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Abstract. The paper presents a convergence proof for a broad class
of sampling algorithms for multistage stochastic linear programs in
which the uncertain parameters occur only in the constraint right-
hand sides. This class includes SDDP, AND, ReSa, and CUPPS. We
show that, under some independence assumptions on the sampling
procedure, the algorithms converge with probability 1.
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1. Introduction

Multistage stochastic linear programming models have many appli-
cations, but they are notoriously difficult to solve. The most success-
ful approaches in practical applications appear to be the sampling-based
methods. The first of these (SDDP) was developed by Pereira and Pinto
(Ref. 1) in the context of hydroelectricity planning.4 This algorithm has
been applied successfully (see Ref. 2) to compute solutions to long-term
hydrothermal reservoir planning models. To the authors’ knowledge, no
convergence result for this method has appeared in the literature. Since the
Pereira and Pinto paper, a number of related algorithms have emerged [see
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e.g. CUPPS (Ref. 2), AND (Ref. 3), and ReSa (Ref. 4)] based on similar
ideas.5

In this paper, we derive a general convergence result for algorithms of
this type. A convergence proof specifically aimed at the CUPPS algorithm
has appeared already in Ref. 2. The argument that we employ in our proof
resembles closely that used in Ref. 2, in that we use the same induction
on stages. However, our result is more general, being applicable to SDDP,
AND, CUPPS, and ReSa. The main contribution of our work is to iden-
tify the crucial conditions that guarantee convergence of sampling-based
multistage stochastic Benders decomposition methods. These assumptions
are made precise in the sequel, but essentially they amount to the follow-
ing requirements:

(i) cuts should be computed eventually in every stage;
(ii) samples that are used to create scenarios in the forward pass are

also used in cut generation.

In Section 2, we give a general formulation of the multistage sto-
chastic programming problem. Section 3 describes the general algorith-
mic approach. The convergence proof is then derived in Section 4 using
a series of lemmas. In Section 5, we show how the sampling-based algo-
rithms of Refs. 1 and 3–5 satisfy the conditions of the theorem.

2. Multistage Decomposition

Multistage stochastic linear programs with recourse are well known
in the stochastic programming community. The general form of these pro-
grams is described in Ref. 6. In this paper, we restrict our attention to
multistage stochastic programs with the following properties:

(A1) Random quantities appear only on the right-hand side of the
linear constraints in each stage.

(A2) The set �t of random outcomes in each stage t is discrete and
finite,

�t ={wti |i =1, . . . , qt <∞} with probabilities pti >0,∀i.

(A3) Random quantities in different stages are independent.
(A4) The feasible region of the linear program in each stage is non-

empty and bounded.

5CUPPS stands for convergent cutting plane and particle sampling method. AND stands
for abridged nested decomposition method. ReSa stands for reduced sampling method.
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Under these assumptions, the multistage stochastic linear program
can be written in the following form:

Solve the problem defined by

(LP1) Q1 =minx1 c�
1 x1 +Q2(x1),

s.t. A1x1 =b1,

x1 ≥0,

where for all t =2, . . . , T ,

Qt (xt−1)=
qt∑

i=1

ptiQt (xt−1,ωti),

Qt (xt−1,ωti) is defined by the problem

(LPt) Qt(xt−1,ωt )=minxt c
�
t xt +Qt+1(xt ),

s.t. Atxt =ωt −Bt−1xt−1,

xt ≥0,

and we set QT +1 ≡0.
Problem [LPt] depends on the choice of wt and xt−1, and so we could

write [LPt (xt−1,ωt )], though we choose to suppress this dependence in
the notation. By Assumption (A3), [LPt] is independent of ωt−1,ωt−2, . . . .
Observe that Qt(xt−1,ωt ) is a polyhedral convex function and so is con-
tinuous in xt−1 at all points of its domain.

In the algorithms that are considered in this paper, the functions
Qt(xt−1) in each stage are approximated by the maximum of a collec-
tion of linear functions, each of which is called a cut. This gives rise to a
sequence of approximate problems [APtk] for each stage. These are defined
for iteration k as follows.

