .(1.4)

We assume throughout this article that ρ(ζ ) and σ(ζ ) have no common zeros.
Method (1.2) is stable if all zeros of ρ(ζ ) satisfy |ζ | ≤ 1, and if the zeros
of modulus one have multiplicity not exceeding two. It is of order p if the
coefficients are such that

ρ(ζ )

(log ζ )2
− σ(ζ ) = O(

(ζ − 1)p
)

for ζ → 1.(1.5)

In particular, 1 must be a double root of ρ(ζ ). Stability and order p ≥ 1
imply convergence of the numerical method, more precisely, the global error
satisfies the estimate (for t = nh)

‖qn − q(t)‖ ≤ C1(h+ t)eωtδ + C2t
2eωthp,(1.6)

where C1, C2 are generic constants, ω is proportional to the square root of
the Lipschitz constant of f (q), and the starting approximations are assumed
to satisfy qj − q(jh) = O(hδ) for j = 0, . . . , k − 1.

The methods of Störmer have ρ(ζ ) = (ζ − 1)2ζ k−2 and the polynomial
σ(ζ ) of degree k− 1 (hence βk = 0) is determined such that (1.5) holds with
p = k.

It is proved by Dahlquist [3] that the order of a stable multistep method
(1.2) cannot exceed k + 2 (first Dahlquist barrier), and that stable methods
of maximal order p = k+ 2 have even k and are symmetric, i.e., they satisfy

αi = αk−i , βi = βk−i for all i.(1.7)

For stable symmetric multistep methods all roots of ρ(ζ ) are on the unit
circle, and the order p is even. Dahlquist considers the application of such
methods to the test equation q̈ = aq and notices the following [3, p. 43f.]:
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“Suppose that ζj is a simple root of unit modulus. Then, the corresponding
root of ρ(ζ ) − ah2σ(ζ ) = 0 is of the form ζjh = ζj (1 + O(h2)), whence
|ζ njh| = (1 + O(h2))n ∼ 1 (h → 0, nh = x), and hence there is no weak
instability. If ζj is a double root, however, then |ζ njh| may, asymptotically,
have an exponential growth.”

After Dahlquist’s work, symmetric multistep methods did not receive
much attention over many years. Lambert and Watson [15] took up again this
investigation. They found that only for symmetric methods the numerical
solution can remain close to a periodic orbit of the linear test equation, and
they noted that methods without multiple roots of ρ(ζ ) other than 1 have
this property for sufficiently small step size. Only with the article of Quinlan
and Tremaine [17], where an excellent performance of symmetric multistep
methods for simulations of the outer solar system is reported, the research
on the long-time behaviour of these methods for nonlinear problems started.
We mention the papers of Tang [19] and of Hairer and Leone [9], where the
non-symplecticity of these methods is shown, and the work of Cano and Sanz-
Serna [2], where the linear error growth for problems with periodic solution
is studied. A lot of attention is paid to symmetric multistep methods in the
astronomical literature, e.g., Fukushima [5,6] and Evans and Tremaine [4].

2 Main results and numerical observations

Our results concern the long-time behaviour of symmetric linear multistep
methods (1.2) of order p ≥ 2. As a stronger condition than mere stability, we
shall need the following crucial property throughout (cf. the above citation
of Dahlquist):

Definition 1 A symmetric multistep method (1.2) is called s-stable if, apart
from the double root at 1, all zeros of ρ(ζ ) are simple and of modulus one
(the letter “s” stands for “simple roots”).

We remark that k is always even for symmetric methods. Otherwise they
would be reducible, because (1.7) implies ρ(−1) = σ(−1) = 0 for odd k.
Furthermore, −1 cannot be a root of ρ(ζ ), because complex roots appear as
pairs.

The multistep method (1.2) is complemented with a difference formula
for approximations of the velocity:

vn = 1

h

l∑

j=−l
δj qn+j .(2.1)

The vn are computed a posteriori and do not enter the propagation of the
numerical solution. We assume that this difference formula is also of order
p, that is, it gives the exact derivative for polynomials up to order p.
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Instead of the velocities we often consider the momenta p = Mv (no
confusion with the order p shall arise), and we set

pn = Mvn.(2.2)

To start the multistep method, starting values q0, q1, . . . , qk−1 are needed.
We assume that their errors are O(hp+1), as they would be if they are obtained
from a pth order one-step method:

qj − q(jh) = O(hp+1) for j = 0, 1, . . . , k − 1.(2.3)

Finally we assume that the numerical solution values qn stay in a fixed com-
pact subset of the domain on which the potentialU(q) is smooth, and that the
velocity approximations vn are bounded by a constant. In view of Theorem 1
below, this is for example satisfied if the level sets {q : U(q) ≤ µ} are
compact. The above assumptions are made throughout this section without
further mention.

2.1 Energy conservation

The total energy

H(q, p) = 1

2
pTM−1p + U(q)(2.4)

is conserved along solutions of the differential equation (1.1). One way of
seeing this is by multiplying the differential equation by q̇T : 0 = q̇TMq̈ +
q̇T∇U(q) = (d/dt)( 1

2 q̇
TMq̇ +U(q)) = (d/dt)H(q, p). A related, though

more elaborate argument will later be used for showing that the total energy
is nearly preserved over very long times along numerical solutions.

Theorem 1 The total energy is conserved up to O(hp) over times O(h−p−2)

along numerical solutions obtained by the s-stable symmetric multistep
method:

H(qn, pn) = H(q0, p0)+ O(hp) for nh ≤ h−p−2.

The constant symbolized by O is independent of n, h with nh≤h−p−2.

Remark 1. The time scales in Theorem 1 and in Theorem 2 below can be
further extended if either non-resonance conditions on the roots of ρ(ζ ) are
satisfied or if the starting approximations are carefully computed:

• If no root of ρ(ζ ) other than 1 can be written as the product of two other
roots, then the conservation up toO(hp)holds even over timesO(h−2p−3).

• If the starting values are computed such that the numerical solution is
“smooth”, i.e., the values z�(0) of Lemma 1 below are very small, say of
size O(hs) with s > p + 1, the time scales are further increased.
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For symplectic one-step methods it is known that the total energy is pre-
served up to O(hp) on exponentially long time intervals nh ≤ Cec/h [1].
However, the time scales of Theorem 1 and Remark 1. are already long
enough for practical computations. In contrast to the result for one-step meth-
ods, symplecticity plays no role in the proof of Theorem 1.

