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Sphere?
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Abstract

We consider the variational problem of finding the longest closed curves of
given minimal thickness on the unit sphere. After establishing the existence of
solutions for any given thickness between 0 and 1, we explicitly construct for each
given thickness Θn := sin π/(2n), n ∈ N, exactly ϕ(n) solutions, where ϕ is
Euler’s totient function from number theory. Then we prove that these solutions
are unique, and also provide a complete characterisation of sphere filling curves
on the unit sphere; that is of those curves whose spherical tubular neighbourhood
completely covers the surface area of the unit sphere exactly once. All of these
results carry over to open curves as well, as indicated in the last section.

1. Introduction

What is the best way to bend a bulky mattress such that most of it fits into the
trunk of a car? Why is it useful to carefully roll up a long electric cable onto a
cable reel in order to stow it away? This and similar questions belong to the sort
of packing problems where one tries to place a maximal portion of a huge or long
object into a certain volume or onto a given surface. Nature displays such optimi-
sation tasks: it is fascinating how and in what remarkably high density extremely
long strands of viral DNA are packed into the tiny volume of the phage head of a
bacteriophage [16].

For the purpose of modelling complicated packing processes, it is often helpful
to analyse such problems in an idealised mathematical form. For instance, one can
ask: What are the longest ropes on a given surface? Specifying this target surface
to be the unit sphere and realizing that ropes can be described as curves with a
positive thickness, we arrive at the following packing problem:
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Problem (P). Find the longest closed curves of prescribed minimal thickness which
fit onto the two-sphere S

2 := {x ∈ R
3 : |x | = 1}.

For a precise mathematical formulation of this maximisation problem, we recall
first that the length functional L defined on rectifiable continuous closed curves
γ : S

1 → R
3 is given by

L (γ ) :=
∫

S
1
|γ ′(t)| dt,

where S
1 denotes the unit circle S

1 ∼= R/2πZ. We follow the ideas of Gonzalez
and Maddocks [12] in defining the spatial thickness �[γ ] of a continuous closed
curve γ : S

1 → R
3 of length L > 0 with arc-length parametrisation Γ : [0, L] →

R
3 as

�[γ ] := inf
s �=t �=τ �=s

s,t,τ∈[0,L)
R(Γ (s), Γ (t), Γ (τ)). (1.1)

Here, R(x, y, z) denotes the radius of the smallest1 circle through the points
x, y, z ∈ R

3
. It was shown in [13, Lemma 2] and [8, Satz 2.14] that the arc-length

parametrisation of a closed curve with positive thickness possesses a Lipschitz con-
tinuous tangent vector. This allows us to restate the variational problem (P) more
precisely:

Problem (P). Given a constant Θ ∈ (0, 1], find a closed curve γΘ in the class

CΘ := {γ ∈ C1,1(S
1
,R

3
) : |γ | = 1 and |γ ′| > 0 on S

1
,�[γ ] � Θ}

such that L (γΘ) = supCΘ L .

Existence problems of this kind have been solved recently and in more gener-
ality in [9]. For the convenience of the reader, however, we will present a proof of
the following existence result, where we will need an extra effort to show that the
minimal prescribed thickness is, in fact, attained by any solution.

Theorem 1. (Existence) For each prescribed minimal spatial thicknessΘ ∈ (0, 1],
Problem (P) possesses (at least) one solution γΘ ∈ CΘ. In addition, every such
solution has minimal thickness, that is, �[γΘ ] = Θ.

Related variational problems in the context of nonlinearly elastic curves and rods
with the same notion of thickness, in particular the existence of ideal knots, were
treated in [13]; for ideal knots and links see also [3,11]. Ideal knots are length min-
imising representatives of a given knot class subject to a prescribed minimal spatial
thickness. Unfortunately, it has turned out to be quite challenging to obtain more
information about the actual shape of the solutions, for example of ideal knots;

1 If x, y, and z are not collinear, R(x, y, z) is simply the radius of the circumcircle of x, y,
and z. If these points are collinear but distinct, we set R(x, y, z) to be infinite. If they are
collinear but not distinct, then R(x, y, z) equals half of the diameter of the point set {x, y, z}.
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Fig. 1. The spatial tubular neighbourhood BΘ(γ ) (grey region) illuminated by a pointlike
lightsource at the origin casts a shadow on the surface of the sphere, thus generating the

spherical tubular neighbourhood Tϑ (γ ) ⊂ S
2

see [2,7,21]. Cantarella et al. [3, Section 3] were able to provide an explicit
one-parameter family of ideal links, and in cooperation with fu and wrinkle [2,
Section 9] analysed in detail the shape of the tight clasp, a solution of a special
related boundary value problem. However, even for the simplest nontrivial knot,
the trefoil, the ideal shape is analytically not determined. For numerical realizations
see for example [4,5,18,19].

The focus of the present paper is to construct explicit and unique solutions of
(P) taking advantage of the symmetry of the target manifold S

2. For the anal-
ysis on the sphere it is helpful to consider, in addition to spatial thickness, a
spherical thickness. To illuminate this concept, imagine a pointlike light source
being placed in the origin. For any closed curve γ ⊂ S

2 the spherical tubular
neighbourhood

Tϑ(γ ) := {ξ ∈ S
2 : dist

S
2(ξ, γ (S

1
)) < ϑ}

may be seen on S
2 as the shadow of the spatial tubular neighbourhood

BΘ(γ ) ⊂ R
3 for Θ = sin ϑ ; see Fig. 1. In that sense the spatial thick-

ness �[γ ] = Θ corresponds to a spherical thickness ϑ = arcsinΘ (see
Lemma 3 in Section 2). From now on, we will consistently use the capi-
tal letter Θ for spatial thickness values and small ϑ for spherical thickness
on S

2.
It has already been mentioned in [17] and [9, Remark 2.16] that for given

minimal thickness Θ = 1, any great circle on S
2 provides the unique length

maximising closed curve (up to congruence). Any closed curve γ in S
2 different

from a great circle has thickness �[γ ] less than 1. The great circle hap-
pens to be the first (and “simplest”) member of an infinite family of solu-
tions corresponding to the decreasing sequence of prescribed values of spatial
thickness

Θn := sin ϑn for ϑn := π

2n
, n ∈ N.
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Fig. 2. Construction of β3,1 starting from β3,0

The building blocks of these explicit solutions will be semicircles of the n lati-
tudes

Ci : S
1 → S

2
, i = 0, . . . , n − 1.

Here, C0 is a circle of spherical radius ϑn around the north pole, and all latitudinal
circles Ci have spherical distance

dist
S

2(Ci ,Ci−1) = 2ϑn for i = 1, . . . , n − 1,

such that the last latitude Cn−1 is a circle of spherical radius ϑn around the south
pole; see Fig. 2.

We may view the union C0 ∪ · · · ∪ Cn−1 as one (discontinuous) curve βn,0 :
S

1 → S
2, where the n connected components Ci of βn,0 possess mutually dis-

joint tubular neighbourhoods of uniform radius Θn in R
3 so that βn,0 has spatial

thickness �[βn,0] = Θn . In order to construct from βn,0 continuous closed curves
βn,k consisting of only one component for suitable k ∈ {1, . . . , n − 1}, we cut the
two-sphere S

2 into two hemispheres along a plane through both poles such that
βn,0 is cut orthogonally into a collection of 2n semicircles.

Now, we keep one hemisphere fixed while turning the other by an angle of 2kϑn

(see Fig. 2; for an animation see [10]) such that the n semicircles of the original
curve βn,0 on the fixed hemisphere, together with the now turned semicircles, form
a closed continuous curve

βn,k : S
1 → S

2
. (1.2)
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Fig. 3. a, b Solutions that maximise length for prescribed thickness. a β4,1 has spatial
thicknessΘ4 = sin π

2·4 with one hemisphere turned by 1 ·Θ4. b β12,5 has spatial thickness
Θ12 = sin π

2·12 with one hemisphere turned by 5 · Θ12. c βΘ is a good competitor for a
spatial thicknessΘ ∈ (Θ2,Θ1). None of the curves is depicted with its full spatial thickness

That this is indeed possible under the additional algebraic condition2 that the great-
est common divisor gcd(k, n) of k and n equals 1, and that this construction leads
to distinct solutions of (P) is the content of

Theorem 2. (Explicit solutions) For each n ∈ N and k ∈ {1, . . . , n − 1} with
gcd(k, n) = 1 the curves βn,k are (up to rigid motions and re-parametrisations)
mutually distinct members of the class CΘ . They provide explicit piecewise circular
solutions of the variational problem (P) for prescribed minimal spatial thickness
Θ := Θn ∈ (0, 1]. In addition, �[βn,k] = Θn .For n = 1 the equator β1,0 provides
the only solution with spatial thickness Θ1 = 1.

Interestingly, the solution curves βn,k , some of which are depicted in Fig. 3a, b,
resemble to a striking extent certain so-called Turing patterns which arise in chemis-
try and biology as characteristic concentration distributions of different substances
as a result of a diffusion-driven instability; see for example [23].

For our variational problem (P) we can prove that the explicit solutions for given
thickness Θ := Θn, n ∈ N, are, in fact, unique.

Theorem 3. (Uniqueness forΘ = Θn) Any closed curve γΘ ∈ CΘ which is a solu-
tion of (P) for given minimal spatial thicknessΘ = Θn,n ∈ N, coincides (up to con-
gruence and re-parametrisations)with one of the curves βn,k for k ∈ {1, . . . , n−1}
with gcd(k, n) = 1. For n = 1, that isΘ1 = 1, the equator β1,0 is the unique solu-
tion. In particular, for Θ = Θn we have exactly ϕ(n) solutions for Problem (P)
where ϕ denotes Euler’s totient function known in number theory (see Table 1).

This uniqueness theorem is a consequence of the following stronger result which
employs the two-dimensional volume V (Tϑ(γ )) := H 2(Tϑ(γ )) of the tubular

2 Such a construction was used for a bead puzzle called the orb or orb it in the 1980s;
see in particular the drawing on [25, p. 2]. The involved algebra was presumably known to
its inventors.



308 Henryk Gerlach & Heiko von der Mosel

Table 1. The set An := {k ∈ {1, . . . , n} : gcd(k, n) = 1} for n ∈ N, consists of the values
k, such that βn,k is a closed curve. By the uniqueness result, Theorem 3, �An = ϕ(n) is the
number of distinct solutions of Problem (P) for the thickness values Θn = sin π

2n

n �An n �An n �An n �An n �An n �An

1 1 8 4 15 8 22 10 29 28 36 12
2 1 9 6 16 8 23 22 30 8 37 36
3 2 10 4 17 16 24 8 31 30 38 18
4 2 11 10 18 6 25 20 32 16 39 24
5 4 12 4 19 18 26 12 33 20 40 16
6 2 13 12 20 8 27 18 34 16 41 40
7 6 14 6 21 12 28 12 35 24 42 12

Moreover, ϕ(n) counts all sphere filling curves according to Theorem 4

neighbourhood Tϑ(γ ) on S
2
, to identify sphere filling curves3 as precisely those

explicit solutions βn,k for Θ = Θn :

Theorem 4. (Sphere filling thick curves) If V (Tϑ(γ )) = 4π for ϑ ∈ (0, π/2] and
some closed curve γ ∈ CΘ with Θ = sin ϑ ∈ (0, 1], then there is some n ∈ N and
k ∈ {1, . . . , n − 1} with gcd(k, n) = 1, or n = 1 and k = 0, such that (i) ϑ = ϑn,
(ii) �[γ ] = Θn, where Θn = sin ϑn, and (iii) γ = βn,k .

Notice that this theorem also provides insights about intermediate valuesΘ ∈ (0, 1]
of prescribed minimal thickness for arbitrary competitors γ ∈ CΘ :

Either Θ is one of the Θn , in which case length-maximizing curves are one of
the βn,k , and also fill the sphere, or, for other values ofΘ , there are no sphere-filling
curves in CΘ .

Our additional analysis of the relation between length, volume, and thickness
reveals, among other things, an oscillatory behaviour of the volume V (Θ) :=
V (Tϑ(γΘ)) as a function of the given minimal thickness Θ . In Fig. 4 the black
zig-zag curve serves as a lower bound for V (Θ), which is attained precisely at each
Θn, n ∈ N; see Lemma 8 for the details.

Results similar to those described above are available, as well, for the problem
corresponding to (P) on open curves γ : [0, 1] → S

2. For the details we ask the
reader to consult Section 5; we refer in particular to Fig. 5 for a first impression of
the shapes of length maximising open curves on the two-sphere.

Let us finally outline the structure of the paper. Section 2 contains the details of
the construction of the explicit solutions βn,k, where we use algebraic arguments
to determine when these curves form closed single loops (Lemma 1). This section
ends with the proof of Theorem 2. In Section 3 we first show how to approxi-
mate continuous loops with positive thickness by smooth loops with positive thick-
ness, which may also be of independent interest (Lemma 4 and Corollary 1). We
use this lemma twice – first to establish a variant of the well-known theorem of

3 Even the equator β1,0 together with its spherical tubular neighbourhood Tπ/2(β
1,0) is

sphere filling, although the spatial tubular neighbourhood BΘ(β
1,0) covers only the consid-

erably smaller equatorial collar Tπ/3(β
1,0).