For t =1, solve the linear program

(AP1k) Ck
1 =minx1,θ2 c�

1 x1 + θ2,

s.t. A1x1 =b1,

θ2 + (β
j

2 )�x1 ≥α2,j , j =0, . . . , k −1,

x1 ≥0.
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For all t =2, . . . , T −1, solve

(APtk) Ck
t (xt−1,ωt )=minxt ,θt+1 c�

t xt + θt+1,

s.t. Atxt =ωt −Bt−1xt−1,

θt+1+(β
j

t+1)
�xt ≥αt+1,j , j=0, . . . , k−1,

xt ≥0.

For all stages, the first cut (j =0) is set as the trivial cut θt+1 ≥−∞.
We shall use the notation (πt , ρt ) to denote dual variables of problem
[APtk], where πt corresponds to the equality constraints and ρt corre-
sponds to the cut constraints. We use also the notation Ck

t (xt−1) to denote
�

qt

i=1ptiC
k
t (xt−1,ωt ).

Observe that, under Assumption (A4),

{xt |Atxt =ωt −Bt−1xt−1, xt ≥0}

is nonempty and bounded so [APtk] always has a nonempty feasible set
(with θt+1 chosen large enough) and hence an optimal solution. Thus,
the dual feasible region of [APtk] is nonempty. Moreover, by Assumption
(A1), the dual feasible sets are independent of the outcomes of the ran-
dom quantities, which allows us to construct a valid cut at each stage
based on an assembled collection of dual solutions from different samples.

In the last stage T, the algorithms solve the actual problem [LPT];
therefore,

Ck
T (xT −1,ωT )=QT (xT −1,ωT ), ∀k.

Since cuts are added from one iteration to the next and since no cuts
are taken out, the objective values of the approximated problems form a
monotone sequence; i.e.,

Ck+1
t (xt−1,ωt )≥Ck

t (xt−1,ωt ), ∀t,∀k.

3. Class of Sampling-Based Decomposition Algorithms

In this section, we define a general class of sampling algorithms for
solving [LP1]. We describe first the cut generation of the algorithms.

Definition 3.1. Sampled Cut. A sampled cut at xk
t−1 with sample

�k
t ⊆�t is computed as follows.
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Step 1. Solve [APtk] for all ωti ∈ �k
t and let (πi

t (x
k
t−1), ρ

i
t (x

k
t−1)) be

the optimal dual variables attained at an extreme point. Add
them to the set Dk

t .

Step 2. For all ωti �∈�k
t , set

(
πi

t

(
xk
t−1

)
, ρi

t

(
xk
t−1

))

=arg max
{
π�

t (ωti−Bt−1x
k
t−1+ρ�

t (αk
t+1)|(πt , ρt )∈Dk

t

}
,

or if t =T , set

πi
T (xk

T −1)=arg max
{
π�

T (ωT i −BT −1x
k
T −1)|πT ∈Dk

T

}
.

Step 3. The cut has the formula

θt ≥αt,k − (βk
t )

�
xt−1,

where

βk
t =

qt∑

i=1

ptiB
�
t−1π

i
t

(
xk
t−1

)
, 2≤ t ≤T ,

αt,k =
qt∑

i=1

pti

[
ω�

t i π
i
t (x

k
t−1)+ (αk−1

t+1 )�ρi
t (x

k
t−1)

]
, 2≤ t ≤T −1,

αT ,k =
qt∑

i=1

pT iω
�
T iπ

i
T

(
xk
T −1

)
.

Observe that αt,k is a scalar, whereas αk−1
t+1 denotes a (k − 1)-dimen-

sional vector. This means that the dimensions of αk−1
t+1 and ρi

t (x
k
t−1) are

increasing as the iteration count k increases. Note also that a sampled cut
is well defined for �k

t =∅, as long as Dk
t �= ∅. If �k

t =Dk
t =∅, then we set

αt,k =−∞, βk
t =0.

In our convergence proof, we shall make use of the fact that πi
t (x

k
t−1)

lies in a bounded set. In fact, πi
t (x

k
t−1) can take only a finite number of

values in the course of the algorithm. This is a consequence of the fact
that πt and ρt are chosen to be extreme-point solutions of the dual of
[APtk]. We state this result formally as the following lemma.

Lemma 3.1. For all t , there is some mt such that Dk
t has cardinality

at most mt .
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Proof. We use induction on t . First, if (π, ρ)∈Dk
T , then ρ =0 and π

is an extreme point of {π |A�
T π ≤ cT } of which there is only a finite num-

ber. So, |Dk
T |≤mT , for some mT .

