
Stat Comput (2012) 22:513–526
DOI 10.1007/s11222-011-9244-1

Rate estimation in partially observed Markov jump processes
with measurement errors

Michael Amrein · Hans R. Künsch

Received: 13 July 2010 / Accepted: 3 March 2011 / Published online: 26 March 2011
© Springer Science+Business Media, LLC 2011

Abstract We present a simulation methodology for Bayes-
ian estimation of rate parameters in Markov jump processes
arising for example in stochastic kinetic models. To handle
the problem of missing components and measurement errors
in observed data, we embed the Markov jump process into
the framework of a general state space model. We do not use
diffusion approximations. Markov chain Monte Carlo and
particle filter type algorithms are introduced which allow
sampling from the posterior distribution of the rate parame-
ters and the Markov jump process also in data-poor scenar-
ios. The algorithms are illustrated by applying them to rate
estimation in a model for prokaryotic auto-regulation and
the stochastic Oregonator, respectively.

Keywords Bayesian inference · General state space
model · Markov chain Monte Carlo methods · Markov
jump process · Particle filter · Stochastic kinetics

1 Introduction

It is generally accepted that many important intracellu-
lar processes, e.g. gene transcription and translation, are
intrinsically stochastic, because chemical reactions occur
at discrete times as results from random molecular col-
lisions (McAdams and Arkin 1997; Arkin et al. 1998).
These stochastic kinetic models correspond to a Markov
jump process and can thus be simulated using techniques
such as the Gillespie algorithm (Gillespie 1977) or—in the
time-inhomogeneous case—Lewis’ thinning method (Ogata

M. Amrein (�) · H.R. Künsch
Seminar für Statistik, ETH Zürich, Rämistrasse 101, 8092 Zürich,
Switzerland
e-mail: amrein@stat.math.ethz.ch

1981). Many of the parameters in such models are uncer-
tain or unknown, therefore one wants to estimate them from
times series data. One possible approach is to approximate
the model with a diffusion and then to perform Bayesian
(static or sequential) inference based on the approximation
(see Golightly and Wilkinson 2005, 2006, 2008, 2009). This
gives more flexibility to generate the proposals (see Durham
and Gallant 2002), but it is difficult to quantify the approx-
imation error. Depending on the application, it might be
preferable to work with the original Markov jump process.
This possibility is mentioned in Wilkinson (2006), Chap. 10,
and Boys et al. (2008) demonstrate in the case of the simple
Lotka-Volterra model that this approach is feasible in prin-
ciple. But in more complex situations it is difficult to con-
struct a Markov chain Monte Carlo (MCMC) sampler with
good mixing properties. The key problems in our view are
to construct good proposals for the latent process on an in-
terval when the values at the two end points are fixed and
the process is close to the boundary of the state space, and
to construct reasonable starting values for the process and
the parameters, in particular when some of the components
are observed with small or zero noise. We propose here so-
lutions for both of these problems that go beyond Wilkinson
(2006), Chap. 10, and Boys et al. (2008) and thus substan-
tially enlarge the class of models that are computationally
tractable.

The rest of the paper is organized as follows. In Sect. 2,
we describe the model, establish the relation to stochastic ki-
netics and introduce useful notation and densities. In Sect. 3,
we motivate the Bayesian approach and present the base
frame of the MCMC algorithm. Section 4 describes in de-
tail certain aspects of the algorithm, mainly the construc-
tion of proposals for the latent Markov jump process. In
Sect. 5, the particle filter type algorithm to initialize values
for the parameters and for the latent Markov jump process

CORE Metadata, citation and similar papers at core.ac.uk

Provided by RERO DOC Digital Library

https://core.ac.uk/display/159145869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:amrein@stat.math.ethz.ch


514 Stat Comput (2012) 22:513–526

is presented. In Sect. 6, we look at two examples. First, the
stochastic Oregonator (see Gillespie 1977) is treated in var-
ious scenarios, including some data-poor ones, to show how
the algorithm works. Then, we turn to a model for prokary-
otic auto-regulation introduced in Golightly and Wilkinson
(2005) and reconsidered in Golightly and Wilkinson (2009).
Finally, conclusions are given in Sect. 7.

2 Setting and definitions

2.1 Model

Consider a Markov jump process

Y = {yt = (y1
t , . . . , y

p
t )T : t ≥ t0}

on a state space E ⊂ N
p

0 with jump vectors Ai ∈ Z
p for i ∈

{1, . . . , r} and possibly time dependent transition intensities
μi(t, y) = θi · hi(t, y):

P[yt+δ = y + Ai |yt = y] = μi(t, y)δ + o(δ) (δ > 0).

We denote the total transition intensity by

μ0(t, y) =
r∑

i=1

μi(t, y).

We assume that the functions h = {hi}i∈{1,2,...,r}, called the
standardized transition intensities, the jump matrix A with
columns Ai and the initial distribution f0 of yt0 are known.
The goal is to estimate the hazard rates θ = (θ1, . . . , θr ) from
partial measurements x0, x1, . . . , xn of the process at dis-
crete time points 0 = t0 < t1 < · · · < tn. Unobserved com-
ponents are set to na and we assume

xl |Y = xl |ytl ∼ gη(.|ytl ),

where gη(xl |ytl ) is a density with respect to some σ -finite
measure (with possibly unknown) nuisance parameter η. We
specify this more precisely in the examples in Sect. 6.

If a row in the matrix A a is a linear combination of the
others, say

Alj =
p∑

i �=l

λiAij ∀j ∈ {1, . . . , r},

then

yl
t −

p∑

i �=l

λiy
i
t = const ∀t.

Throughout the article, we assume these conservation con-
stants to be known. Therefore, we can remove yl from the
system and assume in the following that rank(A) = p ≤ r .

This framework can be regarded as a general state space
model: x0, x1, . . . is an observed times series which is de-
rived from the unobservable Markov chain yt0 , yt1, . . . (see
Künsch 2000 or Doucet et al. 2001).

For computational reasons, we further assume that we
can easily evaluate the time-integrated standardized transi-
tion intensities

Hi(s, t, y) :=
∫ t

s

hi(u, y)du.

Models of the above form arise for example in the con-
text of stochastic kinetics. Consider a biochemical reac-
tion network with r reactions R1,R2, . . . ,Rr and p species
Y 1, Y 2, . . . , Y p , i.e.,

Ri : vi1Y
1 + · · · + vipYp −→ ui1Y

1 + · · · + uipYp

for i = 1, . . . , r . Let y
j
t denote the number of species Y j

at time t , yt = (y1
t , . . . , y

p
t )T , V = (vij ) and U = (uij ).

Then, according to the mass action law, we can describe
{yt : t ≥ t0} as a Markov jump process with jump matrix A =
(U − V )T and standardized reaction intensities

hi(y) =
∏

j,vij ≥1

(
yj

vij

)
where

( y

v

)
= 0 when y < v.

For further details, see e.g. Gillespie (1977), Golightly and
Wilkinson (2005) or Golightly and Wilkinson (2009). We
will use in the following terminology from this applications:
We will call the jump times reaction times and classify a
jump as one of the r possible reaction types.