Longest Ropes on the Unit Sphere 309

Fig. 4. A lower bound for V (Θ) as established by Lemma 8. The low peaks are located at
(Θn+1, 4πΘn+1/Θn). The dotted hull-curve h(t) :=(

sin
(
π

2t+2

)
, 4π sin

(
π

2t+2

)/
sin

(
π
2t

))
,

t ∈ [1,∞) reveals that the spikes are not on a straight line. The values of V (Θ2) and V (Θ3)
happen to be equal. For Θ ∈ (Θ2,Θ1) the volume of V (Tϑ (βΘ)) indicates (dashed line)
that the curves βΘ serve as good competitors for Problem (P), see also Fig. 8d

Hotelling and Weyl [15,24] relating the volume of a non-self-intersecting tubu-
lar neighbourhood to the length of its centreline, for continuous curves with positive
thickness (see Proposition 1). This is of great help in proving optimality in the vari-
ational problem (P). The second application of the approximation result, Lemma 4,
appears in the proof that the length maximiser indeed has the prescribed minimal
thickness (Theorem 5). As an additional valuable tool for that purpose we construct,
for any given minimal spatial thickness Θ ∈ (Θ2,Θ1), distinguished competing
closed curves βΘ with a construction similar to the one described above. In fact,
it turns out that the two unique explicit solutions βn,k for n = 1, 2 appear as the
limit members of this one-parameter family of competitors, that is, β1,1 = βΘ1

and β2,1 = βΘ2 ; see Lemma 6 and consult Fig. 4 for the corresponding tubu-
lar volumes V (Tϑ(βΘ)). At this point we are unable to prove that the curves βΘ
provide explicit solutions to (P) for the intermediate values Θ ∈ (Θ2,Θ1) of pre-
scribed minimal thickness, but we view them as good candidates. Moreover, we
analyse how thickness, length, and tube volume of solutions depend on the pre-
scribed minimal thickness justifying, for example, Fig. 4; see Lemmas 7 and 8.
The uniqueness result, Theorem 4, is proved in a series of technical lemmas in
Section 4. The starting point here is the observation that a spherical curve with
spatial thickness Θ = �[γ ], which touches a geodesic ball of spherical radius
ϑ := arcsinΘ in two non-antipodal points actually contains the whole circular
arc connecting these two points (Proposition 2). Then follows, with Lemma 9, a
quite explicit characterisation of sphere filling curves γ of thickness Θ: for every
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Fig. 5. Open curves αm,k that maximise length for prescribed thicknesses ωm = π/m:
a m = 3, k = 1; b m = 5, k = 1; c m = 25, k = 6; d m = 4, k = 0; e m = 6, k = 0;
f m = 26, k = 6. Note that the endpoints of the curve are always antipodal for m even. Only
the curves c and f are depicted with full thickness

open geodesic ball Bϑ of spherical radius ϑ that has no point in common with γ ,
its boundary ∂Bϑ intersects γ either in a circle, a semicircle, or in two antipodal
points. These two results are used in Lemmas 10 and 11 to determine characteristic
patterns of sphere filling curves before we conclude with the proof of Theorem 4. In
Section 5 we provide the necessary modifications to establish the analogous results
for length maximising open curves on the two-sphere S

2
.

2. Explicit solutions

We recall from the introduction that we obtain the curves βn,k for n ∈ N and
k ∈ {0, . . . , n − 1} by cutting the two-sphere S

2 into two hemispheres, from now
on referred to as western hemisphere S

w and eastern hemisphere S
e, such that the

latitudes Ci : S
1 → S

2 for i = 0, . . . , n − 1, perpendicular to the cutting plane
satisfy

(i) C0 is a circle of spherical radius ϑn = π/(2n) about the north pole,
(ii) dist

S
2(Ci ,Ci−1) = 2ϑn for i = 1, . . . , n − 1,

which implies that Cn−1 is a circle of spherical radius ϑn about the south pole, see
Fig. 2. Keeping the western hemisphere S

w fixed and turning S
e by an angle of

2kϑn leads to a collection of 2n semicircles whose (generally disconnected) union
we may parametrise with constant speed to obtain our candidates βn,k : S

1 → S
2

for k = 1, . . . , n − 1.
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Lemma 1. For every n ∈ N and k ∈ {1, . . . , n − 1} with gcd(k, n) = 1 the appro-
priately re-parametrised curve βn,k : S

1 → S
2 is a closed piecewise circular

curve whose constant speed parametrisation is of class C1,1(S
1
,R

3
) satisfying

�[βn,k] = Θn = sin ϑn = sin π
2n . Moreover, for distinct k1, k2 ∈ {0, . . . , n − 1},

the curves βn,k1 and βn,k2 are not equivalent, that is, there is no rigid motion M
with M(βn,k1) = βn,k2 .

Proof. The main issue will be to check whether the resulting curve forms a single
closed embedded loop; we postpone this task and instead analyse its consequences.

Notice that by our choice of the turning angle 2kϑn every endpoint of a semi-
circle on S

w meets exactly one endpoint of a semicircle on S
e, so ∂βn,k = ∅,

which means that all connected components of βn,k are embedded closed loops.
Moreover, our construction connects semicircles in a C1-fashion, that is, the tan-
gent lines of the respective semicircles coincide at the common endpoints. Once we
are certain that we have obtained one single closed simple curve, we can rearrange
the sub-arcs of the domain S

1 corresponding to the various semicircles in the right
order to obtain the desired constant speed parametrisation βn,k : S

1 → S
2
.

To show then, in addition, that �[βn,k] = Θn, we recall that the original curve
βn,0 consisting of the stack of n disjoint latitudinal circles with mutual spherical
distance 2ϑn satisfies �[βn,0] = Θn .According to [13, Lemma 3] this implies that
the tubular neighbourhood BΘn (β

n,0) in R
3 can be expressed as the disjoint union

of normal disks, that is,

BΘn (β
n,0) =

⋃̇
s∈S

1 DΘn (β
n,0(s), (βn,0)′(s)),

where Dθ (ξ, η) denotes the two-dimensional disk of radius θ centred at ξ ∈ R
3

and perpendicular to η ∈ R
3\{0}. Moreover, after cutting the S

2 along a plane
through the poles into the hemispheres S

w and S
e
, one observes that these normal

disks centred in S
w do not intersect S

e, and vice versa. Therefore also

BΘn (β
n,k) =

⋃̇
s∈S

1 DΘn (β
n,k(s), (βn,k)′(s)) for all k = 0, . . . , n − 1, (2.1)

since the βn,k are obtained by simply turning S
e against S

w
, leading to a piecewise

circular closed C1,1-curve.
We claim that for each x ∈ BΘn (β

n,k) there is exactly one point p ∈ βn,k(S
1
)

such that

dist
R

3(x, βn,k) = |x − p|, (2.2)

which by [13, Lemma 3 (iii)] implies �[βn,k] � Θn, and since the local radius of
curvature of the semicircles C0 ∩ βn,k equals Θn we arrive at �[βn,k] = Θn .

In order to prove the claim we use (2.1) to find a unique parameter s = s(x) ∈ S
1

such that x ∈ DΘn (β
n,k(s), (βn,k)′(s)). Since βn,k is of class C1 we know that the

segment x − p is perpendicular to the curve βn,k at all points p ∈ βn,k satisfying
(2.2). If there were one point p := βn,k(t) satisfying (2.2) for t �= s, then we would
have x ∈ DΘn (β

n,k(t), (βn,k)′(t)), hence

x ∈ DΘn (β
n,k(s), (βn,k)′(s)) ∩ DΘn (β

n,k(t), (βn,k)′(t)) �= ∅



312 Henryk Gerlach & Heiko von der Mosel

Fig. 6. Labelling 2n checkpoints on a hemisphere for Lemma 1

contradicting the fact that the sets on the right-hand side of (2.1) are disjoint. So
the only point satisfying (2.2) is the point p := βn,k(s), which proves the claim.

It remains to be shown that each of the βn,k with gcd(k, n) = 1 forms one
single closed loop. For that purpose we introduce certain checkpoints and study if
and how the curve βn,k passes through these points. We consider the fixed western
hemisphere S

w and label the 2n endpoints of the semicircles counter-clockwise
from 0 to 2n − 1, such that checkpoints number i and 2n − 1 − i correspond
to the i th semicircle on S

w for i = 0, . . . , n − 1; see Fig. 6. The n semicircles
on S

w connect the checkpoints to n pairs which may be viewed as a permutation
c := (0 2n − 1)(1 2n − 2) · · · (n − 1 n) consisting of n cycles of length 2, or
alternatively,

c(i) ≡ −1 − i mod 2n, i = 0, . . . , 2n − 1.

So if we pass through checkpoint i along the corresponding semicircle con-
tained in βn,k ∩ S

w, we will next pass through checkpoint c(i) as the endpoint
of this semicircle upon entering the eastern hemisphere S

e. To model the turn of
the other hemisphere S

e by an angle of 2ϑn against S
w we use the permutation

t := (0 1 · · · 2n − 2 2n − 1) consisting of 1 cycle of length 2n, so that the
turning angle of 2kϑn corresponds to

tk(i) ≡ i + k mod 2n for k = 1, . . . , n − 1.

As we proceed along the curve βn,k , we pass alternately through the semicircles on
S
w and the semicircles on the rotated hemisphere S

e, respectively. It can easily be
checked that if we enter S

w through checkpoint i then we enter S
w the next time

at checkpoint

q(i) := t−k ◦ c ◦ tk ◦ c(i) mod 2n, i = 0, . . . , 2n − 1.

We enter through n distinct checkpoints and therefore pass through all semicircles
on S

w and S
e, respectively, if and only if the permutation q = t−k ◦c◦tk ◦c consists
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of exactly two cycles of common length n. In order to determine under which con-
ditions this happens, we calculate q(i) ≡ i − 2k mod 2n, hence ql(i) ≡ i − 2kl
mod 2n. This relation shows, in particular, that the reentry after an even checkpoint
is again an even checkpoint, ensuring that no semicircle on S

w and, for symmetry
reasons also on S

e, is left out in the process.
By Lemma 2, which will also be applied in the construction of open curve

solutions in Section 5, we conclude that q consists of two cycles of common length
n if and only if (2n)/ gcd(2k, 2n) = n ⇔ gcd(k, n) = 1, otherwise it consists of
2 gcd(k, n) cycles of length n/ gcd(k, n). To see the latter we note that the cyclic
group 〈q〉 := {q, q2, q3, . . .} operates freely on the set of checkpoints. The num-
ber of algebraically disjoint orbits, that is cycles in our situation, is given by the
well-known orbit formula

� {orbits of 〈q〉} = � {checkpoints}
|〈q〉| = 2n

n/ gcd(k, n)
= 2 gcd(k, n).

Switching the roles of the entry and exit checkpoints on the western hemisphere,
Sw, will produce the opposite orientation of the constructed curves. Since each
algebraic orbit corresponds to one of the two opposite orientations, we end up with
gcd(k, n) closed loops, in particular with one closed curve if gcd(k, n) = 1.

To see that for k1 �= k2 the curve βn,k1 cannot be mapped by a rigid motion to
βn,k2 , we consider the oriented angle between the polar axes connecting the respec-
tive north and south poles on S

w and the tilted S
e measured counterclockwise in

the cutting plane as seen from S
w. This invariant under rigid motions is, in fact,

different for k1 �= k2. This finishes the proof of Lemma 1. ��
Lemma 2. For given r, v ∈ N let the permutation q : {0, . . . , r − 1} −→
{0, . . . , r − 1} be defined as q(i) := i − v mod r . Then the orbit length of i
under the cyclic group 〈q〉 is �{q0(i), . . . , qr (i)} = r/ gcd(v, r).

Proof. For l = r/ gcd(v, r) we find

ql(i) ≡ i − v
r

gcd(v, r)
≡ i − r

v

gcd(v, r)
≡ i mod r for all i = 0, . . . , r − 1,

which proves that no cycle in q is longer than r/ gcd(v, r). Now let m > 0 be the
smallest integer such that

qm(i) ≡ i − vm ≡ i mod r (2.3)

for some i ∈ {0, . . . , r − 1}. By (2.3) vm is a multiple of r , that is there exists
j ∈ N such that

vm = j lcm(v, r) = jvr/ gcd(v, r),

where lcm(v, r) denotes the least common multiple of v and r . Cancelling v yields
m = jr/ gcd(v, r), which implies m � r/ gcd(v, r). But r/ gcd(v, r) is also an
upper bound for m as shown above and consequently m = r/ gcd(v, r). ��
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Fig. 7. The unit sphere cut along a normal plane that is orthogonal to γ at the point p ∈ γ .
The grey spatial ball rotated along the dashed circle generates a geodesic ball Bϑ ⊂ S

2 of
radius ϑ = arcsinΘ such that the boundary ∂Bϑ is tangent to γ and Bϑ ∩ γ (S1) = ∅

Remark 1. (i) Since we are only interested in different shapes, we do not have
to take into account any integer k � n, since the corresponding arcs βn,k ∩S

e

are equivalent with βn,k−n ∩S
e for k � n.4 Therefore, the number of distinct

closed curves βn,k for given n ∈ N is identical with the cardinality of the set

An := {k ∈ {1, . . . , n} : gcd(k, n) = 1}, n ∈ N,

which equals ϕ(n), where ϕ is Euler’s totient function (see for example [1,
p. 21]). In Table 1 we have listed the number of distinct closed curves of type
βn,k for n � 42.

(ii) If we turn the hemisphere S
e in Lemma 1 by the angle k · 2ϑn for some k with

gcd(k, n) > 1 the curve splits into gcd(k, n) connected components. This
configuration is a solution to an optimisation problem similar to (P), namely
maximising the length of collections of precisely gcd(n, k) closed curves on
S

2 subject to the prescribed minimal thickness Θn .

