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Abstract We apply the recurrent reinforcement learning method of Moody,
Wu, Liao, and Saffell (1998) in the context of the strategic asset allocation
computed for sample data from US, UK, Germany, and Japan. It is found that
the optimal asset allocation deviates substantially from the fixed-mix rule. The
investor actively times the market and he is able to outperform it consistently
over the almost two decades we analyze.

Keywords Dynamic asset allocation · Bond/equity ratio · Reinforcement
Learning

1 Introduction

It iswellknownthatarationallyplanninginvestorwithconstantrelativeriskaver-
sion(CRRA)willchooseafixed-mixassetallocationif theinvestmentopportuni-
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ties do not change over time (see, e.g., Merton, 1969; Samuelson, 1969; Campbell
& Viceira, 2002). Whether financial markets do however offer constant or rather
changing investment opportunities to which a tactically planning investor can re-
act is an ongoing debate that is of central importance to any asset manager. While
Malkiel(2003)andFama(1998), forexample,stronglyobjecttotheviewthatmar-
kets over- and under-react in a predictable way, researchers like Campbell (2000)
and Shleifer (2000) and many others, in particular those in the field of behavioral
finance, point out many anomalies giving rise to predictability of market returns.
De Bondt and Thaler (1985), Daniel, Hirshleifer, and Subrahmanyam (1998) and
Campbell, Andrew, and Craig Mc Kinley (1999), for example, suggest that stock
markets are mean-reverting so that a rationally planning investor should deviate
from the fixed-mix rule and try to actively time the market. Campbell and Robert
(1988) claim that the dividend price ratio is a predictor for future stock returns.
The intuition behind this approach stems from the present value relation and says
that when the price dividend ratio is high, either expected returns must be low or
expected dividend growth rates must be high.

Stock market predictability does not necessarily contradict with market effi-
ciency when agents discount future dividends at time varying rates, i.e., when
the intertemporal rate of substitution is time-varying. The most obvious impli-
cation of predictability for portfolio advice is that market timing strategies can
be exploited. Gallant, Hansen, and Tauchen (1990) measure potential benefits
of market timing without considering concrete timing strategies by assessing the
volatility of the marginal rate of intertemporal substitution using conditional
moment tests. Cochrane (1991) conjectures that market timing should raise
average returns by about two-fifths at an annual horizon and it should almost
double average returns at a 5-year horizon. Campbell and Viceira (2005) suggest
that strategic investors like pension funds should benefit from market timing.
Brandt (1999) estimates a market timing rule within a dynamic optimization
framework based on the GMM Euler equation approach without making dis-
tributional assumptions on the underlying variables. Analytical and numerical
solutions to the dymamic planning problem usually impose assumptions on the
underlying variables. For example, Campbell and Viceira (1999) assume log-
normality of stock returns and Brennan, Schwartz, and Lagnado (1997) require
stock returns to follow a Markov process.

In this work, we aim at determining the timing rule by explicitly solving the
dynamic optimization problem without distributional assumptions employing
the direct version of the Reinforcement Learning technique which has been
introduced to economists by Moody, Wu, Liao, and Saffell (1998). Therefore,
we solve the problem with a non-linear feedback rule numerically. In contrast to
traditional numerical solution techniques such as value iteration, this approach
allows for simpler problem representation, avoids Bellman’s curse of dimen-
sionality and is more computationally efficient. The approach is called “direct”
since it does not attempt to estimate the value function, but it rather recovers
the optimal (policy) feedback rule.

We consider actual returns of bonds and stock market indices in the US,
UK Germany, and Japan, and compute the optimal asset allocation of a stra-
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tegic investor with constant relative risk aversion. Applying the recurrent
reinforcement learning method of Moody et al. (1998) we find that the optimal
asset allocation on that data is far from being fixed-mix but it actively times the
market. This result is not only of theoretical importance since it contributes to
the above-mentioned debate but it also has important practical applications. In
countries like the US and Switzerland, for example, a substantial part of the
society‘s wealth is held in pension funds because the pension fund system is cap-
ital based. The most important issue of such pension funds is to find the optimal
bond/equity ratio for the strategic asset allocation. Our paper thus encourages
these pension funds to deviate from the passive fixed-mix asset allocation rules
that are applied in most of them.

In the next section, we describe our model which will then be solved numer-
ically in Sect. 3 before Sect. 4 concludes.