Example 1 For our numerical experiment we consider the Kepler problem
which is of the form q̈ = −∇U(q) with

U(q1, q2) = −(q2
1 + q2

2 )
−1/2.

We choose initial values q1(0) = 1 − e, q2(0) = 0, q̇1(0) = 0, q̇2(0) =√
(1 + e)/(1 − e), such that the solution is an ellipse with eccentricity e =

0.2, and we apply the following three symmetric methods with constant step
size h = 0.04 on an interval of length 2π · 105:

(A) ρ(ζ ) = (ζ − 1)2ζ 6 (Störmer)
(B) ρ(ζ ) = (ζ 4 − 1)2

(C) ρ(ζ ) = (ζ − 1)(ζ 7 − 1) (gni lmm2)
(2.5)

and the polynomial σ(ζ ) of degree 7 is defined by (1.5) with p = 8. All these
methods are stable and of order 8, the methods (B) and (C) are symmetric,
but only the method (C) is s-stable. Fortran and Matlab versions of the code
gni lmm2 can be downloaded from the Internet at
http://www.unige.ch/math/folks/hairer/ (see also [8]).

The error in the total energy is plotted for all three methods in Fig. 1. In
agreement with Theorem 1, the error of method (C) remains bounded of size
O(h8) on the whole interval. The error of the symmetric method (B), which
has double roots of ρ(ζ ) = 0 different from 1, shows an exponential error
growth which agrees with the classical error estimate (1.6). The non-sym-
metric method (A) shows an error behaviour of the form O(h8)+ O(th9).

For all methods, the error in the angular momentum behaves in the same
way as that for the total energy. This is in contrast to symplectic one-step
methods which exactly conserve quadratic first integrals.
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10−6 error in angular momentum

linear growtherror in total energy

gni lmm2 (C)
method (B)

Störmer (A)error in angular momentum
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gni lmm2 (C)
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Störmer (A)error in angular momentum

linear growtherror in total energy

gni lmm2 (C)
method (B)

Störmer (A)

t

Fig. 1. Energy and angular momentum conservation of the three linear multistep methods
given in (2.5)
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2.2 Conservation of angular momentum

N -body systems with rotational symmetry preserve the total angular momen-
tum. More generally, the invariance property

U(eτAq) = U(q) for all τ, q(2.6)

with a matrix A such that AM−1 is skew-symmetric, implies, as a special
case of Noether’s theorem, that the differential equation has the first integral

L(q, p) = pTAq.(2.7)

Theorem 2 Quadratic first integrals of the form (2.7) are conserved up
to O(hp) over times O(h−p−2) along numerical solutions obtained by the
s-stable symmetric multistep method:

L(qn, pn) = L(q0, p0)+ O(hp) for nh ≤ h−p−2.

The constant symbolized by O is independent of n, h with nh≤h−p−2.

2.3 Integrable systems: linear error growth and near-invariant tori

The differential equation (1.1) written as

q̇ = v , v̇ = −M−1∇U(q)(2.8)

is a reversible system in the sense that inverting the direction of the initial
velocity does not change the solution trajectory, but it inverts the direction of
motion. The flow ϕt thus satisfies that

ϕt(q, v) = (̂q, v̂) implies (q,−v) = ϕt (̂q,−v̂).
The system (2.8) is an integrable reversible system if there exists a transfor-
mation

(q, v) = ψ(a, θ)(2.9)

to action-angle variables (a, θ), defined for actions a = (a1, . . . , ad) in
some open set of Rd and for angles θ = (θ1, . . . , θd) on the whole torus
Td = Rd/(2πZd) = {(θ1, . . . , θd) : θi ∈ R mod 2π}, such that the transfor-
mation preserves reversibility, that is,

(q, v) = ψ(a, θ) implies (q,−v) = ψ(a,−θ) ,
and the system (2.8) is transformed to the form

ȧ = 0 , θ̇ = ω(a)(2.10)
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with frequencies ω = (ω1, . . . , ωd). For every a, the torus {(a, θ) : θ ∈ Td}
is thus invariant under the flow. We write the inverse transform of (2.9) as

(a, θ) = (I (q, v),�(q, v))

and note that the components of I = (I1, . . . , Id) are first integrals of the
system (2.8).

The effect of a perturbation of an integrable reversible system is well
under control in subsets of the phase space where the frequencies satisfy the
diophantine condition

|k · ω| ≥ γ |k|−ν for all k ∈ Zd(2.11)

for some positive constants γ and ν; see, e.g., [11, Ch. XI], [16].
The following result shows linear error growth and near-preservation of

invariant tori over long times.

Theorem 3 Consider applying the s-stable symmetric multistep method
to an integrable reversible system (2.8) with real-analytic potential U . Sup-
pose that ω∗ ∈ Rd satisfies the diophantine condition (2.11). Then, there
exist positive constants C, c and h0 such that the following holds for all
step sizes h ≤ h0: every numerical solution (qn, vn) starting with frequen-
cies ω0 = ω(I (q0, v0)) such that ‖ω0 − ω∗‖ ≤ c| logh|−ν−1, satisfies

‖(qn, vn)− (q(t), v(t))‖ ≤ C t hp

‖I (qn, vn)− I (q0, v0)‖ ≤ C hp
for 0 ≤ t = nh ≤ h−p.

The constants h0, c, C depend on d, γ, ν and on bounds of the potential.

Example 2 We consider the Kepler problem with initial data as in Example 1
and we apply the three methods of (2.5). Figure 2 shows their global error
as a function of time. In agreement with Theorem 3, method (C) shows a
linear error growth. For the strictly stable Störmer method (A), we would
expect a quadratic error growth proportional to hp. We observe, however,
a growth like O(th8) + O(t2h9). This can be explained with the results
of Sect. 3 below: the dominant term of the local error is, up to a constant
factor, the same for all multistep methods of order eight. Consequently,
the error will be a superposition of that of a symmetric method of order
8 with that of a non-symmetric method of order 9. The exponential error
growth of method (B) is the behaviour of classical estimates like that of
(1.6).