In order to show that the constructed curves βn,k actually maximise length, we are
going to use a version of Hotelling’s famous theorem relating tube volume to the
length of the tube’s centreline. For this, we recall from [13, Lemma 3 (i)] the torus
property (T): Let �[γ ] � Θ > 0. Then the union of all open balls BΘ of radiusΘ
which are tangent to the curve γ at any fixed point p ∈ γ has no point in common
with γ. This readily implies (see Fig. 7) the
Spherical torus property (ST): Any closed spherical curve γ : S

1 → S
2 with

spatial thickness �[γ ] � Θ satisfies

γ (S
1
) ∩ Bϑ(ξ) = ∅ for ϑ = arcsinΘ

for any geodesic open ball

Bϑ(ξ) := {η ∈ S
2 : dist

S
2(η, ξ) < ϑ},

whose boundary ∂Bϑ(ξ) is tangent to γ in at least one point of γ.

4 For algebraic reasons we do count the case k = n instead of k = 0.
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Definition 1. (Tubes without self-overlap) Let γ : S
1 → S

2 be a spherical closed
curve which possesses a tangent at every point. The spherical tubular neighbour-
hood

Tφ(γ ) := {x ∈ S
2 : dist

S
2(x, γ ) < φ}

is said to be non-self-overlapping if two geodesic arcs of length φ emanating from
two distinct curve points in a direction perpendicular to γ have, at most, common
endpoints, but otherwise do not intersect. In that case we say that γ has spherical
thickness at least φ.

Lemma 3. (Thick curves and non-self-overlapping tubes) All spherical tubular
neighbourhoods Tφ(γ ) = {x ∈ S

2 : dist
S

2(x, γ ) < φ}, φ ∈ (0, ϑ], of a spher-

ical closed curve γ : S
1 → S

2 with spatial thickness �[γ ] � Θ = sin ϑ for
ϑ ∈ (0, π/2] are non-self-overlapping.

Proof. Recall, first, from [13, Lemma 2] that γ possesses a C1,1-arclength parame-
trization so that γ indeed possesses a tangent vector at every curve point. It suffices
to prove the statement for φ = ϑ. Now, assume, to the contrary, that two geodesic
arcs of length ϑ emanating perpendicularly from γ from two different curve points
p and q have one point x ∈ S

2 in common which is not the endpoint of both arcs.
We can assume without loss of generality that dist

S
2(x, q) � dist

S
2(x, p). Let p′

be the endpoint of the geodesic ray emanating from p and q ′ the endpoint of the
geodesic ray emanating from q. Then, by the triangle inequality,

dist
S

2(p′, q) < dist
S

2(p′, x)+ dist
S

2(x, q) � dist
S

2(q ′, x)+ dist
S

2(x, q) = ϑ,

where the strict inequality holds unless p′ lies on the geodesic arc connecting q
and q ′, in which case p′ �= q ′ since p �= q. In both cases, however, we find that
the geodesic ball Bϑ(p′) whose boundary ∂Bϑ(p′) is tangent to γ in p contains
the point q ∈ γ , contradicting the spherical torus property (ST). ��
Proof of Theorem 2. According to Lemma 1 and Remark 1 (i) we find for each
n ∈ N exactly ϕ(n) distinct closed curves βn,k ∈ CΘn with �[βn,k] = Θn . By
construction, the spherical tubular neighbourhood Tϑn (β

n,k) covers the two-sphere
except for a set of two-dimensional measure zero:

V (Tϑn (β
n,k)) = H 2(Tϑn (β

n,k)) = 4π = H 2(S
2
). (2.4)

Moreover, Tϑn (β
n,k) is non-self-overlapping in the sense of Definition 1. Hence by

virtue of the well-known theorem of Hotelling [15] (see also [14,24]), which we
are going to adapt to the present context of thick loops in Proposition 1, one has

L (γ ) = V (Tϑn (β
n,k))

2 sin ϑn
� 4π

2Θn
= 2π

Θn
for all γ ∈ CΘn .

This estimate produces a sharp uniform upper bound on the length functional on
the class CΘn . Regarding (2.4), this bound is attained by the curves βn,k , which
means that they are length maximising in the class CΘn , that is, their smooth and
regular parametrisations are solutions of Problem (P). ��
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3. Existence, and properties of thickness, length and volume,
of general solutions

For the volume V (Tϑ(γ )) of the spherical tube Tϑ(γ ) = {x ∈ S
2 : dist

S
2(x, γ )

< ϑ} on the sphere S
2, we will prove the following version of the theorem of

Hotelling [15] for continuous thick curves:

Proposition 1. Let γ : S
1 → S

2 be a closed rectifiable continuous curve with
thickness �[γ ] > 0 and length L (γ ). Then for all ϑ ∈ [0, arcsin(�[γ ])] one has

V (Tϑ(γ )) = 2L (γ ) sin ϑ. (3.1)

In particular, the spherical tubular neighbourhood TarcsinΘ(γΘ) of any solution
γΘ ∈ CΘ of Problem (P) for given thicknessΘ ∈ (0, 1] covers the same amount of
area on S

2
.

The obvious idea to prove this result is to approximate such thick curves by smooth
ones with controlled minimal thickness for which the classic result of Hotelling is
applicable and then go to the limit. That this is, indeed, possible is guaranteed by
the following lemma, which we will also use for a variational argument later on in
this section to show that length maximisers attain the prescribed minimal thickness;
see Theorem 5.

Lemma 4. (Smooth approximation with positive thickness I) Let γ ∈ C1(S
1
,R

3
)

be a closed and regular curve with positive thickness �[γ ] > 0. Then for any
sequence {γ j } ⊂ C1,1(S

1
,R

3
) satisfying

(i) γ j → γ in C1(S
1
,R

3
) as j → ∞,

(ii) lim sup j→∞ ‖κ j‖L∞((0,2π)) � 1
�[γ ] , where κ j denotes the local curvature5 of

γ j for j ∈ N,

one has

lim inf
j→∞ �[γ j ] � �[γ ]. (3.2)

Proof. The length L := L (γ ) is positive since �[γ ] > 0, and by [13, Lemma
2] the arc-length parametrisation Γ : [0, L] → R

3 is of class C1,1([0, L],R3
).

Notice furthermore that the C1-convergence we assume in (i) implies

L j :=L (γ j ) → L (γ )= L and |γ ′
j | → |γ ′|>0 on S

1 as j → ∞.

(3.3)

The arc-length parametrisations Γ j : [0, L j ] → R
3 satisfy by Assumption (ii)

lim sup
j→∞

‖Γ ′′
j ‖

L∞((0,L j ),R
3
)
= lim sup

j→∞
‖κ j‖L∞((0,2π)) � 1

�[γ ] . (3.4)

5 By Assumption (i) we can assume that all γ j are regular curves, and recall that

C1,1(S1,R
3) ∼= W 2,∞((0, 2π),R

3) so that κ j exists and is bounded almost everywhere
on (0, 2π) for each j ∈ N.
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In order to establish (3.2) it suffices to show that for any given ε > 0 there is some
j0 = j0(ε) ∈ N such that

�[γ j ] = �[Γ j ] � (1 − ε)�[γ ] for all j � j0.

We argue by contradiction, so if we assume on the contrary that there exists an
ε0 > 0 such that �[Γ j ] < (1 − ε0)�[γ ] for a subsequence j → ∞, then for each
member j of this subsequence we can find an arc-length parameter s j ∈ [0, L j ]
such that by definition of thickness [see (1.1)]

ρG [γ j ](s j ) <
(

1 − ε0

2

)
�[γ ], (3.5)

where ρG [γ j ] denotes the global radius of curvature of γ j defined in [12,13] by

ρG [γ j ](s j ) := inf
t,τ∈[0,L j ]\{s j }

t �=τ
R(Γ j (s j ), Γ j (t), Γ j (τ )).

It was shown in [22, Lemma 5] that

ρG [γ j ](s j ) = ρpt[γ j ](s j ) := inf
τ∈[0,L j ]\{s j }

pt[γ j ](s j , τ ),

where pt[γ j ](s j , τ ) denotes the radius of the unique circle through the pointsΓ j (s j )

and Γ j (τ ) which is tangent to the curve Γ j at the point Γ j (τ ). Therefore, we can
find for each j some arc-length parameter σ j ∈ [0, L j ]\{s j } such that by (3.5)

pt[γ j ](s j , σ j ) <
(

1 − ε0

4

)
�[γ ]. (3.6)

Going back to the original parametrisation γ j : S
1 → R

3, we find parameters
t j , τ j ∈ S

1 given by
∫ t j

0
|γ ′

j (z)| dz = s j �= σ j =
∫ τ j

0
|γ ′

j (z)| dz,

and by choice of an appropriate subsequence we may assume that (t j , τ j ) →
(t, τ ) ∈ S

1 × S
1 as j → ∞. Two cases may occur: either those limit parameters t

and τ are distinct or they coincide.

Case I. If t �= τ then γ (t) �= γ (τ) since γ is simple, and therefore also Γ (s) �=
Γ (σ) for s := ∫ t

0 |γ ′(z)| dz and σ := ∫ τ
0 |γ ′(z)| dz. (Notice that we assumed that

γ is a regular curve, that is, |γ ′| > 0 so that a double point γ (t) = γ (τ) for t �= τ

would imply a double point for the arc-length parametrisationΓ (s) = Γ (σ), which
is impossible because �[γ ] is positive.) We arrive at

Γ j (s j )=γ (t j ) → γ (t)=Γ (s) and Γ j (σ j )=γ (τ j ) → γ (τ)=Γ (σ) (3.7)

as j → ∞. In addition, one has for the derivatives by the C1-convergence, and in
particular by (3.3),

Γ ′
j (σ j ) = γ ′

j (τ j )

|γ ′
j (τ j )| −→ γ ′(τ )

|γ ′(τ )| = Γ ′(σ ) as j → ∞, (3.8)
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so that we can use an explicit formula for the pt-radius and [22, Lemma 4] to obtain
from (3.6)

(
1 − ε0

4

)
�[γ ] >

(3.6)
pt[γ j ](s j , σ j ) = |Γ j (s j )− Γ j (σ j )|2

2|(Γ j (s j )− Γ j (σ j )) ∧ Γ ′
j (σ j )|

j→∞−→ |Γ (s)− Γ (σ)|2
2|(Γ (s)− Γ (σ)) ∧ Γ ′(σ )| = pt[γ ](s, σ )

� ρpt[γ ](s) �
[22, L.4]

ρG[γ ](s) � �[γ ],

which is a contradiction.

Case II. If t = τ we find |t j − τ j | → 0 as j → ∞, so that by (3.3) for j � 1

|s j −σ j |=
∣∣∣∣∣
∫ t j

τ j

|γ ′
j (z)| dz

∣∣∣∣∣�2‖γ ′‖
C0(S1,R

3
)
|t j −τ j | → 0 as j → ∞. (3.9)

We apply (3.4) to the Taylor expansion (see [22, (2.20)])

pt[γ j ](s j , σ j ) =
∣∣∣Γ ′

j (σ j )+∫
[σ j ,s j ]

∫ u
σ j
Γ ′′

j (z) dzdu
∣∣∣2

2
∣∣∣Γ ′

j (σ j ) ∧ 1
σ j −s j

∫ 1
0

∫ σ j

σ j −u(σ j −s j )
Γ ′′

j (z) dzdu
∣∣∣ (3.10)

to find for given δ > 0 some j1 = j1(δ) such that for all j � j1∣∣∣∣∣
∫ u

σ j

Γ ′′
j (z) dz

∣∣∣∣∣�
∫

[σ j ,s j ]
|Γ ′′

j (z)| dz �
(3.4)

(1+δ)|s j −σ j | 1

�[γ ] for all u ∈ [σ j , s j ],

and∣∣∣∣∣
∫ σ j

σ j −u(σ j −s j )

Γ ′′
j (z) dz

∣∣∣∣∣ �
(3.4)

(1 + δ)|u||s j − σ j | 1

�[γ ] for all u ∈ [0, 1].

This together with (3.8) and (3.9) allows us to estimate the numerator in (3.10) by
1 − δ from below, and the denominator by (1 + δ)/�[γ ] from above for all j � j2
for some j2 = j2(δ) � j1. We infer from (3.6)

(
1 − ε0

4

)
�[γ ] > pt[γ j ](s j , σ j ) � 1 − δ

1 + δ
�[γ ] for all j � j2,

which is absurd for any δ � ε0/(8 − ε0). ��
Now we present the

Proof of Proposition 1. The length L := L (γ ) is positive since �[γ ] > 0.Recall
from [13, Lemma 2] that the arc-length parametrisationΓ : [0, L] → S

2 is injective
and of class C1,1([0, L],R3

) satisfying the local curvature bound

‖Γ ′′‖L∞([0,L],R3) � 1

�[γ ] . (3.11)
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We extend the components Γ i , i = 1, 2, 3, as L-periodic functions onto all of R.
Then we choose a sequence ε j → 0 as j → ∞, a standard nonnegative mollifier
φ ∈ C∞

0 ((−1, 1)), and define the smooth L-periodic convolutions

ηi
j := φε j ∗ Γ i ∈ C∞(R) ⊂ C∞([0, L]) for i = 1, 2, 3,

so that η j := (η1
j , η

2
j , η

3
j ) are smooth closed curves in R

3 approximating Γ in

C1([0, L],R3
), such that

|η′
j | −→ 1 uniformly on [0, L], and also (3.12)

‖η′′
j ‖L∞([0,L],R3) � ‖Γ ′′‖L∞([0,L],R3) � 1

�[γ ] for all j ∈ N.

