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Abstract In this paper we deal with reduced basis
techniques applied to Stokes equations. We consider
domains with different shape, parametrized by affine
and non-affine maps with respect to a reference domain.
The proposed method is ideally suited for the repeated
and rapid evaluations required in the context of parame-
ter estimation, design, optimization, and real-time
control. An “empirical”, stable and inexpensive inter-
polation procedure has permitted to replace non-affine
coefficient functions with an expansion which leads to
a computational decomposition between the off-line
(parameter independent) stage for reduced basis gen-
eration and the on-line (parameter dependent) approx-
imation stage based on Galerkin projection, used to
find a new solution for a new set of parameters by a
combination of previously computed stored solutions.
As in the affine case this computational decomposi-
tion leads us to preserve reduced basis properties: rapid
and accurate convergence and computational econo-
mies. The applications and results are based on parame-
trized geometries describing domains with curved walls,
for example a stenosed channel and a bypass configura-
tion. This method is well suited to treat also problems
in fixed domain with non-affine parameters dependence
expressing varying physical coefficients.
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1 Introduction to reduced basis framework
for viscous flows

The optimization, control, design and characterization
of an engineering component or system requires the
prediction of certain “quantities of interest”, which we
denote outputs – for example velocity field, maximum
stresses, maximum temperatures, heat transfer, flow
rates, vorticity, or lifts and drags. These outputs are typ-
ically expressed as functionals of field variables asso-
ciated with parametrized partial differential equations
(P2DE) which describe the system. The parameters,
which we shall denote inputs, serve to identify a par-
ticular “configuration” of the system and may repre-
sent design or decision variables, such as geometry, or
characterization variables, such as physical properties –
for example in inverse design problems. We thus get
an implicit input–output relationship which demands
the solution of the underlying partial differential equa-
tions. The approach used to solve P2DE is based on the
reduced-basis methods, first introduced in the late 1970s
for non-linear structural analysis (see [2,16]), and later
developed more broadly in the 1980s and 1990s (see
[3,5] for general framework, [28] for extension to multi-
parameter problems, [6,20] for application to non-linear
problems). Recent applications of the method on P2DE
are reported in [17,22–24,29,37]. Other works dealing
with reduced basis methods applied to incompressible
viscous flows are [12,19,35,36], including also control
problems as [11]. The reduced-basis methods recognize
that the approximate solution is not an arbitrary mem-
ber of the infinite-dimensional solution space associated
with the partial differential equation but it resides on a
much lower-dimensional subspace induced by the para-
metric dependence. More precisely, the reduced basis
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methods make use of global approximation spaces made
up of the (discrete) solutions of P2DE, corresponding to
a specific choice of the parameters values. Moreover
the computational decomposition between the off-line
– parameters independent – stage for reduced basis
generation and the on-line – parameters dependent –
approximation stage based on Galerkin projection, used
to find the solution for a new set of parameters by a
combination of previously computed and stored solu-
tions, allows computational economies of several orders
of magnitude (see [3] for application of this strategy
within the reduced-basis context) or the general a pri-
ori convergence theory with respect to the dimension of
the reduced basis subspace see, for example, [14,15]. In
this paper we deal with the application of reduced basis
techniques for Stokes equations in curved parametrized
domains. A previous application with affine parameters
dependence is presented in [32]. For details dealing with
pressure treatment, approximation (LBB equivalent inf-
sup condition) and algebraic stability (condition number
reduction and basis orthogonalization) in reduced basis
Stokes problem we refer to [30]. After this introduction,
in Sect. 2 the empirical interpolation procedure pro-
posed in [4] and applied to non-affine transformation
terms, mapping the real domain into a reference one is
briefly described. The original elements of this work are
the use of this interpolation procedure for geometrical
non-affine transformation terms, the coupling with the
affine ones and the introduction of parametrized com-
plex geometries in the reduced basis problems. In Sect. 3
we present the parametrized Stokes equations frame-
work coupling affine and non-affine parameters depen-
dence. In Sect. 4 we introduce Stokes reduced basis
formulation and we recall very briefly approximation
stability issue. Then in Sect. 5 we introduce some numer-
ical results based on two different geometries. Finally,
in Sect. 6 we give a preview on possible developments
for viscous flow and shape optimization [18] problems
applied, for example, to haemodynamics [25] within the
reduced-basis framework.

2 Empirical interpolation for (coefficient) functions
approximation

To start with we recall the empirical interpolation proce-
dure, proposed in [4]. We consider a (coefficient) func-
tion g(x, µ), depending on spatial coordinates and on a
set of parameters µ ∈ D ⊂ R

P (for some P ≥ 1). The
function g(x, µ) represents, for example, a coefficient
for a linear or bilinear form, that shows up when a non-
affine mapping transformation of a physical domain into
a reference one indicated with � is applied. We assume

that g(x, µ) ∈ L∞(�) for all choice of µ. Our goal is to
rewrite this function as an expansion given by products
between parameters dependent coefficients and “shape
functions” depending only on spacial coordinates so that
we may obtain an approximation of g(x, µ) where both
variables are separated. We introduce �g as a suitably
fine parameter sample over D and the related quantities:

µ
g
M = arg max

µ∈�g
inf

z∈Wg
M−1

‖g(·, µ) − z‖L∞(�)

to build the sets Sg
M = {µg

m, 1 ≤ m ≤ M}, 1 ≤ M ≤
Mmax, Sg

M = Sg
M−1 ∪ µ

g
M and the following approxima-

tion spaces:

Wg
M=span{γm=g(., µg

m), 1 ≤ m ≤ M}, 1 ≤ M ≤ Mmax.

The quantity µ
g
1 is chosen “a priori” so that γ1(x) �= 0.