2.2 Additional notation and formulae for densities

A possible path y[a,b] on an interval [a, b] in our model
is uniquely characterized by the total number of reactions
ntot , the initial state ya , the successive reaction times a <

τ1 < · · · < τntot ≤ b and the reaction types (or indices)
r1, r2, . . . , rntot ∈ {1, . . . , r}. The states at the reaction times
are then obtained as

yτk
= ya +

k∑

i=1

Ari .

We write for simplicity yk instead of yτk
. Furthermore, ri

tot

is the total number of reactions of type i and rtot is the vec-
tor with components ri

tot . All these quantities depend on the
interval [a, b]. If this interval is not clear from the context,
we write ntot ([a, b]), τk([a, b]), etc.

The density ψθ of y[a,b] given ya (with respect to the
Lebesque measure for the reaction times and the count-
ing measure for the reaction types) is well known, see e.g.



Stat Comput (2012) 22:513–526 515

Wilkinson (2006), Chap. 10. Defining τ0 = a, τntot+1 = b

and yτ0 = y0 = ya , it is given by

exp

(
−

r∑

i=1

θi

∫ b

a

hi(s, ys)ds

)

·
ntot∏

k=1

θrkhrk (τk, yk−1)

= exp

⎛

⎝−
ntot+1∑

k=1

r∑

i=1

θiHi(τk−1, τk, yk−1)

⎞

⎠

·
ntot∏

k=1

θrkhrk (τk, yk−1).

In the time-homogeneous case, i.e., hi(t, y) = hi(y), we
have Hi(τk−1, τk, yk−1) = hi(yk−1)δk with δk = τk − τk−1.
Therefore

δk|τk−1, yk−1 ∼ Exp(μ0(yk−1)) (1)

and

P[rk = i|τk−1, yk−1] = μi(yk−1)

μ0(yk−1)
, (2)

and we can exactly simulate the Markov jump process using
the Gillespie algorithm (see Gillespie 1977) or some faster
versions thereof (see Gibson and Bruck 2000). Replacing
hi(yk−1) by hi(τk−1, yk−1) in (1) and (2), this can be done
“approximately” in the inhomogeneous case. An exact sim-
ulation algorithm based on a thinning method is described
in Ogata (1981).

We write the density of all observations in [a, b] as

gη(x[a,b]|y[a,b]) =
∏

l,a≤tl≤b

gη(xl |ytl ),

where the empty product is interpreted as 1. The joint den-
sity p(y[t0,tn], x[t0,tn]|θ, η) of y[t0,tn] and x[t0,tn] (given the pa-
rameters θ and η) is then

f0(y0) · ψθ(y[t0,tn]|y0) · gη(x[t0,tn]|y[t0,tn]). (3)

3 Bayesian estimation and Monte Carlo methods

The maximum likelihood estimator is too complicated to
compute because we are not able to calculate the marginal-
isation of the density in (3) over y[t0,tn] explicitly. It seems
easier to combine a Bayesian approach with Monte Carlo
methods, that is to sample from the posterior distribution
of the parameters and the underlying Markov jump process
y[t0,tn] given the data (see Robert and Casella 2004). This has
also the additional advantage that prior knowledge about the

reaction rates can be used. Assuming θ and η to be indepen-
dent a priori, the joint distribution of y[t0,tn], x[t0,tn], θ and η

has the form

p(y[t0,tn], x[t0,tn], θ, η) = p(y[t0,tn], x[t0,tn]|θ, η) ·p(θ) ·p(η).

We want to simulate from the conditioned density

p(y[t0,tn], θ, η|x[t0,tn]),

which yields also samples from p(θ, η|x[t0,tn]) using a
marginalisation over y[t0,tn]. The standard approach to do
this is iterating between blockwise updates of the latent
process y[t0,tn] on subintervals of [t0, tn] with Metropolis-
Hastings steps, updates of θ and updates of η (see e.g. Gilks
et al. 1996, Chap. 1; Boys et al. 2008 or Golightly and
Wilkinson 2009).

As in Boys et al. (2008), we choose independent Gamma
distributions with parameters αi and βi as priors for θi :

p(θ) ∝
r∏

i=1

θ
αi−1
i exp(−βiθi).

We write this distribution as �r(α,β) where α and β are
vectors of dimension r . Conditionally on y[t0,tn],x[t0,tn] and
η, the components θi have then again independent Gamma
distributions, more precisely

θ |y[t0,tn], x[t0,tn], η ∼ θ |y[t0,tn]

∼ �r

(
α̃(y[t0,tn]), β̃(y[t0,tn])

)
, (4)

with

α̃i(y[t0,tn], αi) = αi + ri
tot

and

β̃i (y[t0,tn], βi) = βi +
∫ tn

t0

hi(s, ys)ds

= βi +
ntot+1∑

k=1

Hi(τk−1, τk, yk−1).

Choosing a suitable prior for η depends heavily on the error
distribution, so we refer to the examples in Sect. 6.

We propose the following algorithm, which will be ex-
plained in more detail in the next sections. The generation
of initial values y

(0)
[t0,tn], θ(0) and η(0) will be discussed in

Sect. 5. The choice of the set I[t0,tn] of overlapping subin-
tervals [a, b] ⊂ [t0, tn] for updating y will be discussed in
Sect. 4.4.

Algorithm 1 (Simulation from y[t0,tn], θ, η|x[t0,tn])
For m = 1,2, . . . ,M :



516 Stat Comput (2012) 22:513–526

1. Set y[t0,tn] = y
(m−1)
[t0,tn] , θ = θ(m−1), η = η(m−1). Update

y[a,b] for all [a, b] ∈ I[t0,tn] sequentially in a random or-
der by proposing ynew

[a,b] as described in Sects. 4.1, 4.2,
4.5 and 4.6 and replacing y[a,b] by ynew

[a,b] with probability

α(ynew
[a,b]|y[a,b], θ, η) (see (12)). Set y

(m)
[t0,tn] = y[t0,tn].

2. Simulate θ(m) ∼ �r(α̃(y
(m)
[t0,tn]), β̃(y

(m)
[t0,tn])).

3. Generate η(m) given y
(m)
[t0,tn] in a suitable fashion.

4 Simulating a path given parameters and observations

We assume now that θ and η are fixed and we want to mod-
ify y[a,b] on subintervals [a, b] of [t0, tn]. First we consider
the case t0 < a < b < tn where the values ya and yb re-
main unchanged. The boundary cases will be discussed in
Sect. 4.6. Exact methods to simulate from a continuous time
Markov chain conditioned on both endpoints are reviewed
and discussed in Hobolth and Stone (2009). The rejection
method is too slow in our examples, and direct sampling
and uniformization require finite state space and eigende-
compositions of the generator matrix. This would require
truncating the state space and is too time-consuming in our
examples. Hence we use a Metropolis-Hastings procedure.
Our proposal distribution q first generates a vector of new
total reaction numbers rnew

tot on [a, b] and then, conditioned
on rnew

tot , generates a value ynew
[a,b].