Furthermore, we can assume that |η j | > 0 for all j , such that the projected curves

γ j := η j

|η j | : [0, L] → S
2

are well-defined and of class C∞([0, L],R3
) for all j ∈ N. One can easily check

that

γ j −→ Γ in C1([0, L],R3
) as j → ∞. (3.13)

The normal curvature of Γ : [0, L] → S
2 equals −1 almost everywhere on [0, L]

(see for example [6, Chapter 3.2]) so that in particular Γ ′′ · Γ = −1 almost every-
where on [0, L]. This, together with (3.11), can be used to estimate

|η j (s) · η′′
j (s)− Γ (s) · Γ ′′(s)| � 2‖Γ (s − ·)− Γ (s)‖C0(Bε j (0),R

3)

1

�[γ ] ,

so that

‖η j · η′′
j − Γ · Γ ′′‖L∞((0,L)) −→ 0 as j → ∞. (3.14)

In addition, since η j → Γ in C1([0, L],R3
) and Γ · Γ ′ ≡ 0 we find

− η j · η′
j

|η j |3 η
′
j −

3(η j · η′
j )

2

|η j |5 η j −
η j · η′

j

|η j |3 η
′
j −→ 0 in C0([0, L],R3

) as j → ∞
(3.15)

which, together with (3.12), implies

lim sup
j→∞

‖γ ′′
j ‖L∞((0,L),R3) = lim sup

j→∞
‖η′′

j ‖L∞((0,L),R3) �
(3.12)

1

�[γ ] .

This, in combination with (3.13), implies for the arc-length parametrisations
Γ j : [0,L (γ j )] → S

2 the estimate

lim sup
j→∞

‖Γ ′′
j ‖L∞((0,L),R3) = lim sup

j→∞

∥∥∥∥∥
|γ ′′

j ∧ γ ′
j |

|γ ′
j |3

∥∥∥∥∥
L∞((0,L),R3)

� 1

�[γ ] .
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With this inequality and with (3.13) we have verified Assumptions (i) and (ii)
of Lemma 4 for the curve Γ ∈ C1,1([0, L],R3

) and the approximating curves
γ j : [0, L] → S

2 each of class C∞([0, L],R3
), so that by (3.2)

lim inf
j→∞ �[γ j ] � �[Γ ] = �[γ ].

If we we take an appropriate subsequence and relabel, we obtain a sequence
{γ j } ⊂ C∞([0, L],R3

), γ j : [0, L] → S
2 for all j ∈ N such that

‖γ j − Γ ‖C1([0,L],R3) <
1

j
and �[γ j ] > �[γ ] − 1

j
. (3.16)

In particular, we find for arbitrary given ϑ ∈ (0, arcsin(�[γ ])] and ε > 0 some
J0 = J0(ε) such that

Tϑ−ε−(2/j)(γ j ) ⊂ Tϑ−ε−(1/j)(γ ) ⊂ Tϑ−ε(γ j ) for all j � J0, (3.17)

and according to Lemma 3 these nested spherical tubular neighbourhoods are non-
self-overlapping in the sense of Definition 1. Since the γ j are smooth with image
on S

2 for all j , we may apply the theorem of Hotelling [15] twice for j � J1 for
some J1 = J1(ε) � J0 with

�[γ j ] >
(3.16)

�[γ ] − 1

j
� sin(ϑ − ε),

to obtain for all j � J1

2 sin(ϑ − ε − (2/j))L (γ j ) =
[15]

V (Tϑ−ε−(2/j)(γ j )) �
(3.17)

V (Tϑ−ε−(1/j)(γ ))

�
(3.17)

V (Tϑ−ε(γ j )) =
[15]

2 sin(ϑ − ε)L (γ j ).

Since (3.16) implies the convergence L (γ j ) → L (γ ) as j → ∞, we arrive at
2 sin(ϑ − ε)L (γ ) = V (Tϑ−ε(γ )) for the arbitrarily chosen ε > 0, which implies
(3.1). ��

We actually established within the previous proof the following approximation
result, which might also be of independent interest.

Corollary 1. (Smooth approximation with positive thickness II). For any closed,
continuous and rectifiable curve γ : S

1 → R
3 with positive thickness �[γ ] >

0 and length L := L (γ ), there is a sequence of regular closed curves
η j ∈ C∞([0, L],R3

) such that

η j → Γ in C1 as j → ∞ and lim inf
j→∞ �[η j ] � �[γ ], (3.18)

whereΓ : [0, L] → R
3 denotes the arc-length parametrisation of γ . If, in addition,

γ (S
1
) ⊂ S

2, then there is a sequence of regular closed curves γ j ∈ C∞([0, L],R3
)

with γ j ([0, L]) ⊂ S
2 such that (3.18) holds for γ j instead of η j .
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As a prerequisite for the proof of the existence result, Theorem 1, we show that
the velocities of constant speed parametrisations of admissible curves γ ∈ CΘ are
controlled solely in terms of the given thickness Θ:

Lemma 5. (Speed limit) For all γ ∈ CΘ with |γ ′| ≡ const. on S
1 one has

Θ � |γ ′| � 1

Θ
on S

1
. (3.19)

Proof. The upper bound in (3.19) follows from (3.1) in Proposition 1 for
ϑ = arcsinΘ:

2π |γ ′| = L (γ ) =
(3.1)

1

2 sin ϑ
V (Tϑ(γ )) � 4π

2Θ
,

and the lower bound follows from the torus property (T) (see Remark 1), which
implies that γ , as a closed curve of positive length, has to be at least as long as a
great circle on one of the spheres ∂BΘ touching γ in, say γ (0), so that 2π |γ ′| =
L (γ ) � 2πΘ. ��
Proof of Theorem 1 for closed curves. 6 The class CΘ is not empty for any
Θ ∈ (0, 1], since any great circle cg smoothly parametrised with constant speed
has thickness �[cg] = 1 � Θ. So there is a maximising sequence {η j } ⊂ CΘ such
that L j := L (η j ) → supCΘ L (·) as j → ∞. The corresponding arc-length para-

metrisations Γ j : [0, L j ] → S
2 satisfy the uniform estimate (see [13, Lemma 2])

‖Γ j‖C1,1([0,L j ],R3) = ‖Γ j‖C0([0,L j ],R3) + ‖Γ ′
j‖C0([0,L j ],R3) + ‖Γ ′′

j ‖L∞((0,L j ),R
3)

� 2 + 1

Θ
for all j ∈ N, (3.20)

so that the constant speed re-parametrisations γ j : S
1 → S

2 with v j := |γ ′
j | > 0

still yield a maximising sequence in CΘ and satisfy γ j (t) = Γ j (tv j ) and γ ′
j (t) =

Γ ′
j (tv j )v j . Therefore by (3.19) in Lemma 5

|γ ′
j (t)− γ ′

j (τ )| = v j |Γ ′
j (tv j )− Γ ′

j (τv j )|

�
v2

j

Θ
|t − τ | �

(3.19)

1

Θ3 |t − τ | for all t, τ ∈ S
1
.

Consequently, we obtain the uniform bound

‖γ j‖C1,1(S1,R3) � ‖γ j‖C0(S1,R3) + v j‖Γ ′
j‖C0([0,L j ],R3) + 1

Θ3

� 1 + 1

Θ
+ 1

Θ3 for all j ∈ N, (3.21)

which implies by the theorem of Arzelà–Ascoli the existence of a closed curve
γΘ ∈ C1,1(S

1
,R

3
) and a subsequence {γ j } such that γ j −→ γΘ in C1(S

1
,R

3
) as

6 For open curves we will indicate the necessary modifications in Section 5.
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j → ∞. Hence γΘ maps S
1 into S

2 and has constant speed |γ ′
Θ | � Θ because7

|γ ′
j | � Θ for all j by Lemma 5. In addition, �[γΘ ] � Θ, since it was proved in

[20, Lemma 4] and [11, Lemma 5] that the thickness �[·] is upper semi-continuous
with respect to convergence in C0(S

1
,R

3
) subject to a uniform upper bound on

length. Thus we have shown that γΘ ∈ CΘ . Since the length functional L (·) is
continuous with respect to C1-convergence we conclude supCΘ L (·) � L (γΘ) =
lim j→∞ L (γ j ) = supCΘ L (·), that is, γΘ is a length maximising curve. That
the prescribed thickness is attained by any solution γΘ of Problem (P), that is
�[γΘ ] = Θ , is the content of the next theorem, which then concludes the proof of
Theorem 1. ��

Theorem 5. (Thickness is attained) For any solution γΘ ∈ CΘ of Problem (P) for
Θ ∈ (0, 1] one has �[γΘ ] = Θ.

Proof. There is nothing to prove for Θ = 1 since then the great circle with thick-
ness 1 is the unique solution (up to congruence). Assuming �[γΘ ] > Θ for some
Θ ∈ (0, 1) we will first use Lemma 4 to show that variations of the type (γΘ +
εψ)/|γΘ+εψ | are admissible for ε sufficiently small, to conclude with a variational
argument that γΘ must be a great circle. Then we construct a suitable comparison
curve βΘ∗ with L (βΘ∗) > L (γΘ), which contradicts the maximality of γΘ.

For brevity, we set γ := γΘ for fixed Θ ∈ (0, 1) and L := L (γ ), and we
may assume, without loss of generality, that |γ ′| ≡ const. =: v on S

1; hence
v = L/(2π).

We claim that for any ψ ∈ C∞
0 (S

1
,R

3
) there is some ε0 = ε0(ψ,�[γ ]) > 0

such that for the curves ηε := (γ + εψ)/|γ + εψ | ∈ C1,1(S
1
,R

3
) we have

�[ηε] > Θ for all ε ∈ [−ε0, ε0].
For the proof of this claim we notice that |γ | = 1, so that γ · γ ′ = 0 on S

1,
which implies ηε → γ in C0(S

1
,R

3
) as ε → 0, and

η′
ε=

γ ′+εψ ′

|γ+εψ | −
(γ+εψ) · (γ ′+εψ ′)

|γ+εψ |3 (γ+εψ) → γ ′ in C0(S
1
,R

3
) as ε → 0.

As in the proof of Proposition 1 we use the fact that the arc-length parametrisation
Γ of the spherical curve γ satisfies Γ · Γ ′′ = −1 almost everywhere on [0, L],
so that we obtain with Γ ′(s) = γ ′

|γ ′| (t (s)) = γ ′(t (s))
v

and Γ ′′ = γ ′′(t (s))
v

dt
ds (s) =

γ ′′(t (s))
v2 for the arc-length parameters s := ∫ t (s)

0 |γ ′(τ )| dτ = vt (s) the relation

−1 = Γ · Γ ′′ = γ ·γ ′′
v2 , or

γ · γ ′′ = −v2 almost everywhere on S
1
. (3.22)

7 It is also possible to prove |γ ′
Θ | � 1 by comparing the length of the maximiser γΘ to

that of a great circle which has thickness 1 and is henceforth an admissible comparison curve
in CΘ for any Θ ∈ (0, 1].
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This, together with γ · γ ′ = 0 and the boundedness of ‖γ ‖C1,1(S1,R3), can be used
in a direct calculation to deduce for the curvature κε of ηε

lim sup
ε→0

‖κε‖L∞((0,2π)) = lim sup
ε→0

∥∥∥∥ |η′′
ε ∧ η′

ε |
|η′
ε |3

∥∥∥∥
L∞((0,2π))

� ‖Γ ′′‖L∞((0,2π),R3) � 1

�[γ ] .

Lemma 4 applied to γ = γΘ and γ j := ηε j for any subsequence ε j → 0 gives
lim inf j→∞ �[ηε j ] � �[γ ] > Θ, so that we, indeed, find ε0 = ε0(ψ,�[γ ]) > 0
such that �[ηε] > Θ for all ε ∈ [−ε0, ε0], which proves the claim.

Therefore, we have ηε ∈ CΘ for all ε ∈ [−ε0, ε0] and

L (γ ) � L (ηε) for all ε ∈ [−ε0, ε0].
Since |γ + εψ | > 0 for all |ε| � 1 and |γ | = 1 on S

1, we can calculate the
vanishing first variation of L at γ :

0 = d

dε
[L (ηε)]ε=0 = v−1

∫ 2π

0

[
γ ′ · ψ ′ − v2(γ · ψ)

]
dt.

Integrating by parts and applying the Fundamental Lemma in the calculus of vari-
ations, we obtain γ ′′ + v2γ = 0 almost everywhere on S

1
. Since γ ∈ C1,1, we

obtain immediately γ ′′ ∈ C1,1 and by the standard bootstrap argument, finally,
γ ∈ C∞(S1

,R
3
). Transforming the equation into the arc-length formulation we

obtain Γ ′′ = −Γ on [0, L], which have great circles as their only solutions; see
for example [6, p. 246]. Hence, we have shown that if �[γ ] > Θ for the solution
γ = γΘ , then γΘ is a great circle.

For each τ ∈ [Θ2, 1) we will construct in Lemma 6, below, a competitor
βτ ∈ Cτ with L (βτ ) > 2π = L (γΘ) so that we obtain for the special choice
τ = Θ∗ := max{Θ2,Θ} a competitor βτ ∈ CΘ∗ ⊂ CΘ , which leads to the desired
contradiction against the maximality of L (γΘ) in CΘ. ��
Lemma 6. (Explicit competitors βτ for τ ∈ [Θ2,Θ1]) For every τ ∈ [Θ2,Θ1] =
[sin(π/4), 1] there is a closed curve βτ ∈ Cτ with �[βτ ] = τ,

L (βτ ) = 8τ arccos

√
1 − 1

2τ 2 , and V (βτ ) = 2τL (βτ ).

In particular, L (βτ ) � 2π with equality if and only if βτ is a great circle, that is
if τ = Θ1 = 1.