Notice that the estimates of Theorem 3 are confirmed for the Kepler prob-
lem, although this problem does not satisfy the diophantine condition (2.11),
because here the two frequencies are identical.
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Fig. 2. Global error of the three linear multistep methods given in (2.5) applied to the
Kepler problem

Remark 2. The linear error growth and the long-time near-preservation of
tori remain valid if the s-stable symmetric multistep method is applied to a
perturbed integrable system

Mq̈ = −∇U0(q)− ε∇U1(q)

with integrable Mq̈ = −∇U0(q) and ε = O(hα) for some α > 0
(cf. [11, p. 354]).

Example 3 (Symplecticity) We consider the derivatives of q(t) and p(t) =
Mq̇(t) with respect to the initial values (q0, p0),

dq(t) = ∂q(t)

∂(q0, p0)
, dp(t) = ∂p(t)

∂(q0, p0)
= Mdq̇(t) ,

which are the solution of the variational equation

Mdq̈ = −∇2U(q) dq.(2.12)

The flow of the differential equation (1.1) is symplectic, that is, the matrix-
valued function

S(dq, dp) = dqT dp − dpT dq(2.13)

is conserved: S(dq(t), dp(t)) = S(dq(0), dp(0)) for all t .
For the numerical solution, we assume that the starting valuesq0, . . . , qk−1

are given by a one-step method, so that (qn, pn) can be considered as a func-
tion of (q0, p0).We denote bydqn and dpn the derivative matrices ofqn andpn
with respect to (q0, p0). They are obtained by applying the multistep method
to the system (1.1) augmented by the variational equation (2.12), which is of
the form Q̈ = F(Q) (with Q = (q, dq)) but no longer Hamiltonian.

As in Example 1 we consider the Kepler problem and the methods of (2.5).
Figure 3 shows the Frobenius norm of the error S(dqn, dpn)−S(dq0, dp0) as
a function of time t = nh. For the Störmer method we observe quadratic error
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Fig. 3. Error in the symplecticity of the linear multistep methods (A) and (C) given in
(2.5) applied to the Kepler problem

growth, for the s-stable symmetric multistep method there is a linear growth
for a long time which turns finally into a quadratic growth. This quadratic
growth indicates that such multistep methods are not only non-symplectic,
but they are even not conjugate to a symplectic method.

We remark that this error behaviour corresponds to the linear growth of
the derivatives dθ(t) of the angle variables. For non-integrable systems with
positive Lyapunov exponents we expect the error in the symplecticity to grow
exponentially for both methods.

Although the entries of S(dq, dp) are quadratic first integrals of the aug-
mented system, Theorem 2 does not apply because on the one hand the
derivatives dqn and dpn do not remain bounded, and on the other hand the
augmented system is not Hamiltonian.

3 Backward error analysis for smooth numerical solutions

In this section we study the exceptional case of numerical solutions (qn) for
which

qn = y(nh)+ O(hN) for a smooth function y(t),(3.1)

where N 
 p and smoothness is understood to mean that all derivatives of
y(t) are bounded independently of h. (Strictly speaking, this refers to fam-
ilies of functions y(t) parametrized by h.) The situation (3.1) is met only
for very special starting values, whereas general numerical solutions contain
oscillatory terms which correspond to powers of the roots of ρ(ζ ) other than
1 and of their products (parasitic solution components). Nevertheless, the
idealized situation of no parasitic terms gives already much insight into the
conservation properties of the method, in a technically simpler framework
than the general case.

For the remainder of the paper it is convenient to assume that the mass
matrix is the identity matrix, M = I . This causes no loss of generality,
since the substitution M1/2q → q changes M to I . The multistep method is
invariant under this linear transformation.
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3.1 Modified differential equation

Smooth functions y(t)with (3.1) satisfy a modified second-order differential
equation.

Theorem 4 There exist unique h-independent functions fj (q, v) such that,
for every truncation index N , every solution of

ÿ = f (y)+ hf1(y, ẏ)+ · · · + hN−1fN−1(y, ẏ)(3.2)

satisfies

k∑

i=0

αiy(t + ih) = h2
k∑

i=0

βif (y(t + ih))+ O(hN+2).(3.3)

If the linear multistep method is of order p, then fj = 0 for j < p. If the
method is symmetric, then fj = 0 for all odd j , and fj (q,−v) = fj (q, v)

for all even j so that the flow of (3.2) is reversible.

Proof. We denote byD time differentiation and correspondingly by ehD the
shift operator. The equation (3.3) can be written as

ρ(ehD)y = h2σ(ehD)f (y)+ O(hN+2).

With the expansion x2σ(ex)/ρ(ex) = 1 + µ1x + µ2x
2 + . . . this becomes

equivalent to

ÿ = (1 + µ1hD + µ2h
2D2 + . . . )f (y)+ O(hN)(3.4)

provided that y(t) is a smooth function in the sense specified above. Now,
Df (y) = f ′(y)ẏ, which gives us f1(q, v) = f ′(q)v. We express the second
derivative of y in D2f (y) = f ′′(y)(ẏ, ẏ)+ f ′(y)ÿ again by the differential
equation (3.4) to obtain a formula for f2. Continuing in this way for the higher
time derivatives and collecting equal powers of h determines recursively the
functions f3, f4, . . . .

If the method is of order p, then µj = 0 for j < p. If the method is
symmetric, then µj = 0 for all odd j . This implies the result. �


The defect of a solution y(t) of the truncated modified differential equa-
tion (3.2) is of size O(hN+2), whereas that of a solution q(t) of q̈ = f (q) is
O(hp+2). Consequently, the classical convergence proof (with q(t) replaced
by y(t)) yields the following result: if the multistep method is stable and of
order p, then for every truncation index N and for t = nh we have

‖qn − y(t)‖ ≤ C1(h+ t)eωtδ + CNt
2eωthN,(3.5)

where ω is proportional to the square root of the Lipschitz constant of f (q),
and δ is such that the starting approximations satisfy qj − y(jh) = O(hδ)
for j = 0, . . . , k− 1. Compared to (1.6), we have improved the second term
in the error estimate.
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3.2 Modified energy

In the case of a symmetric multistep method, the modified differential equa-
tion (3.2) for f (q) = −∇U(q) has a formal first integral close to the total
energy H(q, p) = 1

2p
T p + U(q).

Proposition 1 For a symmetric multistep method of order p, there exists a
formal modified energy

H̃ (q, p) = H(q, p)+ hpHp(q, p)+ hp+2Hp+2(q, p)+ . . .

such that its truncation at the O(hN) term satisfies

d

dt
H̃ (y(t), ẏ(t)) = O(hN)

along solutions of the modified differential equation (3.2).