4.1 Generating new reaction totals

Because the values ya and yb are fixed, we must have that

Arnew
tot = yb − ya = Artot ⇔ A(rnew

tot − rtot ) = 0. (5)

If p = r ⇔ rank(A) = r , A is invertible and the reac-
tion totals remain unchanged. Otherwise it is known that
kernel(A) := {x ∈ Z

r : A · x = 0} forms a lattice and can
be written as {a1 · v1 + · · · + ad · vd : a1, . . . , ad ∈ Z} with
d = r − p and basis vectors vl ∈ Z

r , l ∈ {1,2, . . . , d} (note
that these vectors are not unique). Appendix describes how
to compute a basis vector matrix

V (A) = (v1, . . . , vd).

This enables us to generate a vector rnew
tot which respects (5)

in a simple way:

rnew
tot = rtot + V (A) · Z, Z ∼ qZ

ι , (6)

where qZ
ι is a symmetric proposal distribution qZ

ι on Z
d ,

i.e., qZ
ι (z) = qZ

ι (−z), with parameter ι. If rnew
tot has a nega-

tive component, we stop and set ynew
[a,b] = y[a,b].

4.2 Generating a new path given the reaction totals

The new path ynew
[a,b] depends only on ya and the new reaction

totals rnew
tot , and not on the old path y[a,b]. The constraint

ynew
b = yb is satisfied automatically by our construction of

rnew
tot . Therefore our algorithm simply generates a path on

[a, b] with given initial value and given reaction totals, and
we can omit the superscripts new.

A first possibility is to generate the path according to r

independent inhomogeneous Poisson processes with inten-
sities

λi(t) = μi(a, ya)
b − t

b − a
+ μi(b, yb)

t − a

b − a
, (7)

conditioned on the totals r
new,i
tot as in Boys et al. (2008) for

the simple Lotka-Volterra reaction system. In many cases
this leads to proposals which approximate the true jump pro-
cess nicely. But in situations where the standardized reac-
tion intensities hi depend strongly on y, this proposal often
generates paths that are impossible under the model. This is
typically the case when the number of molecules of some
species is small. In order to address this problem, we con-
structed the following proposal which first decides the order
in which the reactions take place, that is we first generate
rk for k = 1,2, . . . , ntot . In a second step, we generate the
reaction times τk . In the first step, we take into account both
the possibility of a reaction of a given type to occur at the
current state of the process and the remaining number of re-
actions Si

k of type i after time τk that still have to occur in or-
der to reach the prescribed total. In the second step, we take
the values of the intensities into account. In order to make
the description of the algorithm easier to read, we mention
that t∗k is a first guess for τk−1 (needed only if the intensities
are time-inhomogeneous). Also remember that yk = yτk

.

Algorithm 2 (Proposing path y[a,b] given rtot , ya)

1. Set Si
0 = ri

tot for i ∈ {1, . . . , r} and y0 = ya .
2. For k = 1, . . . , ntot do the following:

Set t∗k = a + (b − a)(k − 1)/ntot . If μl(t
∗
k , yk−1) = 0 for

all l with Sl
k−1 > 0, stop. Otherwise, generate rk with

probabilities

P[rk = i] ∝ I(0,∞)(μi(t
∗
k , yk−1)) · Si

k−1. (8)

If rk = i, set Si
k = Si

k−1 − 1, Sl
k = Sl

k−1 for l �= i and
yk = yk−1 + Ai .

3. Generate (δk; k ∈ {1, . . . , ntot +1}) according to a Dirich-
let distribution with parameter α = (αk; k ∈ {1, . . . , ntot +
1}) where

αk = μ−1
0 (t∗k , yk−1)

∑
l μ

−1
0 (t∗l , yl−1)

∑
l μ

−2
0 (t∗l , yl−1)

, (9)

and set τk = τk−1 + (b − a)δk for k = 1, . . . , ntot .



Stat Comput (2012) 22:513–526 517

The algorithm stops in step 2 when we can no longer reach
the state yb on a possible reaction path using the available
remaining reactions. This means that an impossible path is
proposed which has acceptance probability 0.

The heuristics behind the steps in the above algorithm is
the following. The probabilities (8) are an attempt to ensure
that a reaction of type i at the current state is possible ac-
cording to the law of the process and we nevertheless reach
the prescribed reaction total. Of course, there are many other
possibilities to define the probabilities in (8), e.g. the geo-
metric mean

√
Si

k−1μi(t
∗
k , yk−1).

Empirically, we found that the above variant leads to good
acceptance rates in the examples in Sect. 6.

The Dirichlet distribution in (9) is used to approximate
the distribution of independent Exp(μ0(t

∗
k , yk−1)) wait-

ing times δk conditioned on the event that their sum is
equal to b − a based on the following considerations. If all
μ0(t

∗
k , yk−1) are equal, the conditional first two moments

are

E

[
δk

∣∣∣
∑

l

δl = b − a

]
= (b − a)

E [δk]∑
l E [δl]

(10)

and

Var

[
δk

∣∣∣
∑

l

δl = b − a

]

= (b − a)2

×
(

Var(δk) + E[δk]2
∑

l Var(δl) + (
∑

l E[δl])2
−

(
E [δk]∑
l E [δl]

)2
)

,

(11)

and moreover the conditional distribution is Dirichlet with
parameters αk = 1, scaled by b−a, see e.g. Bickel and Dok-
sum (1977), Sect. 1.2. In the general case, we use a Dirichlet
distribution as approximation and determine the parameters
such that the expectation matches the right-hand side of (10)
for all k. This implies that

αk ∝ μ−1
0 (t∗k , yk−1).

Finally, the proportionality factor is determined such that the
sum of the variances matches the sum of the right-hand sides
of (11). Note that there is an exact simulation method (see
Fearnhead and Meligkotsidou 2004), but it is computation-
ally much more expensive.

4.3 Acceptance probability of a new path

By construction, the proposal density q(ynew
[a,b]|y[a,b], θ) has

the form

q(ynew
[a,b]|ya, r

new
tot , θ)q(rnew

tot |rtot ).

Because of the symmetry of qZ
ι , we have

q(rnew
tot |rtot ) = q(rtot |rnew

tot ).

So it will cancel out in the acceptance probability and we do
not need to consider it.

Next, q(y[a,b]|ya, rtot , θ) is equal to

ntot∏

k=1

I(0,∞)(μi(t
∗
k , yk−1))S

i
k−1∑r

l=1 I(0,∞)(μl(t
∗
k , yk−1))S

l
k−1

× f Dir
α ((τk − τk−1)/(b − a) : k ∈ {1, . . . , ntot + 1})

(b − a)ntot

where f Dir
α is the density of the Dirichlet distribution with

parameter α from (9).
Hence, according to the Metropolis-Hastings recipe, the

acceptance probability α(ynew
[a,b]|y[a,b], θ, η) is

min

{
1,

ψθ (y
new
[a,b]|ya)gη(x[a,b]|ynew

[a,b])q(y[a,b]|ya, rtot , θ)

ψθ (y[a,b]|ya)gη(x[a,b]|y[a,b])q(ynew
[a,b]|ya, r

new
tot , θ)

}
.

(12)

4.4 Choice of the subintervals [a, b]

To ensure that the process can be updated on the whole in-
terval [t0, tn], we have to choose a suitable set of subinter-
vals I[t0,tn] for which we apply the above updating algo-
rithms. As a general rule, one can say that they should be
overlapping. Also it is often useful to include subintervals
which do not lead to a change of the process at the obser-
vation times t1 < t2 < · · · < tn. In such situations, the terms
gη(x[a,b]|ynew

[a,b]) and gη(x[a,b]|y[a,b]) are equal and therefore
cancel out in the acceptance probability.