Remark. Our construction will reveal a one-parameter family {βτ } (parametr-
ised by the prescribed thickness τ ) continuously joining the unique solutions for
τ = Θ1 = 1 and τ = Θ2 (see Fig. 4).

We strongly believe that these βτ provide the unique (but not sphere-filling)
solutions for every τ ∈ (Θ2,Θ1), which would extend our uniqueness result, The-
orem 3, to this continuous range of given thickness values. Up to now, however, we
have no proof for this conjecture. We only would like to point out at this moment
that the curves βτ are good candidates for the maximisers for τ ∈ (Θ2,Θ1).
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Proof of Lemma 6. To construct βτ for given τ ∈ [Θ2,Θ1] we equipartition the
equator of the S

2 by four distinct points Pi , i = 1, 2, 3, 4, such that these four
points are the vertices of a square of edge length 2H := 2 · 1√

2
in the plane E

containing the equator. Now we take the plane vertical to E which contains the
straight segment P1 P2 and rotate that plane about the rotations axis through P1
and P2 until this rotated plane F intersected with S

2 is a circle ∂Bτ of radius τ ;
see Fig. 8a. Let α = α(τ) be the angle between F and E , and we refer to the
side-view in Fig. 8b where E is seen as a horizontal line, to obtain the geometric

identities a = H cosα, h = H sin α, τ = √
1 − h2 =

√
1 − H2 sin2 α. In Fig. 8c,

the plane F coincides with the drawing plane, and one can read off the relation
L = 2τβ = 2τ arccos(a/τ), where L denotes the length of the shorter circular arc
on ∂Bτ with endpoints P1 and P2. Repeating this process for the other edges P2 P3,
P3 P4 and P4 P1, we obtain four such circular arcs, each of length L . Reflecting
two of these arcs opposite across the equatorial plane E and taking the union of
these reflections with the two remaining arcs, we obtain the desired C1,1-curve βτ ,

which by construction8 has length 4L = 8τ arccos(a/τ) = 8τ arccos
√

1 − 1
2τ 2 .

The thickness of βτ is realized exclusively by the local radius of curvature τ of
each circular arc, since neighbouring arcs are separated by the plane S containing
the normal disk of radius τ at the common endpoint. All normal disks of radius
τ centred on one of these arcs are not only mutually disjoint but also completely
contained in the half-space bounded by S that contains the arc itself. (Compare with
our argument to prove (2.1) in Section 2 in the construction of the explicit solutions
βn,k , whose circular arcs were full semicircles, whereas the arcs to build βτ for
τ ∈ (Θ2,Θ1) are strict subsets of semicircles.) And the normal disks of opposite

arcs can also not intersect if
√

1 − H2 sin2 α = τ � d := H
sin α ; see Fig. 8b, which

is true since the function f (α) := 1
2 − sin2 α + 1

2 sin4 α satisfies f (π/2) = 0 and
is monotonically decreasing on [0, π/2].

Thus we have shown �[βτ ] = τ and that a smooth and regular parametrisa-
tion of βτ is actually contained in the class Cτ . The formula for the volume in
the statement of the lemma is a direct consequence of Hotelling’s theorem, see
Proposition 1. The four arcs on the great circle each of length π/2 connecting
neighbouring points in {P1, P2, P3, P4} are the shortest possible connections on S

2

so that L � π
2 ; hence L (βτ ) = 4L � 2π with equality if and only if βτ is the

great circle, that is, τ = Θ1 = 1. ��

We conclude this section by analysing how length and tube volume of solutions
depend on the given thickness.

8 The circular arcs indeed have common tangent lines at the concatenation points Pi ,
i = 1, 2, 3, 4, since the tangent vectors of the two arcs meeting at, say, endpoint P1 are both
contained in the tangent plane TP1 S

2 both enclosing the same angle with E ∩ TP1 S
2, such

that the reflection across the line E ∩ TP1 S
2 produces the common tangent line through P1

in TP1 S
2.
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(a) (b)

3π
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Fig. 8. a–c Determining the thickness of βτ as described in Lemma 6. d The volume V of
the tubular neighbourhood of βτ

Lemma 7. For given minimal thickness Θ ∈ (0, 1], let γΘ be a solution of Prob-
lem (P), and define the function L : (0, 1] → [2π,∞) by L(Θ) := L (γΘ) and
V : (0, 1] → (0, 4π ] by V (Θ) := V (TarcsinΘ(γΘ)). Then

(i) L is a strictly decreasing function on (0, 1].
(ii) L(1) = 2π , and L(Θ) → ∞ as Θ → +0.

(iii) limh→+0 L(Θ − h) = L(Θ) for Θ ∈ (0, 1].
(iv) L(Θ) = V (Θ)/(2Θ) is differentiable at almost every Θ ∈ (0, 1].
(v) 2π � L(Θ) � 2π/Θ and 4πΘ � V (Θ) � 4π for all Θ ∈ (0, 1].

(vi) The functions L and V are upper semicontinuous on (0, 1].
Proof. (i) For 0 < Θ < Θ ′ � 1 and the corresponding solutions γΘ ∈ CΘ and
γΘ ′ ∈ CΘ ′ for Problem (P) we have

�[γΘ ′ ] � Θ ′ > Θ (3.23)

so that γΘ ′ ∈ CΘ as well. Hence L(Θ) = L (γΘ) � L (γΘ ′) = L(Θ ′), which
proves that L is a decreasing function. If 0 < Θ < Θ ′ < 1 we know that γΘ ′
is not the great circle, and we may assume that γΘ ′ has constant speed v = |γΘ ′ |
on S

1
. Recalling the arguments in the proof of Theorem 5, there must be a function

ψ ∈ C∞
0 (S

1
,R

3
) such that

δL (γΘ ′ , ψ) := d

dε

[
L

(
γΘ ′ + εψ

|γΘ ′ + εψ |
)]

ε=0
�= 0,
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and since the first variation δL (γΘ ′ , ·) is a linear functional, we may assume that

δL (γΘ ′ , ψ) = 1. (3.24)

Notice that (3.23) and the claim established in the proof of Theorem 5 imply

�
[
γΘ ′ + εψ

|γΘ ′ + εψ |
]
> Θ, hence

γΘ ′ + εψ

|γΘ ′ + εψ | ∈ CΘ (3.25)

for ε sufficiently small. One can check that there is an ε0 = ε0(ψ) > 0 such that
d2

dε2

[
L

(
γΘ′+εψ
|γΘ′+εψ |

)]
is bounded uniformly in ε ∈ [−ε0, ε0], so that

L

(
γΘ ′ + εψ

|γΘ ′ + εψ |
)

= L (γΘ ′)+ εδL (γΘ ′ , ψ)+ O(ε2).

Hence by virtue of (3.24) L
(
γΘ′+εψ
|γΘ′+εψ |

)
> L (γΘ ′) for 0 < ε � 1,which implies

by (3.25)

L(Θ) = L (γΘ) �
(3.25)

L

(
γΘ ′ + εψ

|γΘ ′ + εψ |
)
> L (γΘ ′) = L(Θ ′)

for all 0 < Θ < Θ ′ < 1. If Θ < Θ ′ = 1 we find Θ ′′ ∈ (Θ,Θ ′), so that according
to what we have just proved and the monotonicity observed in the beginning

L(Θ) > L(Θ ′′) � L(Θ ′),

which finishes the proof of Part (i).
(ii) For the explicit solutions βn,k ∈ CΘn constructed in Theorem 2 we have

V (TarcsinΘn (β
n,k)) = 4π, and therefore by Proposition 1

L(Θn) = L (βn,k) = V (TarcsinΘn (β
n,k))

2Θn
= 2π

Θn
= 2π

sin π
2n

→ ∞ as n → ∞.

This together with the strict monotonicity shown in Part (i) establishes L(Θ) → ∞
as Θ → +0.

(iii) We consider the set of solutions γΘ−h ∈ CΘ−h for 0 < h < Θ/2 and
assume that all these curves have constant speed vh := |γ ′

Θ−h | > 0.As in (3.20) in
the proof of Theorem 1 we use [13, Lemma 2] to obtain the uniform upper bound

‖Γh‖C1,1([0,L(Θ−h)],R3) � 2 + 1

Θ − h
< 2 + 2

Θ
for all h ∈ (0,Θ/2)

for the respective arc-length parametrisations Γh : [0, L(Θ − h)] → R
3 of γΘ−h .

In addition, Lemma 5 applied to γ := γΘ−h ∈ CΘ−h implies

Θ

2
< Θ − h � |γ ′

Θ−h | = vh � 1

Θ − h
<

2

Θ
for all h ∈ (0,Θ/2), (3.26)
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so that one obtains, similarly as in (3.21),

‖γΘ−h‖C1,1(S1,R3) � ‖γΘ−h‖C0(S1,R3) + vh‖Γ ′
h‖C0([0,L(Θ−h],R3) + v2

h

Θ − h

� 1 + 2

Θ
+ 8

Θ3 for all h ∈ (0,Θ/2).
The theorem of Arzelà–Ascoli yields a subsequence hi → +0 and a curve γ ∈
C1,1(S

1
,R

3
) such that γΘ−hi → γ in C1(S

1
,R

3
) as i → ∞, so that γ (S1

) ⊂ S
2

and �[γ ] � Θ − ε for each ε > 0 (and hence �[γ ] � Θ) by [20, Lemma 4] and
[11, Lemma 5]. Moreover, by (3.26) v := |γ ′| � Θ/2 > 0 so that γ ∈ CΘ , hence
L (γ ) � L (γΘ) = L(Θ).On the other hand, L is continuous in the C1-topology,
that is, from the monotonicity shown in Part (i) we infer

L(Θ − hl) = L (γΘ−hl )
l→∞−→ L (γ ) � L(Θ) �

(i)
L(Θ − hi ) for all i ∈ N,

which proves limi→∞ L(Θ − hi ) = L (γ ) = L(Θ). In particular, γ ∈ CΘ is also
a solution to Problem (P).

By the subsequence principle, we finally conclude limh→+0 L(Θ−h) = L(Θ).
(Notice however, that a different subsequence h̃i → +0 could lead to a different
solution γ̃ �= γ in the C1-limit γ

Θ−h̃i
→ γ̃ ∈ CΘ with L (γ̃ ) = L (γ ) = L(Θ).)

(iv) Proposition 1 applied to the solution γΘ ∈ CΘ of Problem (P) gives

L(Θ) = L (γΘ) =
Proposition 1

V (TarcsinΘ(γΘ))

2Θ
= V (Θ)

2Θ
.

Since L : (0, 1] → [2π,∞) is (strictly) monotone, it is differentiable almost
everywhere on (0, 1].

(v) By Proposition 1 we have for all Θ ∈ (0, 1]

L(Θ) = L (γΘ) =
Proposition 1

V (TarcsinΘ(γΘ))

2Θ
� 4π

2Θ
= 2π

Θ
.

On the other hand, the great circle cg ∈ C1 ⊂ CΘ has length 2π = L (cg) �
L (γΘ) = L(Θ) for all Θ ∈ (0, 1]. The corresponding inequality for the volume
V (Θ) follows now from Part (iv).

(vi) For Θi → Θ ∈ (0, 1] as i → ∞ consider a subsequence {Θ j } ⊂ {Θi }
such that L(Θ j ) → lim supi→∞ L(Θi ) as j → ∞. If there are infinitely many
j such that Θ j � Θ , then we obtain from Part (iii) lim supi→∞ L(Θi ) =
lim j→∞ L(Θ j ) = L(Θ). On the other hand, for all j with Θ j > Θ we have, by
Part (i), L(Θ) > L(Θ j ) such that L(Θ) � lim j→∞ L(Θ j ) = lim supi→∞ L(Θi ).

Part (iv) implies

lim sup
i→∞

V (Θi ) =
(iv)

lim sup
i→∞

2Θi L(Θi ) � 2ΘL(Θ) =
(iv)

V (Θ).

��
The lower bound for the volume V (Θ) = V (TarcsinΘ(γΘ)) depicted in Fig. 4

improves the lower estimate in Lemma 7 (v) considerably, and is established in
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Lemma 8. (Lower volume bound for solutions) The function V : (0, 1] → (0, 4π ]
is differentiable almost everywhere on (0, 1] and satisfies the estimate

4π

Θn
Θ � V (Θ) � 4π for all Θ � Θn = sin

π

2n
, n ∈ N.

In particular, 4π � V (Θ) � 4πΘ/Θn for Θ ∈ (Θn+1,Θn], n ∈ N.

Notice that we can use Proposition 1 twice to interpret the lower bound for V (Θ)
as the volume of the tube TarcsinΘ(β

n,k). In fact, for ϑ := arcsinΘ one has

V (Tϑ(β
n,k)) =

Proposition 1
2ΘL (βn,k) =

Proposition 1
2Θ

V (Tϑn (β
n,k))

2Θn
= 4πΘ

Θn
.

Proof. Combining Parts (i) and (iv) of Lemma 7 we obtain that V is differentiable
almost everywhere and satisfies

0 � L ′(Θ) =
(

V (Θ)

2Θ

)′
= − 1

2Θ2 V (Θ)

+ 1

2Θ
V ′(Θ) for almost everywhere Θ ∈ (0, 1],

that is,

1

2Θ
V ′(Θ) � 1

2Θ2 V (Θ) for almost everywhere Θ ∈ (0, 1].

Since V (Θ) � 4πΘ > 0 for all Θ ∈ (0, 1] by Lemma 7 (v), we conclude

(log V (Θ))′ = V ′(Θ)
V (Θ)

� 1

Θ
for almost everywhere Θ ∈ (0, 1].