We remark that Theorem 4 and Proposition 1 imply, for smooth numerical
solutions (3.1) and their pth order momentum approximations (2.1),

H(qn, pn) = H(q0, p0)+ O(hp)+ O(thN).
Proof. The proof is based on the ideas of the second proof of long-time
energy conservation of the Störmer-Verlet method in [12], which uses only
the symmetry of the method. Similar to the previous proof, with the expan-
sion ρ(ex)/(x2σ(ex)) = (1+γpxp+γp+2x

p+2 + . . . ), we write the equation
(3.3) as

(1 + γph
pDp + γp+2h

p+2Dp+2 + . . . ) ÿ = −∇U(y)+ O(hN),(3.6)

where we note that the left-hand side contains only even-order derivatives of
y thanks to the symmetry of the method. We multiply both sides of (3.6) with
ẏT , so that on the right-hand side we have the total derivative (d/dt)U(y).
On the left-hand side we note ẏT ÿ = 1

2
d
dt
(ẏT ẏ) and similarly for higher

even-order derivatives

ẏT y(2m) = d

dt

(
ẏT y(2m−1) − ÿT y(2m−2) + · · · ± 1

2
y(m)T y(m)

)
.(3.7)

On the left-hand side we thus obtain the time derivative of an expression in
which the appearing second and higher derivatives of y can be substituted as
functions of (y, ẏ) via the modified differential equation (3.2). Putting this
together, the equation (3.6) multiplied by ẏT becomes of the form

d

dt

(
1

2
ẏT ẏ+ hpHp(y, ẏ)+ hp+2Hp+2(y, ẏ)+ . . .

)
= − d

dt
U(y)+ O(hN),

which is the stated result. �
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3.3 Modified angular momentum and quadratic first integrals

Whenever we have a quadratic first integral of the form (2.7), for example the
total angular momentum in N -body systems, then the modified differential
equation has a formal first integral close to it.

Proposition 2 Suppose that q̈ = f (q) has L(q̇, q) = q̇TAq as first inte-
gral, i.e., A is a skew-symmetric matrix and f (q)T Aq = 0. For a symmetric
multistep method of order p, there then exists a formal modified first integral

L̃(q, p) = pTAq + hpLp(q, p)+ hp+2Lp+2(q, p)+ . . .

such that its truncation at the O(hN) term satisfies

d

dt
L̃(y(t), ẏ(t)) = O(hN)

along solutions of the modified equation (3.2).

Together with Theorem 4 this implies

pTn Aqn = pT0 Aq0 + O(hp)+ O(thN)
for smooth numerical solutions (3.1) with (2.1).

Proof. The proof is very similar to the preceding proof. We now take the inner
product of (3.6) with Ay. By assumption we have f (y)T Ay = 0. Since A
is skew-symmetric, we have ÿT Ay = d

dt
(ẏT Ay) and similarly for the higher

even-order derivatives

y(2m)T Ay = d

dt

(
y(2m−1)T Ay − y(2m−2)T Aẏ + · · · ± y(m)T Ay(m−1)

)
.

Hence the left-hand side becomes a total derivative, and the right-hand side
is of size O(hN). Expressing the higher derivatives of y as functions of (y, ẏ)
via the modified differential equation then gives the result. �


3.4 Integrable systems

If the differential equation q̇ = v, v̇ = f (q) is an integrable reversible sys-
tem, then we can use reversible perturbation theory to study the behaviour of
solutions of the reversible modified differential equation (3.2). In particular,
Lemma XI.2.1 of [11] (used as in the proof of Theorem X.3.1) yields the
following.

Proposition 3 Under the conditions of Theorem 3, the solution of the mod-
ified differential equation (3.2) of a symmetric multistep method of order p,
starting with (q0, v0), satisfies

‖(y(t), ẏ(t))− (q(t), q̇(t))‖ ≤ C t hp

‖I (y(t), ẏ(t))− I (q0, v0)‖ ≤ C hp
for 0 ≤ t = nh ≤ h−p.

This yields the estimates of Theorem 3 for smooth numerical solutions.
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4 Backward error analysis for general numerical solutions, part I

We now consider general numerical solutions obtained by the symmetric
multistep method. We derive the modified equations for the principal and
the parasitic solution components, study their Hamiltonian-like structure and
derive long-term bounds for the parasitic solution components.

4.1 Principal and parasitic modified equations

The results in this subsection are analogues of results in [7] concerning mul-
tistep methods for first order differential equations. Here we consider general
second order problems q̈ = f (q) and we assume that f (q) is real-analytic
in the considered region.

Let ζ0 = 1 be the double root of the characteristic polynomial ρ(ζ )
and ζ±1, . . . , ζ±(k/2−1) the simple roots on the unit circle, ordered such that
ζ−� = ζ �. We enumerate the set of all possible products of roots,

{ζ�}�∈I =
{ ∏

|j |<k/2
ζ
mj
j

∣∣∣ mj integer
}
,(4.1)

again with ζ−� = ζ �. The set of subscripts I can be finite or infinite. We let
I∗ = I \ {0}, and we denote by I∗

N and IN the subsets of elements which,
in the representation (4.1), have

∑
j mj < N . These sets are always finite.

We aim at writing general solutions qn of the multistep method (with
qn − qn−1 = O(h)) in the form

qn = y(nh)+
∑

�∈I∗
ζ n� z�(nh)

where y(t) and z�(t) are smooth functions (that is again, with all derivatives
bounded independently ofh). The principal solution component y(t) satisfies
a second order differential equation close to (1.1) and the parasitic compo-
nents z�(t) for � �= 0 are small and are determined by first order differential
equations for � corresponding to a root ζ� of ρ(ζ ), and by algebraic equations
otherwise.

The following result extends Theorem 4 in giving the system of modified
differential equations for both the principal and parasitic components.