In cases where the observations are complete and noise-
free, we need only the subintervals of the form [tl−1, tl].
However, because it is sometimes a non-trivial problem
to find a realization of the Markov jump process which
matches all observations, we found that it is sometimes use-
ful to include a tiny noise in the model and to choose also
subintervals with a tl as interior point. By this trick we can
often obtain realizations that match all observation by the
above updating algorithms.

In general, good choices of the subintervals can be very
dependent on the given situation. The standard one is to
let I[t0,tn] consists of all intervals of the form [tl−1, tl] and
[(tl−1 + tl)/2, (tl + tl+1)/2].



518 Stat Comput (2012) 22:513–526

4.5 Updating latent components

Let us assume that at the time tl the j -th component is not
observed, i.e., x

j
l = na, but the others are. Especially when

working with small or no noise, updating with the above pro-
posal on [a, b] where a < tl < b is problematic because of
the following reason: Assume yl already matches xl nicely
on the observed components. Then a new proposal can only
be accepted when ynew

l matches the observed components,
too. Thus not only the acceptance rate is low, but more
severely, y

j
l remains usually unchanged although we do not

have any information on y
j
l .

To circumvent this problem, we construct a proposal on
the interval [a, b], a < tl < b, which generates simultane-
ously new reactions totals on the intervals [a, tl] and [tl , b],
rnew
tot,a and rnew

tot,b , respectively, so that the values yta , ytb and

the observed values of yl remain fixed, but y
j
l can change.

Similarly to (5), we consider solutions of

A−j,.(r
new
tot,a − rtot,a) = 0

where A−j,. denotes the reaction matrix without the j -
th row. Because of the assumption that rank(A) = p ≤ r ,
kernel(A−j,.)\kernel(A) is non-empty. Thus we can draw
v from kernel(A−j,.)\kernel(A) in a symmetric manner, so
that the reaction totals

rnew
tot,a = rtot,a + v and rnew

tot,b = rtot,b − v (13)

fulfill the above requirements. To propose the jump pro-
cesses on the two intervals [a, tl] and [tl , b], we can use
the techniques from Sect. 4.2. The calculation of the accep-
tance probability is similar to the one described in Sect. 4.3.
The symmetric proposal distribution for the vector v from
kernel(A−j,.)\kernel(A) is specified for the examples con-
sidered in Sect. 6.

4.6 Updating the path at a border

In the cases b = tn or a = t0 we also want to change the
values of ytn and yt0 , respectively (unless f0 is a Dirac mea-
sure). We recommend to propose first a change in rnew

tot , that
is

rnew
tot = rtot + r ′, r ′ ∼ qr ′

ι′ , (14)

where qr ′
ι′ is a symmetric distribution on Z

r . Then either ya

or yb remains unchanged and the other value follows from
yb − ya = Arnew

tot . The rest can be done again with Algo-
rithm 2. If ynew

t0
�= yt0 , the factor f0(y

new
t0

)/f0(yt0) is needed
additionally in the acceptance probability (12).

If one wants to change only some components of yt0 or
ytn , respectively, the same ideas as in Sect. 4.5 can be used.
For more details, see the examples in Sect. 6.

5 Initialisation of η, θ and y[t0,tn]

The form of the trajectories of the underlying Markov jump
process depends strongly on the parameter θ and the value at
t0. So just choosing η(0) and θ(0) and then simulating y

(0)
[t0,tn]

leads usually to processes which match the observed data
badly. It then takes very many iterations in the algorithm
until we obtain processes that are compatible with the data.

In our experience, generating the starting values by Al-
gorithm 3 below leads to substantial increases in compu-
tational efficiency. It is inspired by the particle filter: In-
stead of reweighting and resampling, we just select the most
likely particle, perform a number of Metropolis-Hastings
steps (similarly to Gilks and Berzuini 2001) and propagate
with the Gillespie algorithm.

An additional trick can bring further improvement. Be-
cause the speed of the techniques described depends heavily
on the number of reactions in the system, one wants to en-
sure that the initial value y[t0,tn] for Algorithm 1 has rather
too few than too many reactions. We can achieve this with a
simple shrinkage factor ν between 0 and 1 for θ during the
initialisation, that is replacing θ after simulation with ν · θ .
This acts like a penalisation on the reaction numbers: It does
not affect the probabilities in (2) for the time-homogeneous
case, but makes the system slower, resulting in fewer reac-
tions. But even in the inhomogeneous case, it may be useful.

Algorithm 3 (Generating starting values)

1. Choose η(0).
2. Simulate S{1} i.i.d. starting values ys

t0
∼ p(yt0 |xt0) and

generate ys
(t0,t1] for s ∈ {1,2, . . . , S{1}} using the Gille-

spie algorithm with the normalized standardized reac-
tion intensities I{hi>0} (i = 1, . . . , r) and equal haz-

ard rates 1/(t1 − t0). Set y
{1}
[t0,t1] = ys′

[t0,t1], where s′ =
argmaxs{gη(0) (x[t0,t1]|ys[t0,t1])}. Simulate

θ {1} ∼ �r(α̃(y
{1}
[t0,t1]), β̃(y

{1}
[t0,t1])).

3. For l = 1, . . . , n − 1:
a) Use M{l} steps of Algorithm 1 on [t0, tl] with shrink-

age factor ν and starting values y
{l}
[t0,tl ] and θ {l} to gen-

erate y
{l+1}
[t0,tl ] and θ {l+1}.

b) Generate S{l} paths ys[t0,tl+1] which are independent

continuations of y
{l+1}
[t0,tl ] on (tl, tl+1], based on the

Gillespie algorithm with θ {l+1} and set y
{l+1}
[t0,tl+1] =

ys′
[t0,tl+1], where s′ is equal to

argmaxs{gη(0) (xl+1|ys
tl+1

)}.
4. Set θ(0) = θ {n} and y

(0)
[t0,tn] = y

{n}
[t0,tn].

So to propagate to the process on the interval (tl, tl+1]
(for l = 1, . . . , n − 1), we use θ {l+1} which should roughly
follow the distribution of θ given x[t0,tl ] and η(0), because of
step 3.a).



Stat Comput (2012) 22:513–526 519

6 Examples

6.1 Stochastic Oregonator

First we consider the stochastic Oregonator to illustrate the
algorithms. It is a highly idealized model of the Belousov-
Zhabotinskii reactions, a non-linear chemical oscillator. It
has 3 species and the following 5 reactions:

R1 : Y 2 −→ Y 1

R2 : Y 1 + Y 2 −→ ∅
R3 : Y 1 −→ 2Y 1 + Y 3

R4 : 2Y 1 −→ ∅
R5 : Y 3 −→ Y 2

(15)

For further details, see Gillespie (1977). Following Sect. 2.1,
the process {yt : t ≥ t0}, where yt = (y1

t , y2
t , y3

t )T and yi
t is

the number of species Y i at time t , is a Markov jump process
with standardized reaction intensities

h(y) = (y2, y1y2, y1, y1(y1 − 1)/2, y3)T

and the jump matrix

A :=
⎛

⎝
1 −1 1 −2 0

−1 −1 0 0 1
0 0 1 0 −1

⎞

⎠ .