Now, suppose that |Dk
t |≤mt . Then, the vector

β
j
t =

qt∑

i=1

ptiB
�
t−1π

i
t (x

j

t−1)

takes at most (mt )
qt values. This means that Ek

t−1, the set of extreme
points of

{
(πt−1, ρt−1)|A�

t−1πt−1 +
k−1∑

j=1

β
j
t ρ

j

t−1 ≤ ct−1,

k−1∑

j=1

ρ
j

t−1 =1
}
,

has cardinality no more than mt−1, say, independent of k. But Ek
t−1 ⊇Dk

t−1,

which establishes the result.

Now, a general class of sampling-based decomposition algorithms is
defined, for which we will show convergence to the optimal solution. The
algorithms work in the following way.

Multistage Sampled Benders Decomposition (MSBD).

Step 0. Initialization. Set the iteration counter to k =1.
Step 1. Candidate Solutions. In each iteration k, a complete sample

path {ωk
t }t=2,... ,T of the scenario tree is constructed indepen-

dently of previous iterations. For this path, the approximate
problems are solved up to stage T − 1, to yield the primal
solutions (xk

t , θk
t+1)of problem [APtk].

Step 2. Cut Generation. For each stage t = 2, . . . , T , sampled cuts
are generated at xk

t−1 with sample �k
t .

Step 3. Set k =k +1 and go to Step 1.

Note that, at each stage t , two samples are used in each iteration.
Unless �k

t ={ωk
t }, these samples may be different. Observe also that they

need not be independent; in fact, one might choose �k
t = {ωk

t }. However,
in order to yield a convergence result for MSBD, we will require the fol-
lowing properties of the sampling procedure.

Definition 3.2. Cut-Sampling Property. MSBD is said to fulfill the
cut-sampling property (CSP) if, for each stage t , {k|�k

t =∅} is finite.
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Definition 3.3. Sample-Intersection Property. MSBD is said to fulfill
the sample-intersection property (SIP) if, for each stage t and every out-
come ωti ∈�t,Pr[(ωti ∈�k

t )∩ (ωk
t =ωti)]>0 for every k with �k

t �=∅.
The cut-sampling property entails that eventually the algorithm will

compute (πi
t (x

k
t−1), ρ

i
t (x

k
t−1)) for at least one outcome ωti at every stage.

The sample-intersection property guarantees that the outcomes that are
used to compute cuts will (with positive probability) include some infor-
mation from the outcome in the sample path that is constructed in
Step 1. SIP holds for example if ωk

t and �k
t are sampled indepen-

dently or alternatively if �k
t is chosen so as to include always ωk

t as in
CUPPS.

Lemma 3.2. Suppose that MSBD satisfies SIP. Then, it fulfills CSP if
and only if, for any stage t and every infinite subsequence {xk

t−1}k∈J gen-
erated by the algorithm, for each i = 1, . . . , qt the subsequence {xk

t−1}k∈Ji

with Ji = J ∩ {k|ωti ∈ �k
t and ωk

t = ωti} is infinite with probability one
(wp1).

Proof. For some arbitrary stage t , let {xk
t−1}k∈J be an infinite subse-

quence generated by the algorithm and suppose that {k|�k
t =∅} is finite by

CSP. Then, the intersection J ∩K, where K denotes {k|�k
t �=∅}, is infinite.

Furthermore, by SIP, for every k ∈J ∩K we have

Pr[(ωti ∈�k
t )∩ (ωk

t =ωti)]>0, ∀i.

Due to the Borel-Cantelli lemma (see e.g. Ref. 7), the set Ji ⊆J ∩K with
ωti ∈�k

t and ωk
t =ωti for all k ∈Ji is infinite wp1.

Suppose now that CSP does not hold. Then, for some stage t , the
set

K ′ = {k|�k
t =∅}

is infinite. Then, for any subsequence J ′ of K ′,

�k
t =∅, ∀k ∈J ′. �

Lemma 3.3. The sampled cuts are valid cuts. Furthermore, the fol-
lowing relations hold:

Qt (x
k
t−1)≥ θk

t , ∀k ∈N ,∀t =2, . . . , T ,

Qt−1(xt−2,ωt−1)≥Ck
t−1(xt−2,ωt−1) ∀xt−2,ωt−1,∀k ∈N ,∀t =2, . . . , T .
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Proof. The proof of this lemma can be obtained equivalently to
Lemmas 4.1 and 4.3 in Ref. 3.