We need to construct nested sets of interpolation points:

TM = {t1, . . . tM}, 1 ≤ M ≤ Mmax

by the following algorithm. Starting from M = 1 we
store

γ1(x) = g
(
x, µg

1

)
, t1 = arg sup

x∈�

|γ1(x)|,

q1(x) = γ1(x)/γ1(t1),

for M ≥ 2 we have to solve a linear system to get σM−1
and then rM(x) in assembling TM: M = 2, . . . , Mmax :

M−1∑

j=1

σM−1
j qj(ti) = γM(ti), 1 ≤ i ≤ M − 1,

rM(x) = γM(x) −
M−1∑

j=1

σM−1
j qj(x),

tM = arg sup
x∈�

|rM(x)|,
qM(x) = rM(x)/rM(tM).

At the end of the algorithm our function is approximated
by gM(x, µ) and split into two parts (decoupled) each of
them depending only on the µ parameter (λm(µ)) or on
x coordinates (qm(x)), i.e.:

gM(x, µ) =
M∑

m=1

λm(µ)qm(x),

where λj are given by the solution of the following linear
system:

M∑

j=1

qj(ti)λj(µ) = g(ti, µ), 1 ≤ i ≤ M.
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We choose Mmax as being the minimum M s.t. the max-
imum interpolation error:

εM(µ) = ‖g(·, µ) − gM(., µ)‖L∞(�) (1)

satisfies εM ≤ εmax (for a prescribed tolerance εmax).
In computation we restrict by checking (1) in the mesh
nodes. The value of µ used is the one of interest we con-
sider each time to calculate our approximated solution.
The problem of locally non-affine dependence of g(x, µ)

on parameter µ is also studied in [33].

3 The parametrized Stokes problem

We consider Stokes equations in a domain �̂ ∈ R
2 whose

shape is depending on a set of geometrical parameters:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ν	ũ + ∇p̂ = f̂ in �̂,
∇ · ũ = 0 in �̂,
ũ = ĝ on �D,(
ν ∂ũ

∂n − p̂n
)

= 0 on �N

(2)

for some given f̂ and ĝ. Here �D and �N realize a par-
tition of the boundary � of �̂. We introduce a lift func-
tion Lĝ such that Lĝ ∈ (H1(�̂))2 and Lĝ|�D = ĝ. We
denote û = ũ − Lĝ, where Lĝ here is the continua-
tion in the domain of the boundary condition, so that
∇û = ∇ũ−∇Lĝ and û|�D = 0. The problem (2) in weak
formulation and after the previous assumptions reads:
find û ∈ Ŷ = H1

�D
(�̂) × H1

�D
(�̂), p̂ ∈ Q̂ = L2(�̂),

�̂ ⊂ R
2:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ν

∫

�̂

∇û · ∇ŵ d�̂ −
∫

�̂

p̂∇ · ŵ d�̂

= ∫

�̂

f̂ · ŵ d�̂−ν

∫

�̂

∇ĝ · ∇ŵ d�̂, ∀ ŵ ∈ Ŷ,

∫

�̂

q̂ ∇ · û d�̂ = −
∫

�̂

q̂ ∇ · ĝ d�̂, ∀ q̂ ∈ Q̂,

(3)

where H1
�D

(�̂) = {v ∈ (H1(�)) : v|�D = 0}. For more
details on Stokes problem see, for example, [7,13]. We
suppose that the domain is made up of R subdomains:
�̂ = ⋃R

r=1 �̂r, so that we rewrite (3) as follows:

{
〈Âû, ŵ〉 + 〈B̂p̂, ŵ〉 = 〈F̂, ŵ〉, ∀ ŵ ∈ Ŷ,
−〈B̂q̂, û〉 = 〈Ĝ0, q̂〉, ∀ q̂ ∈ Q̂,

(4)

where for 1 ≤ i, j ≤ d = 2 and ν̂i,j = νδi,j,

〈Âû, ŵ〉 =
R∑

r=1

∫

�̂r

∂û
∂ x̂i

ν̂ij
∂ŵ
∂ x̂j

d�̂,

〈B̂p̂, ŵ〉 = −
R∑

r=1

∫

�̂r

p̂∇ · ŵd�̂,

〈F̂, ŵ〉 = 〈F̂s, ŵ〉 + 〈F̂0, ŵ〉.
The force field term and the ones due to possible
Dirichlet non-homogeneous boundary conditions are
given, respectively, by

〈F̂s, ŵ〉 =
R∑

r=1

∫

�̂r

f̂ŵ d�̂, 〈F̂0, ŵ〉 = −〈Âĝ, ŵ〉,

〈Ĝ0, q̂〉 = 〈B̂q̂, ĝ〉.
We want to build a system of P2DEs depending on a
set of geometrical parameters (µ) as coefficients. Prob-
lem (4) is traced back to a reference domain by an affine
mapping on some subdomains �̂r

G into �r
G and by a

non-affine mapping on the remaining subdomains �̂r
T

into �r
T . For any x̂ ∈ �̂r

G, r = 1, . . . , RG, its image
x ∈ �r

G is given by

x = Gr(µ)x̂ + gr, 1 ≤ r ≤ RG,

where gr is not depending on spatial coordinates. We
thus write on �r

G

∂

∂ x̂i
= ∂xj

∂ x̂i

∂

∂xj
= Gr

ji(µ)
∂

∂xj
.