Integrating this inequality on [Θ,Θn] for Θ ∈ (0,Θn), n ∈ N, we obtain with
V (Θn) = 4π

log 4π − log V (Θ) = log V (Θn)− log V (Θ) �
∫ Θn

Θ

1

Θ
dΘ = logΘn − logΘ,

hence 4π
Θn
Θ � V (Θ). ��

Corollary 2. V (Θ) → 4π as Θ → +0.

Proof. For Θ ∈ (Θn+1,Θn] we have

V (Θ) � 4πΘ

Θn
>

4πΘn+1

Θn
= 4π

sin π
2n+2

sin π
2n

n→∞−→ 4π.

��
This asymptotic behaviour of the volume confirms our intuition that it is easier

to cover the sphere with thin ropes than with thick ones—there is simply more
freedom with long and thin ropes to “fill” the gaps on the surface of the unit sphere.
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4. Uniqueness

In the following we are going to work with geodesic balls Bϑ(ξ) := {η ∈ S
2 :

dist
S

2(η, ξ) < ϑ}. on the unit sphere. Furthermore, we will use the notation

Bϑ(ξ) := {η ∈ S
2 : dist

S
2(η, ξ) � ϑ},

∂Bϑ(ξ) := {η ∈ S
2 : dist

S
2(η, ξ) = ϑ}.

Proposition 2. Let γ : S
1 → S

2 be a closed, rectifiable and continuous curve with
positive thickness Θ := �[γ ] > 0, ϑ := arcsinΘ � π/2, and ξ ∈ S

2 such that

γ (S
1
) ∩ Bϑ(ξ) = ∅. (4.1)

If there are two points P, Q ∈ ∂Bϑ(ξ)∩γ (S1
) with 0 < dist

S
2(P, Q) < 2ϑ, then

the shorter circular sub-arc of the geodesic circle ∂Bϑ(ξ) connecting P and Q is
contained in γ (S1

).

Proof. Recall from [13, Lemma 2] that the arc-length parametrisation Γ : SL →
S

2 of γ (with length L := L (γ ) > 0) is of class C1,1(SL ,R
3
), which allows us

in the following to speak of tangential properties of γ .
We set

ϑ0 := ϑ, ϑ1 := 1

2
dist

S
2(P, Q) < ϑ0,

ξ0 := ξ, ξ1 := cg(ϑ1),

where cg : [0, 2π ] → S
2 denotes the unit speed parametrisation of the great circle

through P and Q with cg(0) = P and cg(2ϑ1) = Q. Thus P and Q are antipodal
points on the geodesic circle ∂Bϑ1(ξ1). Since by (4.1) γ is tangent to the geo-
desic circle ∂Bϑ0(ξ0) at P and Q, it cannot be tangent to ∂Bϑ1(ξ1) at P or Q.
Hence Bϑ1(ξ1)∩γ (S1

) �= ∅, and we consider the family of geodesic balls Bϑs (ξs)

defined by

ξs := c̃g(s) and ϑs := |P − ξs | for s ∈ [0, 1],
where c̃g : [0, 2π/dist

S
2(ξ0, ξ1)] → S

2 is the constant speed parametrisation of
the great circle through ξ0 and ξ1 with c̃g(0) = ξ0, c̃g(1) = ξ1, and |c̃g

′| ≡
dist

S
2(ξ0, ξ1). We notice that ϑs < ϑ0 for all s ∈ (0, 1], and claim that

∂Bϑs (ξs) ∩ γ (S1
) = {P, Q} for all s ∈ (0, 1]. (4.2)

Indeed, otherwise we would have (at least) three points of the curve on a geodesic
circle ∂Bϑs∗ (ξs∗) for some s∗ ∈ (0, 1], which is a Euclidean circle of (Euclidean)
radius sin ϑs∗ < sin ϑ0 = Θ = �[γ ]. This, however, contradicts the definition of
�[γ ] in (1.1).

By (4.1) γ is tangent to ∂Bϑ0(ξ0) at P and Q, and since the circular arcs
∂Bϑs (ξs) sweep out the open region Bϑ1(ξ1)\Bϑ0(ξ0), that is,

Bϑ1(ξ1)\Bϑ0(ξ0) ⊂
⋃

s∈(0,1]
∂Bϑs (ξs)\Bϑ0(ξ0),



330 Henryk Gerlach & Heiko von der Mosel

we conclude from (4.2) that the shorter sub-arc γ1 ⊂ γ connecting P and Q must be
equal to the shorter circular arc on ∂Bϑ0(ξ0) = ∂Bϑ(ξ) with endpoints P and Q.
��
Remark 2. An analogous statement also holds for closed space curves γ : S

1 →
R

3 withΘ := �[γ ] > 0 [8, Satz 3.27]: If γ has empty intersection with a Euclidean
ball BΘ(x), such that the boundary ∂BΘ(x) contains two non-antipodal curve
points P and Q, then the shorter sub-arc of the great circle connecting P and
Q on ∂BΘ(x) is contained in γ (S1

). The fact that γ connects P and Q within
the sphere ∂BΘ(x) can be proven with an argument similar to that in the proof of
Proposition 2. This connecting arc γP Q lies, indeed, on a great circle, because any
triple of distinct curve points x , y, and z on γP Q span a plane whose intersection
with BΘ(x) is a circle of radius, at most, Θ. This implies, by Definition (1.1) of
the thickness �[γ ] = Θ , that this intersection circle must have radius Θ , that is,
is a great circle, which is uniquely determined by x and y alone, so that any other
point z̃ distinct from x , y, and z must lie on the same great circle.

Lemma 9. (Characterisation of sphere filling curves) For a closed rectifiable con-
tinuous curve γ : S

1 → S
2 with positive thickness Θ := �[γ ] > 0, ϑ :=

arcsinΘ � π/2, the following two statements are equivalent:

(i) V (Tϑ(γ )) = 4π;
(ii) For any ξ ∈ S

2 such that Bϑ(ξ) ∩ γ (S1
) = ∅ one of the following is true:

(a) ∂Bϑ(ξ)∩ γ (S1
) = {P, Q} with dist

S
2(P, Q) = 2ϑ (antipodal points);

(b) ∂Bϑ(ξ) ∩ γ (S1
) = {semicircle of spherical radius ϑ};

(c) ∂Bϑ(ξ) ∩ γ (S1
) = ∂Bϑ(ξ).

Proof. (i) ⇒ (ii). Let ξ ∈ S
2 be a point such that the open geodesic ball Bϑ(ξ)

has empty intersection with the curve γ (S1
). We claim that

S := ∂Bϑ(ξ) ∩ γ (S1
) �= ∅.

Indeed, otherwise we could infer δ := dist
S

2(ξ, γ (S
1
))− ϑ > 0, so that Tϑ(γ ) ∩

Bδ(ξ) = ∅, which implies V (Tϑ(γ )) � V (S2\Bδ(ξ)) < 4π , contradicting
Assumption (i).

If the closed set S is contained in an open semicircle on ∂Bϑ(ξ), then we find
two points η, ζ ∈ S such that9

0 � dist
S

2(η, ζ ) = max
S ×S

dist
S

2(·, ·) < 2ϑ. (4.3)

Applying Proposition 2 we infer that the whole shorter sub-arc of ∂Bϑ(ξ) connect-
ing η and ζ is contained in S , and is (by (4.3)) consequently equal to S . On this
circular arc we find a point q ∈ S with dist

S
2(q, η) = dist

S
2(q, ζ ), which can be

joined with the centre ξ by the unique unit speed geodesic given by the great circle
cg : [0, 2π ] → S

2 with cg(0) = q, c′
g(0) ⊥ S , and cg(ϑ) = ξ.

9 We also allow the coincidence η = ζ (in which case S = {η}) at this stage.
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We claim that there is a small number ε > 0, such that

δ := dist
S

2(cg(ϑ + ε), γ (S
1
))− ϑ > 0,

which would imply that Tϑ(γ ) ∩ Bδ(cg(ϑ + ε)) = ∅, hence V (Tϑ(γ )) �
V (S2\Bδ(cg(ϑ + ε))) < 4π contradicting Assumption (i) and therefore ruling
out the situation that S is contained in any open semicircle.

To prove the claim, we suppose to the contrary that there is a sequence of curve
points pn ∈ γ (S1

) such that

dist
S

2(cg(ϑ+1/n), γ (S1
))=dist

S
2(cg(ϑ+1/n), pn)�ϑ for all n ∈ N.

(4.4)

Since γ (S1
) is compact we may assume that pn → p ∈ γ (S1

) as n → ∞. From
Bϑ(ξ) ∩ γ (S1

) = ∅ we infer from (4.4) as n → ∞
ϑ � dist

S
2(ξ, p) = dist

S
2(cg(ϑ), p) = lim

n→∞ dist
S

2(cg(ϑ + 1/n), pn) � ϑ, that is

p ∈ ∂Bϑ(ξ) ∩ γ (S1
) = S . (4.5)

On the other hand, one has

dist
S

2(x,S ) �
∣∣∣∣η + ζ

2
− ξ

∣∣∣∣ =: c(η, ζ ) > 0

for all x ∈ Bϑ(cg(ϑ + 1/n))\Bϑ(ξ), since the circular arc S (with endpoints
η and ζ ) is strictly shorter than πϑ . Consequently, dist

S
2(pn,S ) � c(η, ζ ) > 0

for all n ∈ N, and hence dist
S

2(p,S ) � c(η, ζ ) > 0 contradicting (4.5), which
proves the claim.

Since we know now that S is not contained in any open semicircle on ∂Bϑ(ξ),
we know that �S � 3 unless S consists precisely of two antipodal points, which
is case (a).

If S is contained in a closed semicircle, it must contain the endpoints p1,

p2 of that semicircle (otherwise it would be contained in a different open semi-
circle, which was excluded above). Since �S � 3 we find (at least) one point
q ∈ S \{p1, p2} so that dist

S
2(p1, q) < 2ϑ and dist

S
2(q, p2) < 2ϑ. Conse-

quently, we can apply Proposition 2 to find that S equals the closed semicircle
with endpoints p1 and p2, which is case (b).

Finally, we have to deal with the situation that S is not contained in any closed
semicircle. Consider q ∈ S and its antipodal point q ′ ∈ ∂Bϑ(ξ).

If q ′ ∈ S , then we find on each of the two open semicircles C1, C2 ⊂ ∂Bϑ(ξ)

bounded by q and q ′ (at least) one point of S , say p1 ∈ S ∩C1 and p2 ∈ S ∩C2.

Otherwise S would be contained in one of the two closed semicircles Ci ∪{q, q ′},
i = 1, 2.

Since p1 and p2 are not antipodal to q or q ′, we can apply Proposition 2 to
connect q and q ′ with p1 and p2 by circular arcs contained in S , which proves
S = ∂Bϑ(ξ), that is, we are in situation (c).

If, on the other hand, q ′ �∈ S we have dist
S

2(q ′,S ) > 0, and we can take the
largest open circular arc C on ∂Bϑ(ξ)\S containing q ′. By definition, this arc has
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endpoints p1, p2 ∈ S , and C is strictly shorter than a semicircle, since otherwise
S would be contained in a closed semicircle. Thus we can apply Proposition 2 to
p1 and p2, to p1 and q, and to p2 and q, respectively, to find that the circular arcs
on ∂Bϑ(ξ) connecting p1 and p2, p1 and q, and p2 and q, are contained in S ,
which proves S = ∂Bϑ(ξ) also in this case. So we are in situation (c) again.

(ii) ⇒ (i). For any ξ ∈ S
2 with dist

S
2(ξ, γ (S

1
)) � ϑ and with (a), or (b), or

(c) we infer the existence of a point pξ ∈ γ (S
1
) with dist

S
2(ξ, pξ ) = ϑ. Hence

S
2 ⊂ Tϑ(γ ) ⊂ S

2
, which implies 4π = V (Tϑ(γ )) = V (Tϑ(γ )). ��

Lemma 10. (Characteristic patterns of sphere filling curves I) Let γ : S
1 → S

2

be a closed rectifiable continuous curve with positive thickness Θ := �[γ ] > 0,
ϑ := arcsinΘ � π/2 such that V (Tϑ(γ )) = 4π. Suppose that there is a plane
E ⊂ R

3 containing 0 ∈ R
3 such that k := �(E ∩ γ (S1

)) < ∞.Moreover, assume
that the intersection {p1, . . . , pk} := E ∩ γ (S1

) satisfies

(i) dist
S

2(pl , pl+1) = 2ϑ for all l = 1, . . . , k, where we set pk+1 := p1.

(ii) γ intersects E orthogonally at each point pl , l = 1, . . . , k.

Then k = 2n for some n ∈ N, and γ (S1
) contains a semicircle of (Euclidean)

radius Θ in each of the two half-spaces bounded by E.

Proof. The positive thickness Θ guarantees that γ is simple, and since γ is also
closed, we find that k is even and write k =: 2n for some n ∈ N.

E cuts the sphere S
2 into two hemispheres S

w and S
e (both taken to be relatively

closed in S
2). It suffices to give the argument for S

w.
Every intersection point pl ∈ E ∩γ (S1

) is connected by the curve γ within S
w

to some other intersection point pm ∈ E ∩ γ (S1
), l �= m. Since S

w is homeomor-
phic to a flat disk and γ is simple, we find two distinct points pi , p j ∈ E ∩ γ (S1

)

with dist
S

2(pi , p j ) = 2ϑ such that the closed sub-arc γ̃ ⊂ S
w ∩ γ connecting pi

and p j within S
w satisfies γ̃ ∩ E = {pi , p j }.