2 Strategic asset allocation with market timing

The investor has a discrete time planning horizon t = 0, 1, . . . , T. The invest-
able universe of assets is restricted to long-term bonds and equity. Bond and
equity returns are denoted by RB

t , and RE
t , t = 0, 1, . . . , T, respectively. The

investor has to choose the weight of bonds in any period t, ωt ∈ [0; 1], which
implies that the weight of equity is 1 − ωt. We allow the investor to believe that
he can predict the yield spread between bonds and equity based on historical
returns on bonds and equity. This predictability is modeled in the strategic asset
allocation problems (1)–(4) by an adaptive policy function parameterized in θ

determining time-varying weights conditional on the actual yields,

ωt =
(

θ/1.15 + 1

exp(F3 + F2θ(RB
t−1 − RE

t−1))
− 0.5

)
F−1

1 , F1, F2, F3 ∈ R

t = 0, 1, . . . , T. (1)

Weights ωt are restricted to the interval
[
0; 1

]
. Note that the degree of predict-

ability is endogenously determined by the numerical value of θ that is learnt
from the data by application of the reinforcement learning algorithm. While
the particular form of the policy function is certainly ad hoc, it has some impor-
tant qualitative properties. The sigmoid chosen in this paper restricts the bond
weight to the interval [0,1]. Moreover, the sign of the slope is not restricted and
the degree of concavity can be varied up to linearity of the function (see Fig. 1
for alternative shapes of the timing function).

The portfolio return, RP
t ∈ R, is given by

RP
t = ωtRB

t + (1 − ωt)RE
t . (2)

The wealth of the investor, Wt ∈ R
+, t = 0, 1, . . . , T, measured in monetary

units, starts with W0 ∈ R. Wealth evolves along the equation
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Fig. 1 Sigmoid timing function (1). The graph represents the amount of the bond weight (vertical
axis) depending on the return spread of bonds and equity (horizontal axis) as determined by the
market timing function (1). The black and grey line refer to θ = −0.5,F1 = 5,F2 = 50, F3 = 1, and
θ = 0.25,F1 = −5,F2 = −10, respectively.
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Fig. 2 Bond and equity index in US

Wt+1 = Wt(1 + RP
t ). (3)

We consider a totally rational investor optimizing a power utility U arising from
terminal wealth,

UT(θ) = W1−γ

T

1 − γ
.1 (4)

1 Performing a second-order Taylor series approximation to U, the utility depends on expected
returns and squared returns viewed as risk.
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Fig. 3 Bond and equity index in UK
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Fig. 4 Bond and equity index in Germany

Note that on a constant opportunity set, as it is for example delivered by a
random walk, such an investor would choose a fixed-mix asset allocation. That
is, he would hold the mix of bonds and equities fixed over time.

In the subsequent section, we solve the optimization problems (1)–(4) numer-
ically based on monthly data on bond and equity returns in US, UK, Japan, and
Germany.
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Fig. 5 Bond and equity index in Japan

3 Numerical solution based on data

To obtain the optimal policy parameter θ in the dynamic optimization prob-
lems (1)–(4) of the investor we apply the Recurrent Reinforcement Learning
method of Moody et al. (1998). In contrast to traditional numerical solution
techniques such as value iteration, this approach allows for a simpler problem
representation, avoids Bellman’s curse of dimensionality and is computationally
efficient. The approach is called “direct” since it does not attempt to estimate
the value function, but it rather recovers the optimal (policy) feedback rule.2

The gradient of U with respect to θ reads

dUT(θ)

dθ
= −

T∑
t=0

dUT(θ)

dRP
t

(
dRP

t

dωt

dωt

dθ
+ dRP

t

dωt−1

dωt−1

dθ

)
. (5)

Derivatives of the portfolio return with respect to the bond weight are fully

accounted for by partial derivatives. Quantities dωt

dθ
are total derivatives that

depend upon the entire sequence of previous time periods. The temporal depen-
dencies in a sequence of decisions are accounted for through a recursive update
equation for the parameter gradients

2 Note, that Brandt, Goyal, Santa-Clara, and Stroud (2006) and van Binsbergen and Brandt (2006)
suggest an alternative approach to avoid computing the value function.
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Table 1 Source of bond index data

Country Total return bond index Currency

United States Citigroup WGBI U.S. 7–10Y USD
United Kingdom Citigroup WGBI UK 7–10Y GBP
Germany Citigroup WGBI Germany 7–10Y EUR
Japan Citigroup WGBI Japan 7–10Y JPY

Table 2 Source of equity index data

Country Equity Performance index Currency

United States S&P 500 Composite USD
United Kingdom FTSE 100 GBP
Germany DAX 30 EUR
Japan NIKKEI 225 JPY

dωt

dθ
= ∂ωt

∂θ
+ ∂ωt

∂ωt−1

dωt−1

dθ
. (6)

This is a chain rule for ordered derivatives. They represent the total, i.e., the
direct and indirect impact of the variable in the denominator on the variable in
the nominator, while the ordinary partial derivatives only account for the direct
impact. In our model, the feedback rule drives a wedge between both types of
derivatives.

The dynamic system is then optimized by repeatedly computing the value of
UT(θ) on forward passes through the data and adjusting the coefficient θ by
employing gradient descent,

�θ = η
dUT(θ)

dθ
, (7)

where η may be referred to as the adjustment speed or the learning rate.
Optimization is carried out in batch mode, i.e., gradient of utility with respect
to θ is calculated based on the full data sample.