Theorem 5 Consider an s-stable symmetric multistep method (1.2). For
every N ≥ 2, there exist h-independent functions f�,j (q, v, z∗) with z∗ :=
(z�)0<|�|<k/2 such that, for every solution of
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ÿ = f0,0(y, ẏ, z∗)+ hf0,1(y, ẏ, z∗)+ · · · + hN−1f0,N−1(y, ẏ, z∗)

ż� = hf�,1(y, ẏ, z∗)+ · · · + hNf�,N(y, ẏ, z∗) if ρ(ζ�) = 0

z� = h2f�,2(y, ẏ, z∗)+ · · · + hN+1f�,N+1(y, ẏ, z∗) else

z� = 0 if ζ� �∈ IN

(4.2)

with initial values z�(0) = O(h) if ρ(ζ�) = 0, the function

x(t) = y(t)+
∑

�∈I∗
ζ
t/h

� z�(t)(4.3)

satisfies

k∑

i=0

αi x(t + ih) = h2
k∑

i=0

βif (x(t + ih))+ O(hN+2).(4.4)

For z∗ = 0 the functions f0,j (y, ẏ, 0) are identical to those of Theorem 4.
In particular, f0,j (y, ẏ, 0) = 0 for 0 < j < p, if the method is of order p.
Moreover, the solutions of (4.2) satisfy z−�(t) = z�(t) for all � ∈ I if this
relation holds for the initial values, and z�(t) = O(hm+2) on bounded time
intervals if ζ� is a product of no fewer than m ≥ 2 roots of ρ(ζ ).

Proof. We insert the finite sum (4.3) into (4.4) and note, with z0(t) = y(t),

k∑

i=0

αi x(t + ih) =
k∑

i=0

αi
∑

�∈I
ζ
(t+ih)/h
� eihDz�(t)

=
∑

�∈I
ζ
t/h

�

k∑

i=0

αiζ
i
�e
ihDz�(t) =

∑

�∈I
ζ
t/h

� ρ(ζ�e
hD)z�(t).

We expand f (x(t)) into a Taylor series around y(t),

f (x(t)) =
∑

m≥0

1

m!
f (m)(y(t))

( ∑

�1∈I∗
ζ
t/h

�1
z�1(t), . . . ,

∑

�m∈I∗
ζ
t/h

�m
z�m(t)

)

=
∑

�∈I
ζ
t/h

�

∑

m≥0

1

m!

∑

ζ�1 ...ζ�m=ζ�
f (m)(y(t))

(
z�1(t), . . . , z�m(t)

)
.

This gives, as above,

k∑

i=0

βif (x(t + ih))

=
∑

�∈I
ζ
t/h

� σ (ζ�e
hD)

∑

m≥0

1

m!

∑

ζ�1 ...ζ�m=ζ�
f (m)(y(t))

(
z�1(t), . . . , z�m(t)

)
.(4.5)
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Comparing coefficients of ζ t/h� for � ∈ IN we obtain

ρ(ζ�e
hD)z� = h2σ(ζ�e

hD)
∑

m≥0

1

m!

∑

ζ�1 ...ζ�m=ζ�
f (m)(y)

(
z�1, . . . , z�m

)
(4.6)

(for � = 0 and m = 0 the sum is understood to include the term f (y)).
With the expansion xκσ (ζ�ex)/ρ(ζ�ex) = µ�,0 +µ�,1x +µ�,2x

2 + . . . with
µ�,0 = σ(ζ�)κ!/(ζ κ� ρ

(κ)(ζ�)) for a κ-fold zero ζ� of ρ(ζ ) (κ = 2 for � = 0,
κ = 1 for 0 < |�| < k/2, and κ = 0 else), this equation becomes

z
(κ)
� = h2−κ

(
µ�,0 + µ�,1hD + µ�,2h

2D2 + . . .
)

∑

m≥0

1

m!

∑

ζ�1 ...ζ�m=ζ�
f (m)(y)

(
z�1, . . . , z�m

)
,(4.7)

and allows us to define recursively the functions f�,j (y, ẏ, z∗) of (4.2). The
dominant terms f�,2−κ(y, ẏ, z∗) are obtained by putting z�j = 0 for |�j | ≥
k/2 in

µ�,0
∑

0≤m≤N

1

m!

∑

ζ�1 ...ζ�m=ζ�
f (m)(y)

(
z�1, . . . , z�m

)
.

To get the higher order terms we apply the differentiation operatorD in (4.7),
and we replace the appearing derivatives ÿ and ż� (0 < |�| < k/2) by the
series of equation (4.2) as far as they are available. The appearing derivatives
of z� for |�| ≥ k/2 are replaced by the differentiated third relation of (4.2),
again as far as it is available. From this construction process it follows that on
bounded time intervals we have z�(t) = O(h) for all �, and z�(t) = O(hm+2)

if ζ� is a product of no fewer than m ≥ 2 roots of ρ(ζ ).
In (4.5) and in the above construction of the coefficient functions

f�,j (y, ẏ, z∗)we have neglected terms that contain at leastN factors zj . This
gives rise to the O(hN+2) term in (4.4). �


Thanks to the assumption that all roots of ρ(ζ ) other than 1 are simple,
the differential equations for the z� corresponding to the parasitic roots are
first order differential equations, with the additional bonus of a factor h on
the right-hand side:

ż� = h
σ(ζ�)

ζ�ρ ′(ζ�)
f ′(y)z� + higher order terms.

Here, “higher order terms” means that they contain either an additional factor
h or an additional factor zj .
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Lemma 1 Consider an s-stable symmetric multistep method (1.2). To every
set of starting values q0, . . . , qk−1 satisfying qj − q(jh) = O(hs) (j =
0, . . . , k − 1) with 1 ≤ s ≤ p + 2 there exist (locally) unique initial values
y(0), hẏ(0), z�(0) (0 < |�| < k/2) for the system (4.2) such that its solution
exactly satisfies

qj = y(jh)+
∑

�∈I∗
ζ
j

� z�(jh) for j = 0, . . . , k − 1.(4.8)

These initial values satisfy z−�(0) = z�(0) and

y(0)− q(0) = O(hs), hẏ(0)− hq̇(0) = O(hs), z�(0) = O(hs).
(4.9)

Proof. We rewrite (4.8) as

y(0)+ jhẏ(0)+
∑

0<|�|<k/2
ζ
j

� z�(0) = qj +
(
y(0)+ jhẏ(0)− y(jh)

)

+
∑

0<|�|<k/2
ζ
j

�

(
z�(0)− z�(jh)

)
−

∑

|�|≥k/2
ζ
j

� z�(jh)

with y(t) and z�(t) the solutions of (4.2) for initial values y(0), hẏ(0), z�(0)
for 0 < |�| < k/2. This defines a convergent fixed-point iteration for the
initial values, with a contraction factor of O(h) (after solving the confluent
Vandermonde system arising on the left-hand side). If we start the iteration
with (q(0), hq̇(0), 0, . . . , 0), then the first increment is of size O(hs), and
consequently (4.9) holds. �


If we replace the exact solution q(t) by y(t) + ∑
�∈I∗ ζ

t/h

� z�(t) of
Theorem 5 in the classical convergence proof, then we get for s-stable sym-
metric methods (1.2) that (for t = nh)

qn = y(t)+
∑

�∈I∗
ζ n� z�(t)+ O(t2eωthN),(4.10)

where ω is proportional to the square root of the Lipschitz constant of f (q).
Compared to (3.5) this gives a precise description of the propagation of per-
turbations in the starting approximations.