We consider the geodesic ball Bϑ(ξ) that contains pi and p j as antipodal points
in its boundary ∂Bϑ(ξ). Since γ intersects E orthogonally in pi and p j it is tan-
gent to ∂Bϑ(ξ) in pi and p j . The spherical torus property (ST) (see Remark 1)
implies that

γ (S
1
) ∩ Bϑ(ξ) = ∅. (4.6)

If γ̃ ∩ ∂Bϑ(ξ)\{pi , p j } �= ∅ then there is (at least) one point q ∈ γ̃ ∩ ∂Bϑ(ξ)

with 0 < dist
S

2(q, pi ) < 2ϑ and 0 < dist
S

2(q, p j ) < 2ϑ, so that we can apply
Proposition 2 to pi and q, and to p j and q, to find that γ (S1

) contains the closed
semicircle ∂Bϑ(ξ)∩S

w
,which has Euclidean radiusΘ = sin ϑ , and we are done.

If γ̃ ∩ ∂Bϑ(ξ) = {pi , p j } we argue as follows. For an arbitrary q ∈ γ̃ we
consider the unit speed geodesic ηq : [0, 2π ] → S

2 starting in q perpendicu-
larly to γ̃ , that is, with ηq(0) = q, η′

q(0) ⊥ γ at q, and |η′
q | ≡ 1 on [0, 2π ],

so that for 0 < ε � 1, the point ηq(ε) is contained in the open spherical region
R ⊂ S

2 bounded by the curve γ̃ ∪(∂Bϑ(ξ)∩S
e
). Notice, first, that ηpi (2ϑ) = p j ,

ηp j (2ϑ) = pi , and also that R ∩ γ (S1
) = ∅ by our choice of the points pi , p j ,

and by (4.6).
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We infer from the spherical torus property (ST), as before, that for q ∈ γ̃

we have

γ (S
1
) ∩ Bϑ(ηq(ϑ)) = ∅. (4.7)

Relation (4.7) readily implies

Bϑ(ηq(ϑ)) ⊂ R for all q ∈ γ̃ . (4.8)

Since V (Tϑ(γ )) = 4π , we obtain by Lemma 9 either

∂Bϑ(ηq(ϑ)) ∩ γ (S1
) = {q, ηq(2ϑ)} (antipodal points), (4.9)

a case which will be excluded later, or (in case (b) or (c) of Lemma 9) γ (S1
) con-

tains a semicircle Sq := ∂Bϑ(ηq(ϑ))∩ γ (S1
) (containing q) of spherical radius ϑ

and therefore of Euclidean radius Θ = sin ϑ.
In that case, we have

Sq ∩ S
w ⊂ γ̃ (4.10)

because γ̃ is the connected sub-arc of γ ∩ S
w containing the point q.

We claim that

Sq ∩ (Se\E) = ∅, (4.11)

which means Sq ⊂ S
w, which is the conclusion of the proof.

To show (4.11) we assume that there is some point q̃ ∈ Sq ∩ (Se\E), which
implies that pi ∈ Sq or p j ∈ Sq by (4.10) and by connectivity of Sq and γ̃ whose
endpoints are pi and p j . Relation (4.6) implies that Sq is tangent to ∂Bϑ(ξ) at pi

or p j . For Sq is a semicircle of spherical radius ϑ we have either Sq ⊂ ∂Bϑ(ξ)

contradicting the fact that q �∈ ∂Bϑ(ξ), or

∂Bϑ(ξ) ∩ ∂Bϑ(ηq(ϑ)) = {pi } or = {p j }.
In that case, we conclude with (4.7) that ηq(ϑ) �∈ R contradicting (4.8), which
proves (4.11).

Finally, we need to exclude option (4.9) to finish the whole proof. Since positive
thickness Θ = �[γ ] implies that the arc-length parametrisation of γ is of class
C1,1, in particular that the tangent vector is continuous, we infer that the antip-
odal mapping f : γ̃ −→ S

2
, q �→ f (q) := ηq(2ϑ) is continuous. Moreover,

f (q) ∈ γ̃ for all q ∈ γ̃ , which can be seen as follows. According to (4.9) we have
f (q) ∈ γ (S

1
) which yields by (4.6) the relation f (q) �∈ Bϑ(ξ). This, together

with (4.8), implies that f (q) ∈ [
∂Bϑ(ξ) ∩ S

e] ∪
[
S
w ∩ R

]
, where R denotes

the relative closure of R as a subset of S
2
. If, however, f (q) were contained in

∂Bϑ(ξ)∩S
e, then we could conclude by (4.6) that γ is tangent to ∂Bϑ(ξ) in f (q),

which implies that q as the antipodal point of f (q) is also contained in ∂Bϑ(ξ), a
contradiction.

Therefore f (q) ∈ S
w∩R. Since f (q) ∈ γ (S1

) and since γ (S1
)∩

[
S
w ∩ R

]
=

γ̃ we have shown that f is a continuous mapping from γ̃ to γ̃ , and we may apply
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Brouwer’s fixed point theorem to infer the existence of a point q∗ ∈ γ̃ with
ηq∗(2ϑ) = f (q∗) = q∗ = ηq∗(0), which would imply 2ϑ = 2π because ηq∗

parametrises a great circle on S
2 with unit speed. But the last equation is absurd,

since we assumed ϑ � π/2. ��
Lemma 11. (Characteristic patterns of sphere filling curves II) Let γ : S

1 → S
2

be a closed rectifiable continuous curve with positive thickness Θ := �[γ ] > 0,
ϑ := arcsinΘ � π/2 such that V (Tϑ(γ )) = 4π. Suppose that there is a point
ξ ∈ S

2 such that the intersection ∂Bϑ(ξ) ∩ γ (S1
) contains an open semicircle S,

and let S
w ⊂ S

2 be the hemisphere containing S such that ∂Sw intersects ∂Bϑ(ξ)

orthogonally. Then there exists an n ∈ N such that ϑ = π/(2n), and

γ (S
1
) ∩ S

w =
n⋃

i=1

∂B(2i−1)ϑ (ξ) ∩ S
w
. (4.12)

In other words, ifγ contains one semicircle S = S
w∩∂Bϑ(ξ), thenγ (S1

)∩S
w con-

sists of a whole stack of latitudinal semicircles with mutual spherical distance 2ϑ.

Proof. If ϑ = π/2 we find n = 1 and γ (S1
) = ∂Bϑ(ξ) is the only admissible

curve, and (4.12) follows.

For ϑ ∈ (0, π/2) there exists n = n(ϑ) ∈ N\{1} so that ϑ ∈
[
π
2n ,

π
2(n−1)

)
.

We will show that ϑ = π/(2n) and that (4.12) holds. Notice first that the spherical
torus property (ST) (see Remark 2.2) applied to any point q ∈ S1 := S implies

γ (S
1
) ∩ Bϑ(ξ) = ∅. (4.13)

For an arbitrary point p ∈ S1, consider the unit speed geodesic ηp : [0, 2π ] → S
2

starting in p in the direction orthogonal to S1, that is, with ηp(0) = p, η′
p(0) ⊥ S1

at p and |η′
p| ≡ 1 on [0, 2π ], so that for all s ∈ (0, 2π − 2ϑ) the point ηp(s)

is contained in the open region S
2\Bϑ(ξ). Hence S1, and therefore γ , is tangent

to the geodesic circle ∂Bϑ(ηp(ϑ)) in the point p. This implies by means of the
spherical torus property (ST)

Bϑ(ηp(ϑ)) ∩ γ (S1
) = ∅ for all p ∈ S1. (4.14)

According to Lemma 9 there is at least one point p̃ ∈ ∂Bϑ(ηp(ϑ)) ∩ γ (S1
)\{p}.

If p̃ is not antipodal to p on ∂Bϑ(ηp(ϑ)), that is if p̃ �= ηp(2ϑ), then p and p̃ are
contained in a closed semicircle by virtue of options (b) and (c) in Lemma 9. There-
fore we find a point q ∈ ∂Bϑ(ηp(ϑ))∩γ (S1

)\{p} sufficiently close to p such that
the unit speed geodesic τq : [0, 2π ] → S

2 with τq(0) = q, τ ′
q(0) ⊥ ∂Bϑ(ηp(ϑ))

at q, τq(s) ∈ S
2\Bϑ(ηp(ϑ)) for all s ∈ (0, 2π − 2ϑ), intersects S1 sufficiently

early, that is, such that

τq(σ ) ∈ S1 ⊂ γ (S
1
) for some σ ∈ (0, ϑ).

But this implies γ (S1
)∩Bϑ(τq(ϑ)) �= ∅ contradicting the spherical torus property

(ST) at the point q ∈ γ (S1
). Hence we have shown that

∂Bϑ(ηp(ϑ)) ∩ γ (S1
) = {p, ηp(2ϑ)} for all p ∈ S1.
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Since S1 is a semicircle contained in ∂Bϑ(ξ), the set

S2 :=
⋃
p∈S1

ηp(2ϑ) ⊂ γ (S
1
)

is an open semicircle contained in ∂B3ϑ(ξ) unless ϑ = π/3 (hence n = 2) in
which case S2 degenerates to a single point, namely the antipodal point ξ̄ of ξ . But
this is absurd taking (4.14) into account, since γ is a closed curve with a continuous
tangent.

We proceed with this construction by setting

Si :=
⋃
p∈S1

ηp(2(i − 1)ϑ) for i = 3, . . . , n,

and we have η′
p(2(i − 2)ϑ) ⊥ Si−1 at the points ηp(2(i − 2)ϑ) for i = 3, . . . , n,

so that for all s ∈ (2(i − 2)ϑ, 2π − 2(i − 2)ϑ) the point ηp(s) is contained in
S

2\B2(i−2)ϑ (ξ). Hence Si−1, and therefore γ , is tangent to each of the geodesic
circles ∂Bϑ(ηp((2i − 3)ϑ)) in the point ηp(2(i − 2)ϑ) for i = 3, . . . , n, which
implies by means of the spherical torus property (ST)

Bϑ(ηp((2i − 3)ϑ)) ∩ γ (S1
) = ∅ for all p ∈ S1, i = 3, . . . , n. (4.15)

Using Lemma 9, as before, we can prove for each p ∈ S1 that

∂Bϑ(ηp((2i − 3)ϑ))∩γ (S1
)={ηp(2(i −2)ϑ), ηp((2i −2)ϑ)} for i =3, . . . , n.

Each of the sets Si is an open semicircle contained in ∂B(2i−1)ϑ (ξ) ∩ S
w,

i = 1, . . . , n − 1, since

ϑ + (2i − 2)ϑ � (2n − 3)ϑ <
2n − 3

2n − 2
π < π for all i = 1, . . . , n − 1.

If ϑ = π/(2n−1) then Sn degenerates to a single point (since ϑ+(2n−2)ϑ = π ),
which contradicts (4.15) for i = n, in combination with the fact that γ is closed
and has a continuous tangent.

If ϑ ∈ (π/(2n − 1), π/(2n − 2)), then ϑ + (2n − 2)ϑ = (2n − 1)ϑ > π , so
that Sn ⊂ S

e is an open semicircle of spherical radius (2n −1)ϑ−π < ϑ about the
antipodal point ξ̄ of ξ , contradicting the definition of thicknessΘ = �[γ ] = sin ϑ.

If ϑ ∈ (π/(2n), π/(2n − 1)), then ϑ + (2n − 2)ϑ < π , hence Sn ⊂ S
w is an

open semicircle of spherical radius π−(2n−1)ϑ < ϑ about ξ̄ , again contradicting
the definition of thickness.

The only remaining angle isϑ = π/(2n), so that Sn ⊂ S
w is an open semicircle

of spherical radius π − (2n − 1)ϑ = π/(2n) about ξ̄ , and we have (4.12) in virtue
of (4.15), if we add the endpoints of the open semicircles Si , i = 1, . . . , n, using
the continuity of γ . ��

Now we conclude this section with the
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Proof of Theorem 4. If ϑ = π/2 we find n = 1, and the only possible solution is
the equator β1,0, and we are done.

Forϑ ∈ (0, π/2) there is k = k(ϑ) ∈ N\{1, 2} such that 2(k − 1)ϑ < 2π � 2kϑ.
First we are going to prove that there is a closed semicircle S contained in

γ (S
1
). For this purpose we fix p ∈ γ (S

1
) and define ηp : [0, 2π ] → S

2 to be
the unit speed geodesic starting in p in the direction orthogonal to γ , that is, with
ηp(0) = p, η′

p(0) ⊥ γ at p and |η′
p| ≡ 1 on [0, 2π ]. The spherical torus property

(ST) applied to p implies

γ (S
1
) ∩ Bϑ(ηp(ϑ)) = ∅. (4.16)

According to Lemma 9 either ηp(2ϑ) �∈ γ (S1
), in which case p is contained in a

closed semicircle S ⊂ Bϑ(ηp(ϑ)) with

S ⊂ γ (S
1
), (4.17)

or ηp(2ϑ) ∈ γ (S
1
). In the latter case, (4.16) implies that γ is tangent to

∂Bϑ(ηp(ϑ)), that is, η′
p(2ϑ) ⊥ γ at ηp(2ϑ). In this way we investigate the whole

collection of balls Bϑ(ηp((2i − 1)ϑ)) for i = 1, . . . , k, and we claim that either
we find a closed semicircle S on one of the geodesic circles ∂Bϑ(ηp((2i − 1)ϑ)),
i = 1, . . . , k, or ϑ = π/k, and

ηp(2iϑ) ∈ γ (S1
), ηp(2kϑ) = p, η′

p(2iϑ) ⊥ γ at ηp(2iϑ) (4.18)

for i = 1, . . . , k. But (4.18) describes exactly the situation assumed in Lemma 10
so that we can conclude the existence of a closed semicircle S of spherical radius
ϑ in each of the two hemispheres bounded by ηp([0, 2π ]).