We use benchmark indices for long–term bonds and equity to calculate asso-
ciated returns. In particular, we use indices for the US, Germany, UK, and Japan
given in Tables 1 and 2 in the period from March 1988 to January 2006 on a
monthly basis.

Tables 3 and 4 report the summary statistics of the indices.
Figures 2–5 show the indices graphically.
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Table 3 Summary statistics of bond index data

United States Germany United Kingdom Japan

Mean 0.006477285 0.005890761 0.007407128 0.004272847
Standard deviation 0.01764916 0.01331913 0.01745185 0.01568065
Skewness −0.310161811 −0.625071902 0.137096437 −0.512137811
Kurtosis 0.3690106 0.722890735 0.682868314 2.776031095

Table 4 Summary statistics of equity index data

United States Germany United Kingdom Japan

Mean 0.009891415 0.009457494 0.009496691 0.001354506
Standard deviation 0.038921436 0.06101563 0.043256413 0.056704968
Skewness −0.217538801 −0.552715052 −0.181931235 −0.038269241
Kurtosis 0.450711698 1.134471623 0.897494629 0.751726681
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Fig. 6 Time-varying equity weight in the United States portfolio

The discount factor, and the coefficient of constant relative risk aversion are
set, β = 0.95, and γ = 2, respectively.3 With speed of adaption of η = 0.0001
the algorithm is well balanced since it converges reasonably fast and does not
overshoot. The choice of β = 0.95 corresponds to a 5% interest rate and the
degree of risk aversion is in the range that many researchers have found plausi-
ble (see e.g., Friend & Blume, 1975; Samuelson, 1991; Barsky, Juster, Kimball,
& Shapiro, 1997).

To ensure that the convergence solution is statistically significant, we evaluate
the results over 1,000 runs.

In the strategic asset allocation setting we get the following optimal bond
weights, reported in Table 5. In contrast to western countries, in Japan the

3 Note that our results are not unstable regarding variation in those parameters.
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Fig. 7 Time-varying bond weight in the United Kingdom portfolio
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Fig. 8 Time-varying bond weight in the Germany portfolio

Table 5 Optimal bond weights in the strategic asset allocation

United States Germany United Kingdom Japan

ω 0.02 0.43 0.42 0.99

wealth is allocated more to bonds since equity prices have decreased in the
considered sample from 1988 to 2005.

Table 6 shows that expected utility is improved by allowing for market timing
based on the policy function introduced in the previous section.

These results are consistent with the autocorrelation coefficients of the
yield spread in the time series in US, Germany, UK and Japan of 0.05743,



378 Comput Econ (2007) 29:369–381

0%

25%

50%

75%

100%

01
.0

3.
19

88

01
.0

3.
19

89

01
.0

3.
19

90

01
.0

3.
19

91

01
.0

3.
19

92

01
.0

3.
19

93

01
.0

3.
19

94

01
.0

3.
19

95

01
.0

3.
19

96

01
.0

3.
19

97

01
.0

3.
19

98

01
.0

3.
19

99

01
.0

3.
20

00

01
.0

3.
20

01

01
.0

3.
20

02

01
.0

3.
20

03

01
.0

3.
20

04

01
.0

3.
20

05

Fig. 9 Time-varying bond weight in the Japan portfolio

Table 6 Expected utility in the strategic asset allocation and market timing

United States Germany United Kingdom Japan

Strategic asset allocation −0.352624795 −0.428284801 −0.386965587 −0.620097931
Market timing −0.314529236 −0.370922543 −0.386184334 −0.596176757

Table 7 Optimal market timing parameters

United States Germany United Kingdom Japan

θ −0.45 −0.34 −0.38 −0.36
F1 50 5 5 5
F2 100 50 25 25
F2 0 0 0 0

0.085888, −0.01033, and 0.080646. Non-parametric independence tests indicate
non-linear relationships significant on levels of 0.3989, 0.0894, 0.3892, and
0.1453, respectively.4

The optimal market timing parameters are given in Table 7.
Figures 6–9 show the weights of bonds resulting from optimal parameters

within the market timing approach.
Figures 10–13 show the timing rule (1) resulting from optimal parameters

within the market timing approach.

4 See Wöhrmann (2006) for a description of the independence test.
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Fig. 10 Timing rule in the United States portfolio
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Fig. 11 Timing rule in the United Kingdom portfolio
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Fig. 12 Timing rule in the Germany portfolio
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Fig. 13 Timing rule in the Japan portfolio

4 Conclusion

Our analysis shows that on the data we considered a rational investor with
constant relative risk aversion will actively time the market and he will be
able to outperform the market in terms of risk adjusted returns. Thus the data
offers sufficient predictability to contest the fixed mix asset allocation rule. Our
methodology can be applied on any financial market data so that a broader
view of the efficiency of markets could be provided in the future.
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