Lemma 3.4. Suppose that MSBD satisfies SIP and CSP. Then, for
any convergent sequence {xk

t−1}k∈J generated by MSBD, there exists wp1
a sequence {	k}k∈J and qt disjoint subsequences of J indexed by ri ∈ Ji

with

(i) θk
i ≥∑qt

i=1 ptiC
ri
t (x

ri
t−1,ωti)+	k,

(ii) Ji ⊆J ∩{k|ωti ∈�k
t ,ω

k
t =ωti},

(iii) ri < k for all but a finite number of k and ri → ∞ as
k →∞,

(iv) limk→∞ |	k|=0.

Proof. Consider stage t ∈ {2, . . . , T − 1}; stage T can be treated in a
similar way.

Let {xk
t−1}k∈J be a convergent sequence and consider iteration k ∈ J .

All cuts generated up to this iteration must be satisfied; so, for all r <

k,

θk
t ≥αt,r − (βr

t )
�xk

t−1

=
qt∑

i=1

pti

[
(πi

t (x
r
t−1))

�(ωti −Bt−1x
k
t−1)+ (αr

t+1)
�ρi

t (x
r
t−1)

]

=
qt∑

i=1

pti

[
(πi

t (x
r
t−1))

�(ωti −Bt−1x
r
t−1)+ (αr

t+1)
�ρi

t (x
r
t−1)

]
+	k

1,

with

	k
1 =

qt∑

i=1

pt,i(π
i
t (x

r
t−1))

�Bt−1(x
r
t−1 −xk

t−1).

From, Lemma 3.2, for each i =1, . . . , qt the set J has an infinite sub-
set Ji wp1, such that ωti ∈�

ri
t and ω

ri
t =ωti for all ri ∈Ji . Choose ri as the

largest member of the set Ji which is smaller than k. Since the sets Ji are
infinite, ri →∞ as k →∞.

Since the dual optimal solution of iteration ri, (π
i
t (x

ri
t−1), ρ

i
t (x

ri
t−1)), is

dual feasible in iteration r =max{ri |i =1, . . . , qt }, we have

θk
t ≥

qt∑

i=1

pti

[
(πi

t (x
ri
t−1))

�(ωti −Bt−1x
r
t−1)+ (αr

t+1)
�ρi

t (x
ri
t−1)

]
+	k

1. (1)
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Here, we adopt the convention that ρi
t (x

ri
t−1) has zero components added

to give it dimension r. This means that

(αr
t+1)

�ρi
t (x

ri
t−1)= (α

ri
t+1)

�ρi
t (x

ri
t−1),

so the right-hand side of (1) becomes

qt∑

i=1

pti

[
(πi

t (x
ri
t−1))

�(ωti −Bt−1x
ri
t−1)+ (α

ri
t+1)

�ρi
t (x

ri
t−1)

]
+	k

1 +	k
2

=
qt∑

i=1

ptiC
ri
t (x

ri
t−1,ωti)+	k

1 +	k
2,

where

	k
2 =

qt∑

i=1

pt,i(π
i
t (x

ri
t−1))

�Bt−1(x
ri
t−1 −xr

t−1).

Now,

|	k
1|≤

qt∑

i=1

pt,i ||πi
t (x

r
t−1)|| ||Bt−1(x

r
t−1 −xk

t−1||;

since the dual extreme points are bounded (because Dk
t is a bounded set)

and since the sequence {xk
t−1}k∈J is convergent, we have, with r → ∞ as

k →∞,

lim
k→∞

|	k
1|=0.

Similarly,

lim
k→∞

|	k
2|=0.

This completes the proof.

4. Convergence of the Algorithm

In this section, we prove the convergence of algorithms that satisfy
SIP and CSP by induction on the stage t . Following Ref. 3, we prove first
two lemmas that establish this induction.

Lemma 4.1. Suppose that MSBD satisfies CSP and SIP. For any
given infinite set K ⊆N , assume that:
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(i) ωk
T −1 =ω0

T −1 for some given ω0
T −1for any k ∈K;

(ii) the sequence {xk
T −2}k∈K converges to some given vector x0

T −2.