4.2 Hamiltonian of the full modified system

The key to proving long-time estimates for the symmetric multistep method
is the observation that much of the Hamiltonian structure of the differen-
tial equation q̈ = −∇U(q) is conserved in the modified equations (4.2).
The results and techniques of this subsection are closely related to those of
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[11, Sect. XIII.6.3] and [10, Sect. 4.2] developed for numerical methods for
oscillatory differential equations.

We define U(z) for z = (z�)�∈IN as

U(z) = U(z0)+
∑

m≥1

1

m!

∑

ζ�1 ...ζ�m=1

U(m)(z0)(z�1, . . . , z�m),(4.11)

where the second sum is over all indices �1 ∈ I∗
N, . . . , �m ∈ I∗

N (that is,
�j �= 0) with ζ�1 . . . ζ�m = 1, and the first sum actually starts with m = 2.
With this notation it follows from (4.6) with f (q) = −∇U(q) that every
solution of the truncated modified equation (4.2) satisfies

ρ(ζ�e
hD)z� = −h2σ(ζ�e

hD)∇z−�U(z)+ O(hN+2)(4.12)

(for all � ∈ I) as long as

y ∈ K, ‖ẏ‖ ≤ M, ‖z�‖ ≤ δ for 0 < |�| < k/2,(4.13)

where K is a compact subset of the domain of analyticity of U(q), M > 0
some bound on the derivative, and 0 < δ = O(h) is a sufficiently small
constant (note that this implies ‖z�‖ ≤ δ for all � ∈ I∗ if the third and fourth
relations of (4.2) are satisfied and if h is sufficiently small).

For ease of presentation, we assume for the moment that σ(ζ�) �= 0 for
all � ∈ I (in any case we know that this holds for |�| < k/2, that is, for the
roots ζ� of ρ(ζ )). We apply the operator σ−1(ζ�e

hD) to both sides of (4.12)
and divide by h2:

h−2
(ρ
σ

)
(ζ�e

hD)z� = −∇z−�U(z)+ O(hN).(4.14)

We multiply with żT−� and sum over all � ∈ IN . This gives

h−2
∑

�∈IN
żT−�

(ρ
σ

)
(ζ�e

hD)z� + d

dt
U(z) = O(hN).(4.15)

We now show that also the first expression on the left-hand side is a total
derivative of a function depending on z and its time derivatives. For this we
note that

(ρ
σ

)
(ζ�e

ix) =
∑

j≥0

c�,j x
j with real coefficients c�,j = (−1)j c−�,j .

(4.16)

This holds because the symmetry of the multistep method yields (ρ/σ)(1/ζ)=
(ρ/σ)(ζ ) and hence, for real x,

(ρ
σ

)
(ζ�e

ix) =
(ρ
σ

)
(ζ�eix) =

(ρ
σ

)
(ζ�eix).
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With this expansion we obtain

(ρ
σ

)
(ζ�e

hD)z� =
N+1∑

j=0

c�,j (−ih)j z(j)� + O(hN+2).(4.17)

On the other hand, we have the relations

ẏT y(2m) = d

dt

(
ẏT y(2m−1) − ÿT y(2m−2) + · · · ± 1

2
(y(m))T y(m)

)

for the real function y = z0 and for z� corresponding to ζ� = −1, while for
the complex-valued functions z = z�, with complex conjugate z = z−�, we
have

Re ż
T
z(2m) = Re

d

dt

(
ż
T
z(2m−1) − z̈

T
z(2m−2) + · · · ± 1

2
(z(m))T z(m)

)

Im ż
T
z(2m+1) = Im

d

dt

(
ż
T
z(2m) − z̈

T
z(2m−1) + · · · ∓ (z(m))T z(m+1)

)
.

Together with (4.17) these relations show that the terms

żT−�
(ρ
σ

)
(ζ�e

hD)z� + żT�

(ρ
σ

)
(ζ−�ehD)z−�

=
N+1∑

j=0

c�,j 2 Re
(
(−ih)j ż�T z(j)�

)
+ O(hN+2)

give a total derivative (up to the remainder term). Hence the left-hand side
of (4.15) can be written as the time derivative of a function which depends
on z�, � ∈ IN , and on their derivatives. Using the modified equation (4.2)
we eliminate all z� corresponding to ζ� with ρ(ζ�) �= 0 and their derivatives,
the first and higher derivatives of z� (for 0 < |�| < k/2), and the second and
higher derivatives of y = z0. We thus get a function

H(y, ẏ, z∗) = H0(y, ẏ, z∗)+ · · · + hN−1HN−1(y, ẏ, z∗)(4.18)

such that
d

dt
H(
y(t), ẏ(t), z∗(t)

) = O(hN),(4.19)

along solutions of (4.2) that stay in a set defined by (4.13). The function H
is therefore an almost-invariant of the system (4.2).

If, however, σ(ζ ) does have a zero ζ�, then we omit the corresponding
term from the sum in (4.15). Hence the term żT−�∇z−�U(z) is missing from
(d/dt)U(z) and must therefore be compensated in the remainder term. Since
ζ� is a product of no fewer than two zeros of ρ(ζ ), it follows from (4.7)
with κ = 0 and from µ�,0 = 0 that z� = O(h3δ2), as long as ‖zj‖ ≤ δ for
0 < |j | < k/2. We further have ∇z−� U(z) = O(δ2), so that the remainder
term in (4.19) is augmented by O(h3δ4).
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We summarize the above considerations as follows.