For any x̂ ∈ �̂r
T , r = 1, . . . , RT , its image x ∈ �r

T is given
by

x = Tr(µ, x̂) + κr, 1 ≤ r ≤ RT ,

where also κr does not depend on x. We thus write on
�r

T

∂

∂ x̂i
= ∂xj

∂ x̂i

∂

∂xj
= Tr

ji(µ, x)
∂

∂xj
;

we recall that R = RG + RT and � = ∑RG
r=1 �r

G +
∑RT

r=1 �r
T . In the reference domain � we have

〈Au, w〉 =
RG∑

r=1

∫

�r
G

∂u
∂xi

νr
Gij

(µ)
∂w
∂xj

d�

+
RT∑

r=1

∫

�r
T

∂u
∂xi

νr
Tij

(µ, x)
∂w
∂xj

d�, ∀ w ∈ Y,
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〈Bp, w〉 = −
RG∑

r=1

∫

�r
G

pχ r
Gij

(µ)
∂wj

∂xi
d�

−
RT∑

r=1

∫

�r
T

pχ r
Tij

(µ, x)
∂wj

∂xi
d�, ∀ w ∈ Y,

〈F, w〉 = 〈Fs, w〉 + 〈F0, w〉,
where

〈Fs, w〉 =
RG∑

r=1

∫

�r
G

(
f̂rdet(Gr(µ))−1

)
wd�

+
RT∑

r=1

∫

�r
T

(
f̂rdet(Tr(µ, x))−1

)
wd�,

〈F0, w〉 = −〈Ag, w〉; 〈G0, q〉 = 〈Bq, g〉.
The transformation tensors used above for viscous bilin-
ear forms with affine and non-affine mappings are
defined, respectively, as follows:

νr
Gij

(µ) = Gr
ii′(µ)ν̂i′j′G

r
jj′(µ)det(Gr(µ))−1,

1 ≤ i, j ≤ 2, r = 1, . . . , RG; (5)

νr
Tij

(µ, x) = Tr
ii′(µ, x)ν̂i′j′T

r
jj′(µ, x)det(Tr(µ, x))−1,

1 ≤ i, j ≤ 2, r = 1, . . . , RT . (6)

The tensors for pressure and divergence linear forms are
defined, respectively, for affine and non-affine mappings
as

χ r
Gij

(µ) = Gr
ijdet(Gr(µ))−1, (7)

χ r
Tij

(µ, x) = Tr
ij(µ, x)det(Tr(µ, x))−1. (8)

In Sect. 5 we introduce two different parameterization
based on different test cases and we show their explicit
forms. For the non-affine parts we apply the empirical
interpolation procedure of Sect. 2 to expand non-affine
mapping terms and decouple the parameters dependent
contribution from the one depending only on spacial
coordinates. We transform (6) and (8), respectively, in
the following formulations:

νr
Tij

(µ, x) =
Ma

ijr∑

m=1

βr
ijm(µ)γ r

ijm(x), (9)

χ r
Tij

(µ, x) =
Mb

ijr∑

m=1

αr
ijm(µ)ωr

ijm(x), (10)

where m refers to the number of interpolation func-
tions we use for each form (related with max interpola-
tion error), i and j are indexes related to linear/bilinear

form, r refers to subdomains. β and α are weight quan-
tities depending on the parameters µ, while γ and ω are
interpolation functions used as basis.

Furthermore, we may define

�q(i,j,r)(µ) = νr
Gij

(µ), Aq(i,j,r)
G (u, w) =

∫

�r
G

∂u
∂xi

∂w
∂xj

d�,

�s(i,j,r)(µ) = χ r
Gij

(µ), Bs(i,j,r)
G (p, w) = −

∫

�r
G

p
∂wi

∂xj
d�

for 1 ≤ r ≤ RG, 1 ≤ i, j ≤ d = 2 (q and s are condensed
indexes of i, j, r quantities)

� t(i,j,r,m)(µ) = βr
ijm(µ),

At(i,j,r,m)

T (γ (x), u, w) =
∫

�r
T

γ r
ijm(x)

∂u
∂xi

∂w
∂xj

d�,

ϒp(i,j,r,m)(µ) = αr
ijm(µ),

Bp(i,j,r,m)

T (ω(x), p, w) = −
∫

�r
T

ωr
ijm(x)p

∂wi

∂xj
d�

for 1 ≤ r ≤ RT , 1 ≤ i, j ≤ d = 2, 1 ≤ m ≤ max(Ma
ijr, Mb

ijr)

(t and p are condensed indexes of i, j, r, m quantities).
Finally, we may apply an effectively affine decomposi-
tion:

A(µ, u, w) =
Qa

G∑

q=1

�q(µ)Aq
G(u, w)

+
Qa

T∑

t=1

� t(µ)At
T(γ (x), u, w),

B(µ, p, w) =
Qb

G∑

s=1

�s(µ)Bs
G(p, w)

+
Qb

T∑

p=1

ϒp(µ)Bp
T(ω(x), p, w).

In general max(Qa
G) = d × d × d × RG, max(Qb

G) = d ×
d × RG; Qa

T = ∑d
j=1

∑d
i=1

∑RT
r=1 Ma

ijr; Qb
T = ∑d

j=1
∑d

i=1∑RT
r=1 Mb

ijr. The Stokes problem rewritten on the refer-
ence domain � reads: find (u(µ), p(µ)) ∈ Y × Q
{

A(µ; u(µ), w) + B(µ; p(µ), w) = 〈F, w〉, ∀ w ∈ Y

B(µ; q, u(µ)) = 〈G0, q〉, ∀ q ∈ Q,

(11)

where here Y = H1
�D

(�) × H1
�D

(�) and Q = L2(�).
This problem has an inf–sup condition (LBB) [27] to be
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guaranteed for the stability:

β(µ) = inf
q∈Q

sup
w∈Y

B(µ, q, w)

‖w‖Y‖q‖Q
≥ β0 > 0, ∀µ ∈ D.