Then there exists an infinite set J ⊆K such that:

(a) the sequence {xk
T −1}k∈J converges to some vector x0

T −1;

(b) the sequence {θk
T }k∈J converges to QT (x0

T −1)wp1;
(c) the sequence {Ck

T −1(x
k
T −2,ω

0
T −1)}k∈J converges to QT −1(x

0
T −2,

ω0
T −1)wp1.

Proof. (a) By assumption, the primal feasible sets are bounded. But
every infinite bounded sequence has a convergent subsequence. Denote
x0
T −1 as the corresponding limit and J as the corresponding index

set.
(b) From Lemma 3.3 and Lemma 3.4, we have wp1 a sequence

{	k}k∈J and subsequences of J indexed by ri with

QT (xk
T −1)≥ θk

T

≥
qT∑

i=1

pT iC
ri
T (x

ri
T −1,ωT i)+	k

=QT (xk
T −1)+

qT∑

i=1

pT i

[
C

ri
T (x

ri
T −1,ωT i)−QT (xk

T −1,ωT i)
]
+	k

=QT (xk
T −1)+

qT∑

i=1

pT i

[
QT (x

ri
T −1,ωT i)−QT (xk

T −1,ωT i)
]
+	k,

which yields

|θk
T −QT (xk

T −1)|≤ |	k
1|,

with

	k
1 =

qT∑

i=1

pT i

[
QT (x

ri
T −1,ωT i)−QT (xk

T −1,ωTi
)
]
+	k.

Now,

|	k
1|≤

qT∑

i=1

pTi
|QT (x

ri
T −1,ωTi

)−QT (xk
T −1,ωT i)|+ |	k|→0, as k →∞,
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since the function QT (xT −1,ωT ) is continuous in xT −1, {xk
T −1}k∈J is a con-

vergent sequence, and ri →∞ as k→∞. This leads to the following inter-
mediate result:

|θk
T −QT (xk

T −1)|≤ |	k
1|, with lim

k→∞
|	k

1|=0.

Furthermore, due to continuity of QT (xT −1) in xT −1, we have

lim
k→∞

|QT (xk
T −1)−QT (x0

T −1)|=0.

Therefore,

|θk
T −QT (x0

T −1)|≤ |θk
T −QT (xk

T −1)|+ |QT (xk
T −1)−QT (x0

T −1)|
≤ |	k

1|+ |QT (xk
T −1)−QT (x0

T −1)|
→0, as k →∞.

Hence, the sequence {θk
T }k∈J converges to QT (x0

T −1) with probability 1,
which shows part (b).

(c) Considering Lemma 3.3 and Lemma 3.4 again, we have

QT −1(x
k
T −2,ω

0
T −1)≥Ck

T −1(x
k
T −2,ω

0
T −1)

= c�
T −1x

k
T −1 + θk

T

≥ c�
T −1x

k
T −1 +QT (xk

T −1)+	k
1

≥QT −1(x
k
T −2,ω

0
T −1)+	k

1,

where the last inequality comes from the fact that xk
T −1 is also feasible

for problem [LP(T − 1)] with xT −2 = xk
T −2 and ωT −1 =ω0

T −1. This implies
that

|Ck
T −1(x

k
T −2,ω

0
T −1)−QT −1(x

k
T −2,ω

0
T −1)|≤ |	k

1|.
Since the function QT −1(xT −2,ωT −1) is continuous in xT −2 and since the
sequence {xk

T −2}k∈K is convergent in K (hence, also in J ),

lim
k→∞

|QT −1(x
k
T −2,ω

0
T −1)−QT −1(x

0
T −2,ω

0
T −1)|=0.

Therefore,

|Ck
T −1(x

k
T −2,ω

0
T −1)−QT −1(x

0
T −2,ω

0
T −1)|

≤ |Ck
T −1(x

k
T −2,ω

0
T −1)−QT −1(x

k
T −2,ω

0
T −1)|

+|QT −1(x
k
T −2,ω

0
T −1)−QT −1(x

0
T −2,ω

0
T −1)|

≤ |	k
1|+ |QT −1(x

k
T −2,ω

0
T −1)−QT −1(x

0
T −2,ω

0
T −1)|→0, as k →∞.
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This means that the sequence {Ck
T −1(x

k
T −2,ω

0
T −1)}k∈J converges to QT −1

(x0
T −2,ω

0
T −1) wp1, which shows part (c).

Lemma 4.2. Suppose that MSBD satisfies CSP and SIP. For any
given t,1≤ t ≤T −1, and any given set K ⊆N , suppose that:

(i) ωk
t =ω0

t for some given ω0
t for any k ∈K;

(ii) the sequence {xk
t−1}k∈K converges to some given vector x0

t−1.