As starting distribution f0 for yt0 , we use the uniform dis-
tribution on {0, . . . ,K}3 with K = 25. The measurement er-
rors are normally distributed with precision η, that is

gη(x, y) =
∏

j :xj �=na

√
η√

2π
exp

(
−η

2
(xj − yj )2

)
. (16)

In Fig. 1, a sample trajectory for

θ = (0.1,0.1,2.5,0.04,1),

simulated with the Gillespie algorithm, is shown, observed
every 1/3 units of time during a time period of 20 units.

If we choose a Gamma(α,β) prior for η, then the full
conditional posterior distribution of η is again a Gamma dis-
tribution with parameters α̃η(x[t0,tn], α) equal to

α + 1

2
#{(l, j) ∈ {1, . . . , n} × {1, . . . , r} : xj

l �= na}

and

β̃η(y[t0,tn], x[t0,tn], β) = β + 1

2

∑

(l,j):xj
l �=na

(
x

j
l − y

j
tl

)2
,

where na denotes an unobserved value. This yields a simple
way to perform step 3. in Algorithm 1.

Fig. 1 Sample trajectory of the Oregonator Markov jump process at
observation times 0, 1

3 , 2
3 , . . . ,20: y1

t (squares), y2
t (circles) and y3

t

(triangles). The thin lines indicate the process between the observation
times

We now want to estimate the parameters and the Markov
jump process given in Fig. 1 with total reaction numbers

rtot = (76,417,518,92,508)T (17)

from observations at the times

T =
{

0,
1

3
,

2

3
, . . . ,20

}
.

We analyze the following situations:
Full observation (F): We observe every species at the

time points T. (a): exact, i.e., η = ∞. (b): with error. We
choose η = 1 and estimate it, too.

Species i latent for i ∈ {1,2,3} (Si): We observe only
species Y j for j �= i at the time points T. (a): exact, i.e.,
η = ∞. (b): with known precision η = 1.

We use near uniform �(1,0.01) = Exp(0.01) priors on
the parameters θ , so that the mode of the posterior should
be near to the maximum likelihood estimator. When η is
unknown, we use a �(2, .2) prior. It is also rather flat, but
ensures that the precision is greater than 0.

The scenarios S1, S2 and S3 are expected to be very diffi-
cult for the MCMC algorithm because of the additional com-
plication of having to mix over the uncertainty of the latent
species.

6.1.1 Specifications of the algorithm

We specify the proposal distributions and further details in
our algorithm as follows. A basis vector matrix is given by

V (A) =
(

1 −1 0 1 0
0 1 1 0 1

)T

and we simulate Z in (6) as follows

Z = (2Bs − 1) · (Bc · B1, (1 − Bc) · B2)
T



520 Stat Comput (2012) 22:513–526

where Bs ∼ Bin(1,1/2) , Bc ∼ Bin(1,1/3), B1 ∼ Bin(1,
9/10) and B2 ∼ Bin(6,1/2). We need the larger variance
in the second component to ensure good mixing properties
since simulation shows that the total numbers of reaction 2,
3 and 5 vary over a much bigger range than reactions 1 and
4. Further, we use the standard set of subintervals described
in Subsect. 4.4.

For the initialisation (Algorithm 3), we use M{l} and S{l}
around 100 to 200, slight shrinking and η = 8 when un-
known. We use the standard set of subintervals described
in Sect. 4.4.

In the scenarios with exact observation (a), we add a tiny
normal noise to the model (σ 2 = 1/η = 10−4). By this trick,
we obtain underlying jump processes that match all obser-
vations after several iterations of Algorithm 1 as mentioned
in Sect. 4.4.

In the scenarios with the latent components (S1, S2 and
S3), we replace the standard update from above on intervals
[(tl−1 + tl)/2, (tl + tl+1)/2] containing an observation every
second MCMC iteration with the special update described in
Sect. 4.5 on [tl−1, tl+1], so that the latent component mixes
better. To find a suitable distribution to simulate the vector
v in (13), we look exemplarily at the scenario S1. First, we
need the integer solutions to

A−1,.x = 0.

With the techniques from the appendix, we find the basis
vectors v1 = (1,−1,0,0,0)T , v2 = (0,0,0,1,0)T and v3 =
(0,1,1,0,1)T . Because the last one is already in the kernel
of A, we can restrict ourselves to v1 and v2 for the proposal
of v, i.e., we choose ±v1 or ±v2 with equal probability 1/4.

For the new reaction number at the beginning on the in-
terval [tn−1, tn] or at the end on the interval [tn−1, tn], we
want updates which change only one component of yt0 or
ytn , respectively, to get better acceptance. In order to do this
for the first component, one can use the same proposal as
above and add the resulting vector to the total reaction num-
ber to get the new one.

6.1.2 Results

First, we analyze average acceptance rates for the differ-
ent scenarios separately for updates which do not change
the values of the process at the observation times, i.e., up-
dates on intervals [tl−1, tl] (A), updates on intervals [(tl−1 +
tl)/2, (tl + tl+1)/2] (B) with the standard technique and up-
dates on intervals [tl−1, tl+1] with the special update for the
scenarios with latent components described in Sect. 4.5 (C).
An overview is given in Table 1.

We see that it is a good idea to include the intervals with
no changes of the process at observation times since the ac-
ceptance rate is much higher on these. When observation is
exact (a) in the scenarios with latent components, the need

Table 1 Average acceptance rates in % for the different Oregona-
tor scenarios and process updates on intervals [tl−1, tl] (A), [(tl−1 +
tl )/2, (tl + tl+1)/2] (B) and [tl−1, tl+1] when latent components occur
with the technique from Sect. 4.5 (C)

A B C

F a 17.1 0.3

b 17.0 2.6

S1 a 13.3 0.5 5.9

b 9.9 3.1 3.3

S2 a 16.9 0.5 7.8

b 17.1 4.7 7.5

S3 a 16.6 0.5 7.5

b 17.2 4.6 7.8

of using the special update (C) is evident, for noisy observa-
tions (b), it is not that important.

Here, we proposed the underlying jump process accord-
ing to Algorithm 2. The performance of the proposal based
on independent Poisson processes (7) was comparable. But
between times 3 to 6, where at least one component is very
small, Algorithm 2 is clearly better (acceptance rates are up
to 2.5 times that big), as expected from the heuristics given
in Sect. 4.2.

In Figs. 2 and 3, we show the trace plots for the param-
eters in scenario Fb and S1a. On the whole, mixing seems
satisfactory, although not optimal for some parameters in the
scenario S1a with the latent species. Nevertheless, we can
produce good estimates as we will see below. In addition,
the initialisation process yields starting values which are al-
ready very close to the true values. As expected, it reduces
the burn-in considerably and thus makes parallelization (if
needed) more efficient.