To prove it we introduce a so-called supremizer operator
Tµ: Q → Y so that

(Tµq, w)Y = B(µ; q, w), ∀ w ∈ Y. (12)

It is readily shown that

Tµq = arg sup
w∈Y

B(µ; q, w)

‖w‖Y
,

then

β2(µ) = inf
q∈Q

(Tµq, Tµq)Y

‖q‖2
Q

.

For the proofs see [30].
The Stokes problem has been solved by Galerkin-

Finite Element method using Taylor–Hood P
2 − P

1 ele-
ments for velocity and pressure, respectively [34]. See
also [8–10].

4 The Stokes reduced basis formulation

In the reduced basis approximation we construct a set
of “µ” parameters samples Sµ

N = {µ1, . . . , µN}, where
µn ∈ Dµ, n = 1, . . . , N. Correspondingly, we define a
set of couples (uh(µn), ph(µn)) which are approximate
solutions of the Stokes problem (11) using Galerkin-
Finite Element method and computed in the same ref-
erence domain. Then the reduced-basis pressure space is
QN = span{ξn(n = 1, . . . , N)}, where ξn = ph(µn), while
the reduced-basis velocity space is YN = span {ζn(n =
1, . . . , N); Tµn

ξn(n = 1, . . . , N)}, where ζn = uh(µn).
Supremizer solutions Tµn

ξn are computed solving the
problem (12) with finite element method and they enrich
velocity reduced basis approximation space.

The problem in reduced basis approximation reads:
find (uN(µ), pN(µ)) ∈ YN × QN s.t.:
{A(µ; uN(µ), w) + B(µ; pN(µ), w) = 〈F, w〉, ∀ w ∈ YN

B(µ; q, uN(µ) = 〈G0, q〉, ∀ q ∈ QN .

(13)

This problem is well posed if it does admit an inf-sup
property. We introduce

βN(µ) = inf
q∈QN

sup
w∈YN

B(µ, q, w)

‖w‖Y‖q‖Q
,

and it is shown in [30] that thanks to the enrichment of
velocity approximation space operated by supremizer

solutions the following condition is fulfilled:

βN(µ) ≥ βh(µ) ≥ β0 > 0, ∀µ ∈ Dµ,

where βh(µ) is the inf-sup constant related to Galerkin-
Finite Element Method. We rewrite for computational
convenience YN using the effectively affine dependence
of B(µ; q, w) on the parameter and the linearity of Tµ:

Tµξ =
Qb

G∑

q=1

�q(µ)Tq
Gξ +

Qb
T∑

p=1

ϒp(µ)Tp
Tξ , (14)

for any ξ and µ, where:

(Tq
Gξ , w)Y = Bq

G(q, w), ∀ w ∈ Y,

(Tp
Tξ , w)Y = Bp

T(ω, q, w), ∀ w ∈ Y,

which allows us to write:

YN = span

⎧
⎪⎨

⎪⎩

Q
b
G∑

k=1

�k(µn)σkn +
Qb

T∑

k′=1

ϒk′
(µn)̃σk′n

(n = 1, . . . , 2N)

⎫
⎪⎬

⎪⎭
,

where Q
b
G = Qb

G + 1, �Q
b
G = 1, µN+j = µj, 1 ≤ j ≤ N.

For n = 1, . . . , N:

σkn = 0, for k = 1, . . . , Qb
G;

σ̃k′n = 0, for k′ = 1, . . . , Qb
T ;

σ
Q

b
n

= ζn = u(µn).

For n = N + 1, . . . , 2N:

(σkn, w)Y = Bk
G(ξn−N , w), ∀ w ∈ Y, for k = 1, . . . , Qb

G;

σ
Q

b
n

= 0;

(̃σkn, w)Y = Bk
T(ω, ξn−N , w), ∀ w ∈ Y, for k = 1, . . . , Qb

T .

For a new “µ” we want a solution given by a combi-
nation of previously computed stored solutions as basis
functions:

uN(µ) =
2N∑

j=1

uNj(µ)

⎛

⎜
⎝

Q
b
G∑

k=1

�k(µj)σkj +
Qb

T∑

k′=1

ϒk′
(µj )̃σk′j

⎞

⎟
⎠ ,

pN(µ) =
N∑

l=1

pNl(µ)ξl,
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whose weights uNj and pNl are given by the following
reduced basis linear system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2N∑

j=1

Aµ

ij uNj(µ) +
N∑

l=1

Bµ

il pNl(µ) = Fi, 1 ≤ i ≤ 2N

2N∑

j=1

Bµ

jl uNj(µ) = Gl, 1 ≤ l ≤ N

(15)

where the sub-matrices A and B are given by

Aµ

ij =
Qa

G∑

k=1

Q
b
G∑

k′=1

Q
b
G∑

k′′=1

�k(µ)�k′
(µi)�k′′

(µj)Ak
G(σk′i, σk′′j)

+
Qa

T∑

k=1

Qb
T∑

k′=1

Qb
T∑

k′′=1

�k(µ)ϒk′
(µj)ϒk′′

(µi)Ak
T(γ , σ̃k′i, σ̃k′′j),

1 ≤ i, j ≤ 2N;

Bµ

il =
Qb

G∑

k=1

Q
b
G∑

k′=1

�k(µ)�k′
(µi)Bk

G(σk′i, ξl)

+
Qb

T∑

k=1

Qb
T∑

k′=1

ϒk(µ)ϒk′
(µi)Bk

T(ω, σ̃k′i, ξl),

1 ≤ i ≤ 2N, 1 ≤ l ≤ N;

and:

Fi =
Q

b
G∑

k′=1

�k′
(µi)〈F, σk′i〉 +

Qb
T∑

k′=1

ϒk′
(µi)〈F, σ̃k′i〉,

1 ≤ i ≤ 2N,

Gl = 〈G0, ξl〉, 1 ≤ l ≤ N.