Then, there exists an infinite set J ⊆K such that:

(a) the sequence {xk
t }k∈J converges to some vector x0

t ;
(b) the sequence {θk

t+1}k∈J converges to Qt+1(x
0
t ) wp1;

(c) the sequence {Ck
t (xk

t−1,ω
0
t )}k∈J converges to Qt(x

0
t−1,ω

0
t ) wp1.

Proof. The lemma is proved by induction on t . When t = T − 1,
this lemma is exactly Lemma 4.1 and hence holds. Suppose that the
lemma holds for t ; then, we need to prove it for t − 1. Therefore, assume
now that, for a given set K ⊆ N ,ωk

t−1 = ω0
t−1,∀k ∈ K, and {xk

t−2}k∈K →
x0
t−2.

(a) In iteration k ∈K, the algorithm solves problem [AP(t −1)k], with
xt−2 =xk

t−2 and ωt−1 =ω0
t−1, and gets the solution (xk

t−1, θ
k
t ). Since the fea-

sible set is bounded, the sequence {xk
t−1}k∈K has a convergent subsequence.

Denote the corresponding limit as x0
t−1 and the corresponding index set as

L.
Now, the set J is constructed in a way that the induction hypothesis

can be applied. As shown in Lemma 3.2 for each i = 1, . . . , qt , the set L

has wp1 an infinite subsequence Li such that, ωk
t = ωti and ωti ∈ �k

t , for
all k ∈Li .

For each i = 1, . . . , qt , by the induction assumption that the lemma
holds for stage t and by the facts that ωk

t = ωti for all k ∈ Li and
that the sequence {xk

t−1}k∈L [and hence the sequence {xk
t−1}k∈Li

] converges
to some vector x0

t−1, there must exist an infinite subset Ji of Li , for
each i = 1, . . . , qt , such that the sequence {Ck

t (xk
t−1,ωti)}k∈Ji

converges to
Qt(x

0
t−1,ωti) wp1. Therefore, with k ∈Ji ,

lim
k→∞

|Ck
t (xk

t−1,ωti)−Qt(x
0
t−1,ωti)|=0. (2)

Define

J =
⋃qt

i=1
Ji.

Clearly, J ⊆L; hence, the sequence {xk
t−1}k∈J converges to x0

t−1.
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(b) From Lemma 3.3 and Lemma 3.4, we have that, for k ∈J ,

Qt (x
k
t−1)≥ θk

t ≥
qt∑

i=1

pitC
ri
t (x

ri
t−1,ωti)+	k, with lim

k→∞
|	k|=0,

where the ri are elements of

Ji =J
⋂

{k|ωti ∈�k
t ,ω

k
t =ωti}.

This is equivalent to

Qt (x
k
t−1)≥ θk

t ≥Qt (x
k
t−1)+

qt∑

i=1

pit [C
ri
t (x

ri
t−1,ωti)−Qt(x

k
t−1,ωti)]+	k,

whence

|θk
t −Qt (x

k
t−1)|≤ |	k

1|,

with

	k
1 =

qt∑

i=1

pit [C
ri
t (x

ri
t−1,ωti)−Qt(x

k
t−1,ωti)]+	k.

Now,

|	k
1|≤

qt∑

i=1

pit |Cri
t (x

ri
t−1,ωti)−Qt(x

k
t−1,ωti)|+ |	k|

≤
qt∑

i=1

pit

{
|Cri

t (x
ri
t−1,ωti)−Qt(x

0
t−1,ωti)|

+|Qt(x
0
t−1,ωti)−Qt(x

k
t−1,ωti)|

}
+|	k|.

If k →∞, then ri →∞, and from (2) we have that, for ri ∈Ji ,

lim
k→∞

|Cri
t (x

ri
t−1,ωti)−Qt(x

0
t−1,ωti)|=0, wp1.