To analyze if our chains are long enough and compare
the algorithm in the different scenarios, we calculate effec-
tive sample sizes. The effective sample size (ESS) gives the
size of an i.i.d. sample with the same variance as the current
sample and thus indicates the loss of the efficiency due the
use of the Markov chain (see e.g. Robert and Casella 2004,
Sects. 12.3.5 and 12.6). Note that the estimation of the ESS
is a delicate issue, so the values should be interpreted only
as an indication of the order. In Table 2, we estimated the
ESS per 105 iterations of the MCMC scheme (Algorithm 1)
with the function effectiveSize from the package coda in the
language for statistical computing R (see R Development
Core Team 2010). This function fits an AR(p) process to
the traces of each parameter. The value of the asymptotic
variance is then given by a well-known formula.

We observe that the ESS for the parameters in the scenar-
ios S1, S2 and S3 are much smaller than in the case of full
observation. Especially for the reaction rates corresponding
to standardized transition intensities which depend on the



Stat Comput (2012) 22:513–526 521

Fig. 2 Traces for the parameters in scenario Fb for the Oregonator
example. The origin on the abscissa marks the last iteration of the ini-
tialisation (Algorithm 3). True values are indicated with a horizontal
line

Fig. 3 Traces for the parameters in scenario S1a for the Oregonator
example. The origin on the abscissa marks the last iteration of the ini-
tialisation (Algorithm 3). True values are indicated with a horizontal
line

Table 2 ESS per 105 iterations (Oregonator)

θ1 θ2 θ3 θ4 θ5 η

F a 13055 1050 1062 11338 1053

b 9861 783 791 7887 792 150

S1 a 4389 192 138 73 498

b 3442 84 62 45 268

S2 a 62 57 598 1344 552

b 56 53 507 992 482

S3 a 1157 354 328 1041 326

b 514 369 355 455 169

Fig. 4 Box plots of the parameters θ generated with the MCMC Al-
gorithm 1 for the different scenarios (Oregonator model). True values
are indicated with a horizontal dotted line

latent component. For example in scenario S1, Y 1 is not ob-
served, leading to a loss in terms of mixing for reactions
rates θ2, θ3 and θ4. Or in scenario S2, where the ESS of θ1

and θ2 is very low. The reason for this is that the algorithm
has to mix over the latent components (see Fig. 5). Neverthe-
less, we are able to produce reasonable estimates, as shown
below.

Figure 4 shows box plots of the simulated parameters
θ in the different scenarios. All calculations are based on
200,000 iterations of Algorithm 1.



522 Stat Comput (2012) 22:513–526

Fig. 5 Pointwise 95% credible bands (indicated by the thick lines) of
the totally latent components for the Oregonator model in the scenarios
S1a (top), S2a (middle) and S3a (bottom), respectively. The true values
are shown as thin line

In the scenarios with full observation (F), the median is
always near the true value. When a component is missing,
the true value is mostly in regions where the posterior is
high. In the scenario S1, the posteriors of θ2, θ3 and θ4 seem
rather spread out. But this are exactly the reaction rates de-
pending directly on the unobserved component.

For the parameter η in scenario Fb, the first quartile, the
median and the third quartile are 1.04, 1.27 and 1.53, respec-
tively (true value is 1.00).

Finally, Fig. 5 displays pointwise 95% credible bands of
the latent components in the process for the scenarios S1a,
S2a and S3a. For comparison, we also indicate the true val-
ues of the latent component with a thin line. We can see that
they mostly lie within our credible bands which shows that
our algorithm can reliably recover the unobserved process
component. Note that the values for Y 1 in scenario S1a are
rather underestimated, leading to lower values for the stan-
dardized reaction intensities depending on y1. This explains
the overestimation of the directly associated parameters θ2,
θ3 and θ4 (see Fig. 4).

6.2 Prokaryotic auto-regulation

We look at the simplified model for prokaryotic auto-
regulation introduced in Golightly and Wilkinson (2005)
and reconsidered in Golightly and Wilkinson (2009). It is

described by the following set of 8 chemical reactions.

R1 : DNA + P2 −→ DNAP2

R2 : DNAP2 −→ DNA + P2

R3 : DNA −→ DNA + RNA
R4 : RNA −→ RNA + P
R5 : 2P −→ P2

R6 : P2 −→ 2P
R7 : RNA −→ ∅
R8 : P −→ ∅
In this system, the sum DNAP2 + DNA remains constant,
and we assume that this constant K is known and equal to
10 in our simulation. Therefore it is enough to consider the
four species y = (y1, y2, y3, y4)T = (RNA,P,P2,DNA)T ,
where RNA, P, P2 and DNA are now interpreted as numbers
of the corresponding species. According to the mass action
law, the standardized transition intensities are

h(y) =
(
y4y3,K − y4, y4, y1, y2(y2 − 1)/2, y3, y1, y2

)T

and the jump matrix is given by

A :=

⎛

⎜⎜⎝

0 0 1 0 0 0 −1 0
0 0 0 1 −2 2 0 −1

−1 1 0 0 1 −1 0 0
−1 1 0 0 0 0 0 0

⎞

⎟⎟⎠ .

As starting distribution, we assume that the number of
DNA molecules is uniformly distributed on {0, . . . ,K} and
the other species are initially 0. Following Golightly and
Wilkinson (2009), we again use normally distributed mea-
surement errors, see (16). The update for η (step 4. in Algo-
rithm 1), can then be done using Gamma distributions. Also
we consider different scenarios in a similar manner to the
last example.

Full observation (F ): Observation of every species. (a):
exact, i.e., η = ∞. (b): with error. We choose η = 4 and
estimate it, too.

DNA is latent (L): Observation of species RNA, P and
P2. (a): exact, i.e., η = ∞. (b): with error. We choose η = 4
and estimate it, too.

The true values of the parameters are

θ = (0.1,0.7,0.6,0.085,0.05,0.2,0.2,0.015)

and we observe the process every 0.5 units of time on
the interval [0,50]. The total reaction numbers for the true
Markov jump process are

rtot = (192,190,122,53,116,99,117,7)T .

As reported in Golightly and Wilkinson (2005) and Go-
lightly and Wilkinson (2009), ratios of the parameters θ1/θ2

and θ5/θ6, connected to the reversible reaction pairs R1, R2



Stat Comput (2012) 22:513–526 523

and R5, R6, respectively, are more precise than the individ-
ual rates. We found a similar behavior also for θ3/θ7 and
θ4/θ8. This is related to the fact that adding or subtracting
an equal number of the corresponding reaction between two
consecutive observation times does not change the values of
the Markov jump chain at these time points, making it rather
difficult to tell how many of these reaction events should
be there from discrete observations only. This implies also
that there is a strong positive dependence in the posterior
between these pairs of parameters.

Therefore we analyse the MCMC algorithm when work-
ing with the following reparameterization:

ρ1 = θ1 + θ2, ρ3 = θ3 + θ7, ρ5 = θ4 + θ8,

ρ7 = θ5 + θ6, ρ2 = θ1

θ1 + θ2
, ρ4 = θ3

θ3 + θ7
,

ρ6 = θ4

θ4 + θ8
, ρ8 = θ5

θ5 + θ6
.