Theorem 6 Every solution of the truncated modified equation (4.2) satisfies,
with H from (4.18),

H(
y(t), ẏ(t), z∗(t)

) = H(
y(0), ẏ(0), z∗(0)

) + O(thN)+ O(th3δ4)

(4.20)

as long as the solution stays in the set defined by (4.13). Moreover,

H(
y, ẏ, z∗) = H(y, ẏ)+ O(hp)+ O(hδ2).(4.21)

The closeness to the HamiltonianH(y, ẏ) = 1
2‖ẏ‖2 +U(y) follows also

directly from the above construction. For z∗ = 0 we have H(y, ẏ, 0) =
H̃ (y, ẏ), where H̃ is the modified energy from Proposition 1.

We will use Theorem 6 in Sect. 5 to infer the long-time near-conservation
of the Hamiltonian along numerical solutions. Before that we need to bound
the parasitic components.

4.3 Long-time bounds for parasitic solution components

The modified equations have further almost-invariants which are close to the
squares of the norms of the parasitic components that correspond to the roots
of ρ(ζ ). We derive them here and use them to show that all parasitic solution
components remain small over very long times. The techniques used in this
subsection are similar to those in [11, Sects. XIII.6 and XIII.7].

We consider �with 0 < |�| < k/2 for which ζ� is a simple root of ρ(ζ ) and
σ(ζ�) �= 0. The dominant term on the left-hand side of (4.14) is −c�,1ih−1ż�.
Since

d

dt
‖z�‖2 = zT−�ż� + zT� ż−�,(4.22)

we multiply (4.14) with zT−� and the equation for −� with zT� and form
the difference, so that the dominant term on the left-hand side becomes
−c�,1ih−1 d

dt
‖z�‖2 (note c−�,1 = −c�,1). Dividing by −c�,1ih−1 gives

i

c�,1h

(
zT−�

ρ

σ
(ζ�e

hD)z� − zT�
ρ

σ
(ζ−�ehD)z−�

)

= ih

c�,1

(
−zT−�∇z−�U(z)+ zT� ∇z�U(z)

)
.(4.23)

We first estimate the right-hand expression. Since

∇z−�U(z) = ∇2U(z0)z� + O(δ2),
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as long as (4.13) is satisfied, we obtain from the symmetry of the Hessian
that the right-hand side of (4.23) is of size O(hδ3). The dominant O(hδ3)

term is present only if ζ−� can be written as the product of two roots of ρ(ζ )
other than 1. If this is not the case, the expression (4.23) is of size O(hδ4).

Using the expansion (4.17) on the left-hand side of (4.23) and the relations
(for z = z�)

Re zT z(2m+1) = Re
d

dt

(
zT z(2m) − ż

T
z(2m−1) · · · ∓ 1

2
(z(m))T z(m)

)

Im zT z(2m+2) = Im
d

dt

(
zT z(2m+1) − ż

T
z(2m) + · · · ± (z(m))T z(m+1)

)

we obtain that (4.23) is, up to O(hN), the total derivative of a function depend-
ing on z and its derivatives.

By construction the dominant term is d
dt

‖z�‖2. The following terms have
at least one more power of h and at least one derivative which by (4.2) gives
rise to an additional factor h. Eliminating higher derivatives with the help of
(4.2), we arrive at a function of the form

K�(y, ẏ, z∗) = ‖z�‖2 + h2K�,2(y, ẏ, z∗)+ · · · + hN−1K�,N−1(y, ẏ, z∗).
(4.24)

As we have seen, its total derivative is of size O(hδ3) or smaller. We sum-
marize these considerations in the following theorem.

Theorem 7 Along every solution of the truncated modified equation (4.2)
the function K�(y, ẏ, z∗) satisfies for 0 < |�| < k/2

K�

(
y(t), ẏ(t), z∗(t)

) = K�

(
y(0), ẏ(0), z∗(0)

) + O(thN)+ O(thδ3)

(4.25)

as long as the solution stays in the set defined by (4.13). The second error
term is replaced by O(thδ4) if no root of ρ(ζ ) other than 1 is the product of
two other roots. Moreover,

K�

(
y, ẏ, z∗) = ‖z�‖2 + O(h2δ2).(4.26)

This result does not yet directly give information about the numerical
solution, since the remainder term in (4.10) can still grow exponentially in
time. Nevertheless, it allows us to write the numerical solution in a form
that is suitable for deriving long-time error estimates. Let us first collect the
necessary assumptions:

(A1) the multistep method (1.2) is symmetric, s-stable, of order p;
(A2) the potential function U(q) of (1.1) is defined and analytic in an open

neighbourhood of a compact set K;
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(A3) the starting approximations q0, . . . , qk−1 are such that the initial values
for (4.2) obtained from Lemma 1 satisfy y(0) ∈ K , ‖ẏ(0)‖ ≤ M , and
‖z�(0)‖ ≤ δ/2 for 0 < |�| < k/2;

(A4) the numerical solution {qn} stays for 0 ≤ nh ≤ T in a compact set K0

which has a positive distance to the boundary of K .

Theorem 8 Assume (A1)–(A4). For sufficiently small h and δ and for a fixed
truncation index N (large enough such that hN = O(δ4)), there exist func-
tions y(t) and z�(t) on an interval of length

T = O((hδ)−1)

such that

• qn = y(nh)+
∑

�∈I∗
ζ n� z�(nh) for 0 ≤ nh ≤ T ;

• on every subinterval [jh, (j+1)h) the functions y(t), z�(t) are a solution
of the system (4.2);

• the functions y(t), z�(t) have jump discontinuities of size O(hN+2) at the
grid points jh;

• ‖z�(t)‖ ≤ δ for 0 ≤ t ≤ T .

If no root of ρ(ζ ) other than 1 is the product of two other roots, all these
estimates are valid on an interval of length T = O((hδ2)−1).

Proof. To define the functions y(t), z�(t) on the interval [jh, (j + 1)h) we
consider the k consecutive numerical solution values qj , qj+1, . . . , qj+k−1.
We compute initial values for (4.2) according to Lemma 1, and we let y(t),
z�(t) be a solution of (4.2) on [jh, (j + 1)h). Because of (4.10) such a con-
struction yields jump discontinuities of size O(hN+2) at the grid points.