System (15) can therefore be written as

(
A B

BT 0

)
·
(

uN
pN

)
=
(

F
G

)
. (16)

Remark 1 Note that more options dealing with the
supremizer calculation and basis assembling procedures
are available. At this step we have adopted the sec-
ond alternative option introduced in [30], where all the
velocity reduced basis functions are µ (on-line) inde-
pendent (they depend only on samples µj used to store
basis). This option grants us in practice the possibil-
ity to apply basis orthogonalization (Gram–Schmidt)
to achieve algebraic stability (controlling conditioning
numbers of reduced basis matrices) satisfying at the
same time also approximation stability and inf-sup
condition. This option is also competitive concerning

computational costs dealing with 3N ×3N reduced basis

matrices (16) instead of (Q
b + 1)N × (Q

b + 1)N matrix

(usually (Q
b + 1) � 3, Q

b = Q
b
G + Qb

T) introduced as
the first option to build reduced basis velocity space in
[30] without the use of (14) before applying orthogonal-
ization.

Remark 2 We have the following on-line computational
costs to build reduced basis matrices, given also the
supremizer components in the velocity space: O(Qa4N2)

for sub-matrix A, O((Qb)2N2) for B, O(N) for F and
O(9N3) for the inversion of the full reduced basis matrix
(16), where Qa = Qa

T + Qa
G, Qb = Qb

G + Qb
T . Note

that the quantities Qa
G and Qb

G are depending only on
the number of subdomains with affine mappings (RG),
while quantities Qa

T and Qb
T are depending also on the

number of “shape functions” (γ (x) and ω(x)) related
with interpolation error (εmax) and the number of sub-
domains with non-affine mappings (RT).

4.1 An adaptive procedure to build reduced basis
efficiently

An adaptive procedure based on H1 max relative error
for velocity EH1 has been developed to optimize basis
assembling, optionally we can also consider and com-
bine L2 maximum relative error for pressure EL2 . We
underline that, given the higher powers of N that appear
in our cost computing estimation, it is crucial (both for
on-line and off-line effort) to control N more tightly. We
first construct, off-line, an approximation that, over most
of the domain, exhibits an error ε (EH1 or EL2 or both)
less than ε

prior
d : we begin with a first sample µ1(SN′=1 =

{µ1}); we next evaluate error εN′=1(µ) over a large test
set of parameter samples in Dµ, denoted with �prior; we
then choose for µ2 (and hence SN′=2 = {µ1, µ2}) the
maximizer of εN′=1(µ) over �prior. We repeat this pro-
cess until the maximum of εN′=Nprior(µ) over �prior is
lower than ε

prior
d . Then, on-line, given a new value of the

parameter, µ, and an error tolerance ε
post
d (µ), we essen-

tially repeat this adaptive process – but now our sample
points are drawn from SNprior , and the test sample is
a singleton – µ. Typically we choose ε

prior
d � ε

post
d (µ)

since our test is not exhaustive; and therefore, typically,
Npost(µ) � Nprior. With the adaptive process we get
higher accuracy at lower N: modest reductions in N
can translate into measurable performance improve-
ments. This procedure is very important not only to
get a computationally cheaper and faster procedure but
also to avoid ill-conditioning in matrix assembling pro-
cedures. Usually in multi-parameter problems samples
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Fig. 1 Geometrical scheme for the stenosis test problem (µ =
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are properly chosen in their range of variation to cover
all the parameters’ space (see for example Fig. 7).

5 Numerical results

Numerical tests were carried out to develop Stokes
reduced basis with affine/non-affine mappings. Taylor–
Hood finite elements have been used to store approx-
imation basis functions: P

2 − P
1 elements for velocity

(with supremizer) and pressure, respectively [27].
At this step the reduced basis solutions have been

compared directly with approximate finite element solu-
tions by computing the H1 relative error for velocity and
the L2 relative error for pressure.

5.1 First test: curved upper wall

In this first test we apply empirical interpolation to
describe a channel with a curved and parametrized upper
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wall. This simple geometry (see Fig. 1) can be consid-
ered for example in the study of blood flow through an
artery occluded by a stenosis, i.e. featuring a reduced
section (see [25]). A similar geometry can be used also
in periodical series to set up and study an oxigenator for
haemodynamic applications. In our application we have
made the following assumptions:

– To solve the parametrized Stokes problem in the
domain outlined in Fig. 1 we have imposed zero
Dirichlet conditions on the boundary �D, Neumann
non-homogeneous conditions on the inflow �Ni (τn =
1, τt = 0, where τ = (ν ∂u

∂n − pn), with n and t normal
and tangential directions, respectively) and Neumann
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homogeneous conditions on outflow �No (τn = 0,
τt = 0).

– We consider one parameter µ (range: [−0.8, 0.8])
to describe the upper arterial wall in the physical
domain, through x̂2 = f (µ, x̂1) = 1 + µ · sin(2π x̂1)

(we have a single domain subject to an unique non-
affine mapping). Referring to Sect. 3 we have �G = ∅
and �T = �, so RT = 1. See Fig. 2–4
The coordinate transformation is T : �̂ → � such as
x = T(x̂) and

(x1, x2) = T(x̂1, x̂2) =
(

x̂1,
1

f (µ, x̂1)
x̂2

)
(17)

in �. Then,

dx̂1dx̂2 = f (µ, x1)dx1dx2

and the following relations hold:

⎧
⎨

⎩

∂û
∂ x̂2

= 1
f (µ,x1)

∂u
∂x2

,
∂û
∂ x̂1

= ∂u
∂x1

− x2
fx1 (µ,x1)

f (µ,x1)
∂u
∂x2

(
with fx1 := df

dx1

)
,

(18)

∇ · û = ∂u1

∂x1
− x2

fx1(µ, x1)

f (µ, x1)