(18)

For ρl (l = 1,3,5,7) we use �(a, b) priors and for ρk

(k = 2,4,6,8) Beta(d, e) priors. For updating e.g. (ρ1, ρ2),
we factor the joint density of (ρ1, ρ2) given y[t0,tn] as
p(ρ1|ρ2)p(ρ2). Then p(ρ1|ρ2) is a �(a + r1

tot + r2
tot , b +

ρ2I1 + (1 − ρ2)I2)) density, and p(ρ2) ∝
(b+ρ2I1 + (1−ρ2)I2)

−(a+N1+N2)ρ
d+N1−1
2 (1−ρ2)

e+N2−1,

with Ii = ∑ntot+1
k=1 hi(yk−1)δk (i = 1,2). The factor

(β + ρ2I1 + (1 − ρ2)I2)
−(a+N1+N2)

is approximated by piecewise linear upper bounds, so we
can simulate from p(ρ2) using an adaptive accept-reject-
method with mixtures of truncated Beta distributions as pro-
posals. After we have generated ρ is this way, we can easily
find the corresponding θ using the inverse transform of (18).
Thus we have now two ways to update θ . The standard vari-
ant (S) and the one via the transformation (18) from above
(T). We will see in Sect. 6.2.2 that T has somewhat better
mixing properties.

In the scenario F, we use near uniform �(1,0.1) priors
for θ as before. When working with ρ, we also use �(1,0.1)

priors for ρl (l = 1,3,5,7) and B(1,1) priors, i.e., uniform
priors on [0,1], for ρk (k = 2,4,6,8), so that the mode of
the posterior should be near to the maximum likelihood es-
timator.

In the scenario L, when working with the above priors,
we have the problem that sometimes reaction 1 or 2 are re-
moved from the system, i.e., the corresponding rates are es-
timated to be 0 or at least very small. Since we assume that
these occur, we use for θ1, θ2 and ρ1 �(2,5) and for ρ2

Beta(1.2,1.2) priors instead. This provides the prior infor-
mation that corresponding rate parameters are unlikely to be
near zero and are around 0.1 to 1.

6.2.1 Specifications of the algorithm

The basis vector matrix is given by

V (A) =

⎛

⎜⎜⎝

1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

⎞

⎟⎟⎠

T

and for qZ
ι we choose qZ

ι (±�ei) = 0.1 for i ∈ {1,2,3,4} and
qZ
ι (�0) = 0.2 (see (6)).

To get the new total reaction number for the update at
the beginning, i.e., on the interval [t0, t1], we have to respect
that y1

t0
= y2

t0
= y3

t0
= 0. We therefore only want to change

the fourth component of yt0 . So

A−4,.(r
new
tot (y[t0,t1]) − rtot (y[t0,t1])) = 0.

With the techniques from the appendix, we find the same ba-
sis vectors as in V (A) plus the vector v5 = (0,−1,0,2,1,0,

0,0)T . So we use (14) where qR
ι draws not only from ±v5,

but also from some other specific vectors in kernel(A−4,.)\
kernel(A), e.g. v5 +V (A)1. For scenario L, where the DNA
is latent, we construct a proposal for v in (13) in the same
way, since we also want to change the fourth component
only.

6.2.2 Results

We analyze each of the four different scenarios Fa, Fb, La
and Lb with both methods to generate the rate parameters,
i.e., method S (standard) and T (using the transformation).
As before, we first look at acceptance rates, see Table 3. Ac-
ceptance rates for proposals which update process values at
observation times are much lower. In the scenarios where
DNA is latent (L), the update according to (13) is not as im-
portant as in the previous example, since acceptance rates on
intervals [(tl−1 + tl)/2, (tl + tl+1)/2] are similar.

Compared to the Poisson process proposal, Algorithm 2
was slightly better on average, with clear advantage when
DNA is on a low level, i.e., 0 or 1.

In Fig. 6, we show the trace plots of the initialisation and
250,000 iterations of Algorithm 1 for the scenario FbS. Sta-
tionary behaviour seems to be achieved a few iterations after
the initialisation. Once again, Algorithm 3 is of utter utility.

To analyze the gain of the reparameterization, we once
again compute the ESS. Results are given in Table 4. For
most parameters, the variant with the transformation (T)
yields an improvement in terms of ESS and thus has better
mixing properties. The ESS usually decreases comparing a
scenario with observation errors to the same one without.

Figure 7 shows box plots of the parameters in the differ-
ent scenarios using the transformation to generate the pro-
posals for θ , based on 100,000 iterations of the MCMC al-
gorithm, which should be enough considering Table 4. We



524 Stat Comput (2012) 22:513–526

Table 3 Average acceptance rates in % for the different scenarios and
process updates on intervals [tl−1, tl] (A), [(tl−1 + tl )/2, (tl + tl+1)/2]
(B) and [tl−1, tl+1] when latent components occur with the technique
from Sect. 4.5 (C)

A B C

FaS 39.4 2.3

FaT 39.3 2.4

FbS 39.8 4.4

FbT 39.3 4.6

LaS 41.3 2.2 2.7

LaT 40.8 2.4 2.4

LbS 43.6 5.6 2.3

LbT 42.7 6.3 1.7

Fig. 6 Traces of (θ, η) for the prokaryotic auto-regulation model in
scenario FbS. The origin on the abscissa marks the last iteration of the
initialisation (Algorithm 3). True values are indicated with a horizontal
line

see that in the scenarios where every species is observed (F),
posterior medians are near the true values. When the DNA
is latent (L), true values are in regions where the posterior
density is high.

The medians of the posterior for η in the scenarios FbT
and LbT are 4.75 and 4.85, respectively.

Table 4 ESS per 105 iterations (prokaryotic auto-regulation)

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 η

FaS 162 154 1507 21093 406 384 1463 6130

FaT 189 197 1609 23804 459 428 1718 6671

FbS 176 160 700 533 303 300 668 251 316

FbT 188 180 731 645 355 343 757 261 319

LaS 118 143 836 351 306 292 1696 259

LaT 212 217 661 403 505 463 1414 268

LbS 100 192 271 133 280 267 394 116 158

LbT 205 269 330 122 337 343 421 121 139

Fig. 7 Box plots of the parameters θ generated with the MCMC Al-
gorithm 1 for the different scenarios. True values are indicated with a
horizontal dotted line

Finally, we compare the pointwise 95% credible bands of
the latent component, that is the number of DNA molecules,
in the scenarios LaT and LbT based on 100’000 iterations
in Fig. 8. In the case with observation error (LbT), there
seems to be a slight overestimation, whereas for exact ob-
servation (LaT), the true underlying process component lies
nicely within our credible bands.



Stat Comput (2012) 22:513–526 525

Fig. 8 95% credible bands (indicated by the thin lines) of the latent
DNA in the scenarios LaT (top) and LbT (below). True values are
shown as thick line

7 Conclusions

In this paper, we have presented a technique to infer rate
constants and latent process components of Markov jump
processes from time series data using fully Bayesian infer-
ence and Markov chain Monte Carlo algorithms. We have
used a new proposal for the Markov jump process and—
exploiting the general state space framework—a filter type
initialisation algorithm to render the problem computation-
ally more tractable. Even in very data-poor scenarios in our
examples, e.g. one species is completely unobserved, we
have been able to estimate parameter values and processes
and the true values are contained in the posterior credible
bands.