It follows from Theorem 7 that K�(y(t), ẏ(t), z∗(t)) remains constant up
to an error of size O(h2δ3) on the interval [jh, (j+1)h). Taking into account
the jump discontinuities, we find that

K�(y(t), ẏ(t), z∗(t)) ≤ K�(y(0), ẏ(0), z∗(0))+ C1thδ
3 + C2th

N+1
(4.27)

as long as ‖z�(t)‖ ≤ δ. By (4.26) this then implies

‖z�(t)‖2 ≤ ‖z�(0)‖2 + C1thδ
3 + C2th

N+1 + C3h
2δ2.(4.28)

The assumption ‖z�(t)‖ ≤ δ is certainly satisfied as long as C1thδ ≤ 1/4,
C2th

N+1 ≤ δ2/4, and C3h
2 ≤ 1/4, so that the right-hand side of (4.28) is

bounded by δ2. This proves not only the estimate for ‖z�(t)‖, but at the same
time it guarantees recursively that the above construction of the functions
y(t), z�(t) is feasible. �
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150 steps h = 0.05 3000 steps h = 0.05

Fig. 4. Stable propagation of perturbations in the starting values, method (S)

Notice that for initial values computed by a sufficiently accurate one-step
method the constant δ can be chosen as small as O(hp+2)wherep is the order
of the multistep method (cf. Lemma 1). The above estimates are therefore
valid on very long time intervals.

Example 4 To illustrate the long-time behaviour of the parasitic terms z� we
consider the pendulum equation q̈ = − sin q, and we apply the symmetric
multistep methods with generating polynomials

(S) ρ(ζ ) = (ζ − 1)2(ζ 2 + 1), σ (ζ ) = 1
6(7ζ − 2ζ 2 + 7ζ 3),

(T) ρ(ζ ) = (ζ − 1)2(ζ + 1)2, σ (ζ ) = 4
3(ζ + ζ 2 + ζ 3).

Both methods are explicit and of order 4. The starting values are chosen far
from a smooth solution, so that the propagation of the parasitic terms in the
numerical solution can be better observed.

The parasitic roots of method (S) are ±i and both are simple. The numer-
ical solution is therefore of the form

qn = y(nh)+ inz1(nh)+ (−i)nz1(nh)+ (−1)nz2(nh).

One observes in Fig. 4 that the functions zj (t) not only remain bounded and
small, but they stay nearly constant over the considered interval.

Method (T) has a double parasitic root at −1 and, therefore, is not s-stable.
Its numerical solution behaves like

qn = y(nh)+ (−1)nz(nh).

In Fig. 5 every second approximation is drawn in grey. One sees that the
numerical solution stays on two smooth curves y(t) + z(t) and y(t) − z(t)

which, however, do not remain close to each other for method (T).
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150 steps h = 0.05 3000 steps h = 0.05

Fig. 5. Unstable propagation of perturbations in the starting values, method (T)

5 Backward error analysis for general numerical solutions, part II

The results of the previous section enable us to finally prove the theorems of
Sect. 2.

5.1 Conservation of energy

The energy conservation is now a direct consequence of Theorems 6 and 8.
We shall use the representation of qn in terms of functions y(t), z�(t) as in
Theorem 8. Taking into account the jump discontinuities of these functions,
Theorem 6 yields

H(y(t), ẏ(t), z∗(t)) = H(y(0), ẏ(0), z∗(0))+ O(th3δ4)+ O(thN+1).

We have δ = O(hp+1) if the starting approximations are computed by a pth
order one-step method. If N is chosen sufficiently large, this together with
(4.21) implies that

H(y(t), ẏ(t)) = H(y(0), ẏ(0))+ O(hp) for 0 ≤ t ≤ T = O(h−p−2).

If the velocity approximation pn = vn (for identity mass matrix) is given
by a pth order finite difference formula (2.1), it follows from Theorem 8
that pn = ẏ(nh) + O(hp) provided the truncation index N is sufficiently
large. This gives the statement of Theorem 1. If no root of ρ(ζ ) other than
1 is a product of two other roots, the statement holds on intervals of length
O(h−2p−3).

5.2 Conservation of angular momentum and quadratic first integrals

The invariance property (2.6) implies, for U of (4.11),

U(eτAz) = U(z) for all τ, z.
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Along solutions z(t) of the modified equations (4.12) we therefore have up
to terms of size O(hN)

0 = d

dτ

∣∣∣
τ=0

U(eτAz) =
∑

�∈I
zT−� A∇z−� U(z)

=
∑

�∈I
h−2zT−� A

(ρ
σ

)
(ζ�e

hD)z�.

(5.1)

If σ(ζ ) has a root ζ�, then the corresponding term is omitted from the last
sum, leading to a remainder term which in the worst case is O(h3δ4), as in
Theorem 6. Like in the previous proofs, the last sum is, for skew-symmetric
A, the total derivative of a function

L(y, ẏ, z∗) = L0(y, ẏ, z∗)+ · · · + hN−1LN−1(y, ẏ, z∗)

which satisfies (under the same assumptions as in Theorem 6)

L(
y(t), ẏ(t), z∗(t)

) = L(
y(0), ẏ(0), z∗(0)

) + O(th3δ4)+ O(thN+1)

and

L(
y, ẏ, z∗) = L(y, ẏ)+ O(hp)+ O(δ2/h).(5.2)

The statement of Theorem 2 thus follows in exactly the same way as that for
Theorem 1 in Sect. 5.1.

5.3 Integrable systems

Assume that the differential equation q̈ = −∇U(q) is an integrable revers-
ible system (see Sect. 2.3). By Theorem 8, the numerical solution can be
written as qn = y(nh)+ ∑

�∈I∗ ζ n� z�(nh), where (at least locally) y(t) is the
solution of a modified differential equation (first equation of (4.2))

ÿ = f0,0(y, ẏ, z∗)+ hf0,1(y, ẏ, z∗)+ · · · + hN−1f0,N−1(y, ẏ, z∗)(5.3)

which, for z∗ = 0 becomes the modified differential equation (3.2). We now
consider (5.3) as a differential equation for y only with z∗(t) as a given
function. Since zj (t) = O(δ) (see Theorem 8) and since z∗ appears at least
quadratically in (5.3), this equation is a O(δ2) perturbation of (3.2). We now
apply the same transformation as for the proof of Proposition 3. The addi-
tional (non-reversible) perturbation of size O(δ2) in the differential equation
(5.3) produces an error term of size O(tδ2) in the action variables and of size
O(t2δ2) in the angle variables. If δ = O(hp+1), these terms are negligible
with respect to those already appearing in Proposition 3. The errors due to the
jump discontinuities (Theorem 8) are also negligible. We have thus proved
the statement of Theorem 3.
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