∂u1

∂x2
+ 1

f (µ, x1)

∂u2

∂x2
. (19)

Using the compact notation of Sect. 3 [(6) and (8)]
and transformation (17) we get the following tensor
for diffusion and divergence forms, respectively:

νT=ν

⎡

⎣
f (µ, x1) −f ′

x1
(µ, x1)x2

−f ′
x1

(µ, x1)x2
1

f (µ,x1)
+ f ′2

x1
(µ,x1)

f (µ,x1)
x2

2

⎤

⎦; (20)

χT =
[

f (µ, x1) −f ′
x1

(µ, x1)x2

0 1

]
; (21)

where ν = 0.04 sm−2 is the viscosity. Referring to
notation of Sect. 2 we get five different coefficients
functions gj

M(µ, x) to expand.
– We apply empirical interpolation [(9) and (10)] to the

tensors [(20) and (21)] and we impose a maximum
interpolation error εmax, thus considering different
Mmax “shape functions” for every gj

M(µ, x). Each

gj
M(x, µ) refers to a different coefficient of a bilin-

ear form of our Stokes problem (j = 5 in this test
case). Owing to empirical interpolation we expand
each tensor component to apply the effectively affine
decomposition:

Table 1 Mean H1 velocity relative errors for εmax = 10−1 and
εmax = 10−2, imposed on all gj

M(x, µ) (considering several differ-
ent µ test values)

N εmax = 0.1 εmax = 0.01

1 2.2549e+000 4.2557e−001
2 2.1926e+000 1.3614e−001
3 2.1361e+000 2.1768e−002
4 2.1267e+000 1.5939e−002
5 2.1226e+000 4.9955e−003
6 2.1172e+000 3.5905e−004
7 2.1131e+000 2.4352e−004
8 2.1080e+000 1.8644e−004
9 1.7357e+000 1.8016e−004
10 1.7043e+000 1.7929e−004
11 8.8174e−001 1.7868e−004
12 3.8732e−001 1.7743e−004

Table 2 Mean H1 velocity relative errors for different εmax =
10−3 and εmax = 10−4, imposed on all gj

M(x, µ) (considering sev-
eral different µ test values)

N εmax = 10−3 εmax = 10−4

1 4.2656e−001 4.2653e−001
2 1.3708e−001 1.3709e−001
3 2.1880e−002 2.1886e−002
4 1.5963e−002 1.5964e−002
5 4.9358e−003 4.9388e−003
6 1.9177e−004 1.9183e−004
7 6.7685e−005 6.7584e−005
8 8.2645e−006 8.1374e−006
9 1.9044e−006 1.7880e−006
10 9.0032e−007 7.7022e−007
11 1.5746e−007 2.6138e−008
12 1.5181e−007 1.8676e−008

Table 3 Mean H1 velocity relative errors for different εmax =
10−5, εmax = 10−6 and comparison with true gj(µ, x) functions
(considering several different µ test values)

N εmax = 10−5 εmax = 10−6 exact gj

1 4.2654e−001 4.2654e−001 4.2654e−001
2 1.3709e−001 1.3709e−001 1.3709e−001
3 2.1885e−002 2.1884e−002 2.1884e−002
4 1.5963e−002 1.5963e−002 1.5963e−002
5 4.9380e−003 4.9380e−003 4.9380e−003
6 1.9180e−004 1.9181e−004 1.9181e−004
7 6.7581e−005 6.7582e−005 6.7582e−005
8 8.1348e−006 8.1356e−006 8.1356e−006
9 1.7812e−006 1.7813e−006 1.7813e−006
10 7.6544e−007 7.6542e−007 7.6542e−007
11 2.2070e−008 2.1981e−008 2.1980e−008
12 1.4503e−008 1.4421e−008 1.4421e−008

νT = ν

⎡

⎢⎢
⎢⎢
⎢
⎣

Ma
11∑

m=1

β11m(µ)γ11m(x)

Ma
12∑

m=1

β12m(µ)γ12m(x)

Ma
21∑

m=1

β21m(µ)γ21m(x)

Ma
22∑

m=1

β22m(µ)γ22m(x)

⎤

⎥⎥
⎥⎥
⎥
⎦

.
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Fig. 5 Geometrical scheme
for the bypass test problem
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Note that this tensor is symmetric. Moreover,

χT =

⎡

⎢⎢
⎣

Mb
11∑

m=1

α11m(µ)ω11m(x)

Mb
12∑

m=1

α12m(µ)ω12m(x)

0 1

⎤

⎥⎥
⎦ .

The index r referring to every different subdomain
is omitted.

– At this step, having defined all the abstract formu-
lations of the previous sections, we have applied the
reduced basis method and assembled the approxi-
mation spaces as described in Sect. 4.

– Tables 1, 2 and 3 show numerical results (mean H1

relative errors on velocity, testing a large number of
configurations for very different µ) at different N
and different max interpolation error εmax. At the
end of the test we have carried out a comparison
between empirical interpolation (applied to gj

M(x, µ)

terms) and “true” functions (gj(x, µ)). We can see
that for εmax ≤ 10−4 we have a good convergence
(typical of reduced basis method, see [14]) and results
are not dominated or influenced by interpolation
error. When the interpolation error is dominating
the reduced basis error is characterized by a con-
stant “plateau” and is not diminished by increasing
N (see for example the case in which εmax ≥ 10−2

of Table 1). It may happen that increasing N fur-
ther the plateau is diminishing very slowly, but the
method would not be efficient and the dimension of
N would be too big. Another aspect is related with
the number of function Mmax used to interpolate
gj(x, µ): having different gj