Furthermore, due to continuity of Qt(xt−1,ωt ) in xt−1 and due to conver-
gence of the sequence {xk

t−1}k∈J →x0
t−1,

lim
k→∞

|Qt(x
0
t−1,ωti)−Qt(x

k
t−1,ωti)|=0.
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Therefore, limk→∞ |	k
1|=0, wp1, and so

|θk
t −Qt (x

k
t−1)|→0, as k →∞, wp1.

Continuity of Qt gives

lim
k→∞

|Qt (x
k
t−1)−Qt (x

0
t−1)|=0;

therefore, wp1,

|θk
t −Qt (x

0
t−1)|→0, as k →∞.

Hence, the sequence {θk
t }k∈J converges to Qt (x

0
t−1) wp1, which shows part

(b).
(c) Using the same argument as in the proof of Lemma 4.1, we

obtain

|Ck
t−1(x

k
t−2,ω

0
t−1)−Qt−1(x

k
t−2,ω

0
t−1)|≤ |	k

1|,

and by continuity,

lim
k→∞

|Qt−1(x
k
t−2,ω

0
t−1)−Qt−1(x

0
t−2,ω

0
t−1)|=0.

This yields, wp1,

|Ck
t−1(x

k
t−2,ω

0
t−1)−Qt−1(x

0
t−2,ω

0
t−1)|→0, as k →∞,

which means that the sequence {Ck
t−1(x

k
t−2,ω

0
t−1)}k∈J converges to Qt−1

(x0
t−2,ω

0
t−1) with probability 1, which shows part (c).

Theorem 4.1. Suppose that MSBD satisfies CSP and SIP. The
sequence of the solution values {Ck

1 }k∈N of problem [AP1k] converges to
Q1 wp1.

Proof. In the approximated first-stage problem [AP1k], the con-
straint A1x1 =b1 can be formulated as

A1x1 =ω1 −B0x0,

with ω1 ≡b1, x0 ≡0, and any given B0. The value Ck
1 can be seen as a triv-

ial function Ck
1 (x0,ω1). The result then follows from Lemma 4.2 equiva-

lently to Ref. 3, Theorem 5.1.
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Theorem 4.2. Suppose that MSBD satisfies CSP and SIP. Then, any
accumulation point of the sequence {xk

1 }k∈N is an optimal solution of
problem [LP1] wp1.

Proof. See Ref. 3, Theorem 5.2.

5. Convergent Sampling Algorithms

The class of algorithms described in the previous sections is quite
general and includes a wide range of approaches. One subclass (which
includes CUPPS) follows a forward pass for both getting candidate solu-
tions and generating cuts for the next iteration. An alternative (such as
SDDP) generates cuts in a backward pass. This means that, while generat-
ing the cuts for stage t in iteration k, the cuts that were generated for stage
t + 1 in iteration k are already taken into account, which may lead to an
improvement in the speed of convergence. Under CSP and SIP, the con-
vergence result above remains the same for the backward-pass algorithms,
if one observes that the sampled cuts should be modified so that one cut
constraint additional to [APtk] is considered when obtaining the dual vari-
ables (πi

t (x
k
t−1), ρ

i
t (x

k
t−1)).

The analysis of the previous section considers algorithms which use
only one path of the tree per iteration. The class of algorithms can be
extended to the multipath case of nk sample paths, whereby in iteration k

there are nk paths sampled. If, say, the last of the paths is sampled inde-
pendently from stage to stage, then this can be thought of as a single iter-
ation of the algorithm with (possibly) extra cuts added on the backward
pass.

In fact, the following general multipath scheme is possible: in itera-
tion k, a candidate solution for the first stage is determined and a cut
for stage 1 is generated. In the second stage, nk

2 scenarios are sampled.
Then, of the nk

2 scenarios, sk
2 are chosen and candidate solutions xk

2 are
determined. Of these sk

2 candidate solutions, ck
2 are chosen at which the

algorithm will generate cuts for stage 2. For each of the sk
2 candidate solu-

tions, nk
3 samples are considered at stage 3. Then, of the sk

2 · nk
3 samples,

sk
3 samples are chosen and of these ck

3 cuts are generated for the stage 3,
etc.