The techniques are generic to a certain extent, but as our
examples have shown, they have to be adapted to the sit-
uation at hand, which makes their blind application rather
difficult. Clearly, the speed of our algorithm scales with the
number of jump events, so it is less suitable in situations
with many jumps. In such a situation, using the diffusion
approximation is recommended. However, we believe that
the statement “It seems unlikely that fully Bayesian inferen-
tial techniques of practical value can be developed based on
the original Markov jump process formulation of stochastic
kinetic models, at least given currently available computing

hardware” in the introduction of Golightly and Wilkinson
(2009) is too pessimistic.

Appendix: Integer solutions of homogeneous linear
equations

Let A ∈ Mp×r (Z) be an integer p × r matrix. We want to
determine the set

L = {x ∈ Z
r : Ax = 0}. (19)

Obviously, it is enough to consider only linear independent
rows of A, so we assume rank(A) = p ≤ r . The case p =
r is then trivial, so p < r . The main idea is to transform
the matrix A into the so called Hermite normal form. We
denote with �x� the largest integer smaller or equal x. For
the following, see Newman (1972), pages 15 ff, or Cohen
(1993), pages 66 ff.

Definition 1 (Hermite normal form) H ∈ Mp×r (Z) with
rank s is in Hermite normal form if

1. ∃i1, . . . , is with 1 ≤ i1 < · · · < is ≤ p with Hij ,j ∈ Z\{0}
for 1 ≤ j ≤ s.

2. Hi,j = 0 for 1 ≤ i ≤ ij − 1, 1 ≤ j ≤ s.
3. The columns s + 1 to r are 0.
4. �Hij ,l/Hij ,j � = 0 for 1 ≤ l < j ≤ s.

Proposition 1 For every A ∈ Mp×r (Z) exists a unique
unimodular matrix U (U ∈ GLr(Z) := {B ∈ Mr×r (Z) :
det(B) = ±1}), such that H = AU is in Hermite normal
form.

There exist many algorithms to calculate H and U , see
e.g. Storjohann and Labahn (1996) or Jäger (2001).

The Hermite normal form allows us to determine the set
(19). Because A is assumed to have maximal rank, by def-
inition H = (B,0), where B is an invertible, lower trian-
gular p × p matrix. For y = U−1x we have the equation
0 = Ax = AUy = (B,0)y, so y has zeroes in the first p

positions and arbitrary integers in the remaining positions.
Hence a basis vector matrix V for (19) is given by vi = ur+i .
If necessary, one can reduce the length of the vi by the Al-
gorithm 2.3 in Ripley (1987).

References

Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of de-
velopmental pathway bifurcation in phage λ-infected escherichia
coli cells. Genetics 149, 1633–1648 (1998)

Bickel, P.J., Doksum, K.A.: Mathematical Statistics; Basic Ideas and
Selected Topics. Holden-Day Inc., Oakland (1977)



526 Stat Comput (2012) 22:513–526

Boys, R.J., Wilkinson, D.J., Kirkwood, T.B.: Bayesian inference for a
discretely observed stochastic kinetic model. Stat. Comput. 18(2),
125–135 (2008)

Cohen, H.: A Course in Computational Algebraic Number Theory.
Springer, Berlin (1993)

Doucet, A., de Freitas, J.F.G., Gordon, N.J.: Sequential Monte Carlo
Methods in Practice. Springer, New York (2001)

Durham, G., Gallant, R.: Numerical techniques for maximum likeli-
hood estimation of continuous time diffusion processes. J. Bus.
Econ. Stat. 20, 279–316 (2002)

Fearnhead, P., Meligkotsidou, L.: Exact filtering for partially observed
continuous time models. J. R. Stat. Soc. B 66(3), 771–789 (2004)

Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemi-
cal systems with many species and many channels. J. Phys. Chem.
A 104(9), 1876–1889 (2000)

Gilks, W.R., Berzuini, C.: Following a moving target-Monte Carlo in-
ference for dynamic Bayesian models. J. R. Stat. Soc. B 63(1),
127–146 (2001)

Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte
Carlo in Practice. Chapman and Hall, London (1996)

Gillespie, D.T.: Exact stochastic simulation of coupled chemical reac-
tions. J. Phys. Chem. 81, 2340–2360 (1977)

Golightly, A., Wilkinson, D.: Bayesian inference for nonlinear multi-
variate diffusion models observed with error. Comput. Stat. Data
Anal. 52(3), 1674–1693 (2008)

Golightly, A., Wilkinson, D.J.: Bayesian inference for stochastic ki-
netic models using a diffusion approximation. Biometrics 61,
781–788 (2005)

Golightly, A., Wilkinson, D.J.: Bayesian sequential inference for
stochastic kinetic biochemical network models. J. Comput. Biol.
13(3), 838–851 (2006)

Golightly, A., Wilkinson, D.J.: Markov chain Monte Carlo algorithms
for SDE parameter estimation. In: Learning and Inference for
Computational Systems Biology. MIT Press, Cambridge (2009)

Hobolth, A., Stone, EA: Simulation from endpoint-conditioned,
continuous-time Markov chains on a finite state space, with appli-
cations to molecular evolution. Ann. Appl. Stat. 3(3), 1204–1231
(2009)

Jäger, G.: Algorithmen zur Berechnung der Smith-Normalform und
deren Implementation auf Parallelrechnern. PhD thesis, Univer-
sität Essen, Fachbereich 6 (Mathematik und Informatik) (2001)

Künsch, H.R.: Complex Stochastic Systems. Chapman & Hall/CRC,
London (2000), Chap. 3

McAdams, H., Arkin, A.: Stochastic mechanisms in gene expression.
Proc. Natl. Acad. Sci. USA 94, 814–819 (1997)

Newman, M.: Integral Matrices. Academic Press, New York (1972)
Ogata, Y.: On Lewis’ simulation method for point processes. IEEE

Trans. Inf. Theory 27(1), 23–31 (1981)
R Development Core Team: R: A Language and Environment for Sta-

tistical Computing. R Foundation for Statistical Computing, Vi-
enna (2010). http://www.R-project.org

Ripley, B.D.: Stochastic Simulation. Wiley, New York (1987)
Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn.

Springer Texts in Statistics. Springer, New York (2004)
Storjohann, A., Labahn, G.: Asymptotically fast computation of Her-

mite normal forms of integer matrices. In: Proceedings of the
1996 International Symposium on Symbolic and Algebraic Com-
putation, ISSAC ’96, pp. 259–266. ACM, New York (1996)

Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman
& Hall, London (2006)

http://www.R-project.org

	Rate estimation in partially observed Markov jump processes with measurement errors
	Abstract
	Introduction
	Setting and definitions
	Model
	Additional notation and formulae for densities

	Bayesian estimation and Monte Carlo methods
	Simulating a path given parameters and observations
	Generating new reaction totals
	Generating a new path given the reaction totals
	Acceptance probability of a new path
	Choice of the subintervals [a,b]
	Updating latent components
	Updating the path at a border

	Initialisation of eta, theta and y[t0,tn]
	Examples
	Stochastic Oregonator
	Specifications of the algorithm
	Results

	Prokaryotic auto-regulation
	Specifications of the algorithm
	Results


	Conclusions
	Appendix: Integer solutions of homogeneous linear equations
	References