M(x, µ) function we have
reported results as function of the maximum inter-
polation error allowed. In any case for the most com-
plex function to be interpolated and for the lowest
interpolation error fixed the value of Mmax is always
less or equal to the value of N considered and so
O(10). The scope of this paper is to demonstrate
reduced basis method properties in presence of non-
affine parametric dependence at the minimum Mmax
possible, to contain also the computational costs for
interpolation procedure. Concerning computational
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Fig. 6 Haemodynamic flow (velocity absolute value) in bypass
subject to curved wall and graft angle (υ = 0.41 and θ = π/3)

costs, once we have set all the off-line calculation
(performed only once to build reduced basis approx-
imation spaces and done on the reference domain),
the on-line costs are very low. For example, consider-
ing Table 3, the computational cost for each on-line
calculation (with a different value of the parameter
µ and a basis built with N = 12) is 12% if com-
pared with the cpu time used to compute one finite
element solution. The accuracy reached is of order
10−8. These computational costs agree with the ones
reported in [30].

5.2 Second test: bypass with curved incoming branch

We introduce a vector of parameters µ = {t, D, L, S,
H, θ , υ} ∈ Dµ ⊂ R

P, Dµ is given by: [tmin, tmax] × [Dmin,
Dmax] × [Lmin, Lmax] × [Smin, Smax] × [Hmin, Hmax] ×
[θmin, θmax] × [υmin, υmax]. For a schematic view of the
problem see Fig. 5. In this problem we have affine and
non-affine parameter dependence in different subdo-
mains. The aim of the test is to combine the study of
affine and the non-affine terms in the same problem by
varying different geometrical parameters and then to
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Table 4 H1 velocity relative errors for εmax = 10−5: (a) only υ

(non-affine) parameter varying

N H1 mean (a) H1 max (a)

1 4.8058e−02 1.3605e−01
2 1.5528e−03 2.3202e−03
3 7.1431e−06 1.0378e−05
4 1.6258e−07 8.2429e−07
5 6.1010e−10 1.4106e−09
6 7.0100e−12 3.2120e−11

test reduced basis convergence. Referring to notation in
Sect. 3 we have RG = 3 (number of subdomains with
affine dependence, i.e. �2, �3, �4), RT = 1 (number of
subdomains with non-affine dependence, i.e. �1). For
more information on this application dealing only with
affine parameters dependence we suggest to see [32].
The coordinate transformation in �1 with non-affine
parameter dependence is given by
{

x1 = 1
H x̂1

x2 = 1
t (x̂2 − (υH2x1(x1 − 1) + Hx1 tan(θ)))

(22)

The role of parameters t and H is to stretch subdomain
�1 (as L, S, D stretch the remaining subdomains), the
parameter υ introduces a curvature in the walls of the
incoming branch of the bypass and θ is responsible for
a rigid rotation varying the graft angle. The tensors for
bilinear forms are given by:

ν1
T = ν

[ t
H −(tan θ + 2υHx1 − υH)

−(tan θ + 2υHx1 − υH)
(1+(tan θ+2υHx1−υH)2)

t H

]
;

(23)

ν2
G = ν

[ S
D 0
0 D

S

]
; ν3

G = ν
[ t

D 0
0 D

t

]
; ν4

G = ν
[ L

D 0
0 D

L

]
.

(24)

The tensors for pressure and divergence linear forms are
given by:

χ1
T =

[ t −H(tan θ + 2υHx1 − υH)

0 H

]
; (25)

χ2
G =

[S 0
0 D

]
; χ3

G =
[ t 0

0 D

]
; χ4

G =
[L 0

0 D

]
. (26)

We have applied empirical interpolation expansion to
the components of tensor ν1

T and χ1
T and built reduced

basis approximation.
We have carried out four different tests based on the

same geometry but with different parameters:

Table 5 L2 pressure relative errors for εmax = 10−5: (a) only υ

(non-affine) parameter varying

N L2 mean (a) L2 max (a)

1 1.3110e−03 3.3078e−03
2 4.8437e−05 7.2138e−05
3 2.0062e−07 3.0323e−07
4 2.0674e−09 1.0903e−08
5 8.9100e−12 2.1080e−11
6 1.1200e−13 5.3320e−13

Table 6 H1 velocity relative errors for εmax = 10−5: (b) υ, L, S
(affine and non-affine) parameters (in different subdomains) vary-
ing

N H1 mean (b) H1 max (b)

1 6.63847e−02 1.01112e−01
2 3.94004e−02 9.82942e−02
3 3.46897e−03 4.68399e−03
4 3.16378e−03 3.65756e−03
5 8.58429e−04 2.31849e−03
6 1.29567e−04 2.72338e−04
7 5.51890e−05 4.23899e−05
8 3.18091e−05 3.83384e−05
9 1.23528e−05 2.26590e−05
10 7.29802e−06 9.86723e−06
11 1.51548e−06 2.30932e−06
12 2.34584e−07 5.31751e−07
13 1.21290e−07 2.40584e−07
14 7.51433e−08 1.18963e−07
15 3.23837e−08 9.11491e−08

Table 7 L2 pressure relative errors for εmax = 10−5: (b) υ, L, S
(affine and non-affine) parameters (in different subdomains) vary-
ing

N L2 mean (b) L2 max (b)

1 4.97657e−02 7.64428e−02
2 1.44390e−03 2.40459e−03
3 2.18353e−04 2.23485e−03
4 1.17247e−04 1.54309e−04
5 2.26938e−05 5.85041e−05
6 2.98422e−06 7.29587e−06
7 9.68781e−07 2.04184e−06
8 4.43647e−07 5.17774e−07
9 1.55099e−07 2.51658e−07
10 7.90834e−08 1.29403e−07
11 1.86052e−08 2.98586e−08
13 2.30951e−09 6.43834e−09
14 1.5816e−09 2.43859e−09
15 6.0645e−10 1.32561e−09