Therefore, nk
t is the number of samples in stage t for each sample sk

t−1
of stage t −1; sk

t is the number of samples of which to proceed to the next
stage; and ck

t is the number of cuts generated for stage t . The following
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relations hold:

sk
t−1n

k
t ≥ sk

t ≥ ck
t ≥0, ∀t ≥2,∀k,

nk
t ≥1, ∀t,∀k,

sk
t =1, ∀k.

Observe that not all the possible choices of these parameters satisfy
the condition CSP. For example, if for some t ≥2,

ck
t =0, ∀k,

then there is no guarantee of convergence.
We conclude this section by showing how MSBD algorithm from

the literature fit into this framework. The results are summarized in
Table 1.

Stochastic Dual Dynamic Programming (SDDP). This algorithm was
introduced in Ref. 1. In SDDP, n scenario paths are sampled in each iter-
ation. In a forward pass, for each stage in each scenario, a candidate solu-
tion is calculated by solving [APtk]. Then, in a backward pass, in each
stage t the entire single-period subtree (�k

t = �t ) is solved and a cut is
generated for stage t − 1. Thus, SDDP is a multipath scheme with nk =
n,∀k.

Convergent Cutting-Plane and Partial Sampling (CUPPS). This algo-
rithm is given in Ref. 3. In each iteration, it samples only one scenario,
(�k

t = {ωk
t }). Both calculating candidate solutions and generating cuts are

performed in the forward pass.
Abridged Nested Decomposition (AND). This algorithm is described

in Ref. 4. As in SDDP, �k
t = �t , and, like SDDP, it involves sampling

in the forward pass, but the main difference is that AND does not pro-
ceed forward from all solutions of the realizations sampled in each stage.
Instead, in each stage, nk

t successors are sampled as in the general mul-
tipath scheme. Of these nodes, sk

t ≤ nk
t nodes are sampled from which to

proceed and ck
t = sk

t ,∀k,∀t .

Table 1. Examples of convergent algorithms.

Algorithm Forward/Backward Sampled cut Multipath scheme

SDDP B �k
t =�t nk =n ∀k

CUPPS F �k
t ={ωk

t } –
AND B �k

t =�t sk
t = ck

t ∀k ∀t

ReSa B �k
t =�t nk

t = sk
t ∀k ∀t
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Reduced Sampling Method (ReSa). This algorithm was developed
in Ref. 5. The basic structure is the same as in SDDP. First, some
scenarios of the tree are sampled. The difference from SDDP lies in
the backward pass. In ReSa, in each stage the subtrees are solved
to generate a cut for only some randomly chosen scenarios. There-
fore, fewer subproblems have to be solved than for SDDP, but one
gets also fewer cuts per iteration. ReSa is a general multipath scheme,
with nk

t = sk
t ≥ ck

t . The cuts are generated by solving entire single-
period subtrees (�k

t = �t ). If ck
t > 0, for all t and all k sufficiently

large, then ReSa satisfies the cut-sampling property and so converges
wp1.

6. Conclusions

This paper presents a general convergence result for multistage sto-
chastic Benders decomposition codes that use sampling. Although we
make no assertions in this paper about the rate of convergence of these
algorithms, this theory provides some guidance for researchers who select
parameters to tune these algorithms. To ensure convergence wp1 in ReSa,
for example, one should ensure in accordance with the cut-sampling prop-
erty that the algorithm eventually computes at least one cut for each stage
in the backward pass.

A key restriction on the algorithms that we study is the sample-
intersection property, which guarantees that some proportion of random
outcomes obtained by sampling moving forward in time are chosen for
cut calculation. It is not hard to see why such a condition might be
needed. Certainly, one can conceive of (perverse) algorithms that com-
pute only cuts when the xk

t values lie in certain subsets of the feasible
region [AP1k]. Since the optimal solution might have xt lying outside this
subset, there is no reason to suppose that the algorithm would converge
wp1 even if the subsets in which cuts are computed are visited infinitely
often.

The convergence proof above uses a bound on the optimal dual vari-
ables for [APtk], that comes from their construction as extreme-point solu-
tions. A possible extension is to allow the calculation of cuts for ωti ∈
�k

t to be inexact, in the sense that the dual variables (πk
t , ρk

t ) are com-
puted to be within εk

t of optimally (see Ref. 8). Under the assumption of a
bounded dual feasible region for each problem [APtk], it is easy to extend
our results to show convergence under CSP and SIP wp1 if εk

t → 0 for
each t .
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