(a) we consider only υ parameter to create a curvature
in the wall, we deal only with non-affine mapping
in one subdomain where we apply empirical inter-
polation;
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Table 8 H1 velocity relative errors for εmax = 10−5: (c) υ, L, S, t
parameters varying

N H1 mean (c) H1 max (c)

1 5.63465e−01 1.10659e+00
2 1.55181e−01 4.26078e−01
3 2.33882e−02 6.28938e−02
4 6.96864e−03 1.35431e−02
5 2.41075e−03 7.54956e−03
6 7.40550e−04 1.92401e−03
7 4.42849e−04 1.72777e−03
8 2.24509e−04 7.84976e−04
9 6.57733e−05 3.60971e−04
10 1.22527e−05 8.02970e−05
11 3.46346e−06 2.09716e−05
12 1.01101e−06 7.81558e−06
13 1.91343e−07 1.04166e−06
14 2.38061e−08 2.38061e−07

Table 9 L2 pressure relative errors for εmax = 10−5: (c) υ, L, S, t
parameters varying

N L2 mean (c) L2 max (c)

1 3.95384e−01 7.10666e−01
2 6.90123e−03 1.32884e−02
3 4.13599e−03 8.82405e−03
4 9.17813e−04 2.12774e−03
5 2.17614e−04 7.09398e−04
6 1.02036e−05 4.78661e−04
7 4.40703e−05 1.89533e−04
8 2.55188e−05 1.05753e−04
9 4.03863e−06 2.22016e−05
10 5.14632e−07 3.87984e−06
11 3.35225e−07 2.72714e−06
12 3.06439e−07 2.68244e−06
13 2.11621e−08 1.12451e−07
14 3.04801e−09 3.04801e−08

(b) then, we consider υ and also parameters L and
S, each of them is operating into different subdo-
mains and we combine affine and non-affine trans-
formations;

(c) in the third test we consider parameters υ, L, S and
t so that we have more parameters in the same
subdomain subject to non-affine parameter depen-
dence;

(d) in the last term we introduce also graft angle θ

so that we have rigid rotation, stretching (due to
t or/and H) and curvature (due to υ) in the same
subdomain. Figure 6 shows an example of haemo-
dynamic flow in our curved geometry.

In Tables 4, 5, 6, 7, 8, 9, 10 and 11 we report numerical
results (H1 errors on velocity and L2 errors on pres-
sure for each test case) considering about 50 configu-
rations at different N for different test cases (a)–(d).
The maximum interpolation error considered has been

Table 10 H1 velocity relative errors for εmax = 10−5: (d)
υ, t, L, S, θ parameters varying

N H1 mean (d) H1 max (d)

1 4.87915e−01 3.90400e+00
2 3.02592e−01 1.38505e+00
3 2.43772e−01 5.11847e−01
4 3.28557e−02 6.75237e−02
5 1.82035e−02 4.82212e−02
6 9.24689e−03 3.51396e−02
7 7.74796e−03 2.29014e−02
8 2.55247e−03 1.26095e−02
9 1.33895e−03 1.25823e−02
10 5.34446e−04 1.97937e−03
11 3.21415e−04 1.39168e−03
12 2.07283e−04 9.36665e−04
13 1.23885e−04 9.30468e−04
14 8.34764e−05 3.40849e−04
15 3.74193e−05 2.60742e−04
16 1.41356e−05 8.64251e−05
17 8.12437e−06 4.87599e−05
18 5.44325e−06 3.61402e−05

Table 11 L2 pressure relative errors for εmax = 10−5: (d)
υ, t, L, S, θ parameters varying

N L2 mean (d) L2 max (d)

1 1.45944e−01 2.40938e−01
2 5.12837e−02 1.41755e−01
3 2.21637e−02 7.52749e−02
4 2.32357e−03 6.47304e−03
5 2.22706e−03 4.97473e−03
6 6.09347e−04 1.65196e−03
7 5.77145e−04 1.41329e−03
8 2.39322e−04 1.27309e−03
9 1.22951e−04 6.23509e−04
10 7.20850e−05 5.11114e−04
11 2.59278e−05 9.45923e−05
12 2.04926e−05 8.20901e−05
13 8.85109e−06 6.95491e−05
14 6.46217e−06 5.33563e−05
15 2.02932e−06 2.76802e−05
16 8.98324e−07 1.00723e−05
17 2.92535e−07 1.17173e−06
18 1.99739e−07 1.00675e−06

εmax = 10−5 not to have interpolation error dominating
our approximation and to avoid a constant “plateau”
in error plots (thus affecting the efficiency of reduced
basis method). Figure 7 shows as example the off-line set
of parameters used in test case (d) (the most complex
one) used to store the basis functions by the adaptively
optimized assembling procedure we used, introduced in
Sect. 4.1 and in [21,30]. Also in this second test case on-
line computational costs for the maximum value of N
shown in the errors tables are between 12 and 15% with
respect to a finite element calculation.
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Fig. 7 Parameters
distribution during off-line
optimized basis assembling
procedures [test case (d)]
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6 Conclusions

In this paper the aim is to expand and apply efficient,
accurate and real-time reduced basis techniques on bio-
mechanics problems using realistic geometries such as
biomedical devices optimization problem (for example
a bypass). See [26] for a shape design problem com-
bined with optimal control and [31] for a “multilevel”
optimization approach. The goal is to combine reduced
basis techniques with shape design and optimal control
related problem such as [1], where shape optimization
in reference domain and non-affine mapping have been
considered. Results have shown that it is possible to con-
sider more complex geometries in optimization prob-
lems using reduced basis techniques and introducing
empirical interpolation for non-affine mapping terms
preserving reduced basis methods properties, first of all
rapid and accurate convergence.
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