To prove the claim we assume that none of the circles ∂Bϑ(ηp((2i − 1)ϑ)),
i = 1, . . . , k, contains a closed semicircle S ⊂ γ (S

1
). Then we can apply Lemma 9

and the torus property successively – as demonstrated once above for i = 1 – to
conclude that

γ (S
1
) ∩

k⋃
i=1

Bϑ(ηp((2i − 1)ϑ)) = ∅. (4.19)

This implies that 2π = 2kϑ , since the inequality (2k − 2)ϑ < 2π < 2kϑ leads to
a contradiction: If (2k − 1)ϑ � 2π , then (2k − 1)ϑ − 2π < ϑ , which implies

p ∈ Bϑ(ηp((2k − 1)ϑ)) (4.20)

contradicting (4.19). If (2k − 1)ϑ < 2π , then 2π − (2k − 1)ϑ < ϑ , which leads
to (4.20) as well, again contradicting (4.19). Hence we have shown ϑ = π/k and
the properties (4.18) follows from our construction. As in the proof of Lemma 10
we find k = 2n for some n ∈ N\{1}, since γ is simple and closed.

Having established the existence of a closed semicircle S contained in γ (S1
)∩

Bϑ(ηp((2 j − 1)ϑ)) for (at least) one j ∈ {1, . . . , 2n}, we can use Lemma 11 to
conclude that

γ (S
1
) ∩ S

w =
n⋃

i=1

∂B(2i−1)ϑ (ηp((2 j − 1)ϑ)) ∩ S
w
,
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where S
w denotes the hemisphere containing S such that ∂Sw intersects ∂Bϑ(ηp

((2 j − 1)ϑ)) orthogonally.
With that knowledge we observe that the intersection γ (S1

) ∩ ∂Sw consists of
2n equidistant points in which γ intersects the plane containing S

w orthogonally.
Therefore Lemma 10 is applicable to conclude the existence of an open semicircle
S∗ of spherical radius ϑ contained in γ (S1

) ∩ S
e
, where S

e := S
2\Sw. Again by

Lemma 11, one finds that also

γ (S
1
) ∩ S

e =
n⋃

i=1

∂B(2i−1)ϑ (ξ) ∩ S
e for some ξ ∈ S

e
.

But we have shown in Section 2 that the only possible closed and simple curves
made of two stacks of equidistant latitudinal semicircles are the curves βn,k . ��

5. Open curves

We now want to sketch that a similar construction is also possible for open
curves. A tubular neighbourhood of an open curve γ in R

3 consists of three parts: a
half-ball cap at the beginning and at the end of the curve and a middle part consisting
of the disjoint union of normal discs of given radius centred at the curve.

Problem 1 (P’). Given a constant Ω ∈ (0, 1], find a curve γΩ in the class

C′
Ω := {γ ∈ C1,1(I,R3

) : |γ | = 1 & |γ ′|> 0 on I,�[γ ] �Ω, |γ (1)− γ (0)| � 2Ω}
with I = [0, 1] such that L (γΩ) = supC′

Ω
L .

With only slight modifications using the additional assumption on the endpoints
of the curves in competition, one can prove as in Theorem 1 the existence of solu-
tions for Problem (P’) for any given Ω ∈ (0, 1]. Here, the crucial C1,1-estimate
from [13, Lemma 2] for closed curves leading to (3.20) in the proof of Theorem 1
is replaced by the corresponding C1,1-estimate proved in [8, Satz 2.14] for open
curves.

A variant of Proposition 1 (Hotelling’s theorem) for open curves implies that
the volume of the middle part is, again, proportional to the length of the curve,
while the volume of the caps stays fixed for fixed radius.

For certain values ωm = π/m, 2 � m ∈ N of spherical thickness, one can
perform a similar construction as in the case of closed curves. There are in fact two
slightly different situations, depending on whether m is even or odd.

(i) For m even, consider m/2 semicircles with spherical distance 2ωm stacked
up on the western hemisphere as described in the introduction. For the eastern
hemisphere we take the north pole as a single point, together with m/2 − 1 stacked
up semicircles with spherical distance 2ωm and, finally, the south pole as a second
single point. After turning the eastern hemisphere by the angle ωm , all endpoints
of the western semicircles match with the semicircle endpoints and the two sin-
gle points on the eastern hemisphere. Turning further by the amount of k · 2ωm ,
k ∈ {0, . . . ,m/2 −1}, one can try to construct a single open connected curve αm,k .
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Note that the first member of this family (for m = 2, k = 0) is a semi great-circle,
which is easily seen to be the unique solution for thickness ω2 = π/2.

(ii) For m odd, start with a single point C0 in the north pole, then stack up
(m − 1)/2 circles Ci of spherical radius 2ωm around the north pole with the last
circle Cm−1 around the south pole of spherical radius ωm . The discontinuous curve
has a tubular neighbourhood of spherical thickness ωm (note that the neighbour-
hood about the point C0 is just a geodesic ball). Next, cut the sphere along a plane
through the poles (cutting C0 in two ‘half-points’) and turn by k · 2ωm . We denote
this possibly discontinuous curve again by αm,k .

As in the proof of Lemma 1 one can show that the tubular neighbourhood
remains a tubular neighbourhood of the same spherical radius after the turning
process and the neighbourhoods of the ‘half-points’ form the spherical caps about
the endpoints of the curve. To investigate under which circumstances the resulting
curves αm,k constitute one open connected arc, we use the same algebraic methods
as in Section 2.

Lemma 12. For every even m ∈ N and k ∈ {0, . . . ,m/2 − 1} with gcd(2k −
1,m) = 1, the appropriately re-parametrised curve αm,k : I → S

2 is a connected
open, piecewise circular curve whose constant speed parametrisation is of class
C1,1(I,R3

) satisfying

�[αm,k] = Ωm = sinωm = sin
π

m
.

Moreover, for distinct k1, k2 ∈ {0, . . . ,m/2 − 1} the curves αm,k1 and αm,k2 are
not equivalent. There are ϕ(m) distinct open connected curves for each m.

Proof. As mentioned above, only the algebraic arguments need to be adjusted
to the present situation of open curves. Set n := m/2 ∈ N. First consider the
western hemisphere S

w and number the 2n endpoints of the (all proper) semi-
circles counter-clockwise from 0 to 2n − 1, such that checkpoint number i and
2n − i − 1 correspond to the i th semicircle (i = 0, . . . , n − 1); see Fig. 6. For the
eastern hemisphere, S

e, number the points from 0 to 2n − 1, where 0 and n corre-
spond to the single points, while i and 2n − i correspond to the endpoints of the i th
semi-circle (i = 1, . . . , n − 1). When turning the hemisphere S

e by multiples of
2ω2n , the curve closes again in a nice C1-fashion (note that S

e was already turned
once by ω2n to align the endpoints during construction). Since there are only two
endpoints, we will arrive at one open curve and, possibly, several closed curves.

The semicircles on S
w connect the checkpoints to n pairs, which is a permuta-

tion on the checkpointsw(i) ≡ −i − 1 mod 2n, so if we pass through checkpoint
i along the curve we will next pass through checkpoint w(i). Similarly, the eastern
hemisphere defines e(i) ≡ −i mod 2n. The twist by k · 2ωn is again described by
tk(i) ≡ i +k mod 2n.As we pass along the curve αm,k we run alternately through
the semicircles on each hemisphere. If we just entered a hemisphere through check-
point i , we will enter it the next time at the checkpoint t−k ◦ e ◦ tk ◦ w(i). For q
we find the formula

q(i) ≡ t−k ◦ e ◦ tk ◦ w(i) ≡ −((−i − 1)+ k)− k ≡ i − (2k − 1) mod 2n
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and after l-steps ql(i) ≡ i − (2k −1)l mod 2n. In order to see whether αm,k is one
connected open curve, we start at checkpoint 0 (which is one end) and note through
which checkpoints we pass. The run has to be reflected at the other endpoint, so
that we pass through the curve in two directions, passing each checkpoint on the
component, not only even or odd ones as in Lemma 1. So αm,k is one connected
open curve if and only if q consists of one cycle of length 2n. By Lemma 2 this is
the case if and only if gcd(2k − 1, 2n) = 1.

To count the solutions, note that gcd(2k, 2n) � 2 and therefore

#{k ∈ {1, . . . , n} : gcd(2k − 1, 2n) = 1}
= #{k ∈ {1, . . . , 2n − 1} : gcd(k, 2n) = 1} = ϕ(m). (5.1)

Each of the αm,k is easily seen to be unique up to rigid motions. ��
Lemma 13. For every odd m ∈ N and k ∈ {0, . . . ,m −1} with gcd(2k,m) = 1 the
appropriately re-parametrised curve αm,k : I → S

2 is a connected open, piece-
wise circular curve whose constant speed parametrisation is of class C1,1(I,R3

)

satisfying

�[αn,k] = Ωm = sinωm = sin
π

m
.

Moreover, for distinct k1, k2 ∈ {0, . . . ,m − 1} the curves αm,k1 and αm,k2 are not
equivalent. There are ϕ(m) distinct open connected curves for each m.

Proof. Set n := (m − 1)/2 ∈ N. As in the proof of Lemma 12, we check the order
in which the curve passes certain checkpoints and whether we can reach every
checkpoint in one run.

First consider the western hemisphere S
w and number the 2n + 1 endpoints of

the semicircles counter-clockwise from 0 to 2n, such that the checkpoint numbers
i and 2n + 1 − i correspond to the i th semicircle (i = 1, . . . , n − 1) and i = 0 cor-
responds to the single point. When turning the hemisphere S

e by multiples of 2ωn ,
the curve closes again in a nice C1-fashion. Since there are only two endpoints, we
will end up with at most one open connected curve and, possibly, several closed
curves. In the extreme case k = 0, the open curve degenerates to a point and we
have n closed circles.

The semicircles and the single point on the western hemisphere act again as a
permutation c(i) ≡ −i mod 2n + 1 on the checkpoints. The turn by k · 2ωn is
again described by tk(i) ≡ i + k mod 2n + 1. As we pass along the curve αm,k

we run alternately through the semicircles on each hemisphere. If we just entered
a hemisphere through checkpoint i , we will enter it the next time at the checkpoint
t−k ◦ c ◦ tk ◦ c(i). For q we find the formula

q(i) ≡ t−k ◦ c ◦ tk ◦ c(i) ≡ −((−i)+ k)− k ≡ i − 2k mod 2n + 1

and after l-steps ql(i) ≡ i − 2kl mod 2n + 1. In order to see whether αm,k is
one connected open curve, we start at checkpoint 0 (which is one endpoint) and
note through which checkpoints we pass. The run has to be reflected at the other
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endpoint, so that we pass through the curve in two directions, passing each check-
point on the component, not only even or odd ones as in Lemma 1. So αm,k is one
connected open curve if and only if q consists of one cycle of length m = 2n + 1.
By Lemma 2 this is the case if and only if gcd(2k, 2n + 1) = gcd(2k,m) = 1. To
count the number of solutions, note that gcd(2k, 2n + 1) = gcd(k, 2n + 1), since
2n + 1 is odd, and therefore

#{k ∈ {1, . . . ,m − 1} : gcd(2k,m) = 1}
= #{k ∈ {1, . . . ,m − 1} : gcd(k,m) = 1} = ϕ(m). (5.2)

��
Again, we can use the fact that the tubular neighbourhood of αm,k covers the

whole sphere to prove that they are the unique solutions:

Lemma 14. (Characterisation of open sphere filling curves) For an open rectifi-

able continuous curve γ : I → S
2 with positive thickness Ω := �[γ ] ∈ (0, 1),

ω := arcsinΩ ∈ (0, π/2), and with |γ (0) − γ (1)| � 2Ω the following two
statements are equivalent:

(i) V (Tω(γ )) = 4π;
(ii) For any ξ ∈ S

2 such that Bω(ξ) ∩ γ (I ) = ∅ one of the following is true:
(a) ∂Bω(ξ) ∩ γ (I ) = {P, Q} with dist

S
2(P, Q) = 2ω (antipodal points);

γ is tangential to ∂Bω(ξ) in at least one of the points P or Q;
(b) ∂Bω(ξ) ∩ γ (S1

) = {semicircle of spherical radius ω}.
Proof. The situation for open curves γ differs from that in Proposition 2 only in
the possibility that, apart from γ connecting two points along ∂Bω(ξ), these two
points could both be two endpoints of great arcs on γ (see [8, Satz 3.27]). However,
this case cannot happen here since we have |γ (1)− γ (0)| � 2Ω .

The cases (ii) ⇒ (i) and (i) ⇒ (b) and the first part of (a) are proved as in
Lemma 9. If P or Q is an inner point of γ the tangency is evident. Assume that
P and Q are the endpoints of γ , both not tangential. Then we could consider the
great circle η : (−π, π) → S

2
, η(0) = ρ intersecting the shorter great arc from P

to Q orthogonally in ρ. Then Bω+ε(η(ε)) would not intersect γ for small ε > 0
which would contradict Part (i). ��
Theorem 6. (Sphere filling open thick curves) If V (Tω(γ )) = 4π forω ∈ (0, π/2]
and some open curve γ ∈ C′

Ω withΩ = sinω ∈ (0, 1], then there is some m ∈ N

and k ∈ {0, . . . ,m/2} with gcd(2k − 1,m) = 1 if m is even, or k ∈ {0, . . . ,m − 1}
with gcd(2k,m) = 1 if m is odd, such that (i) ω = ωm, (ii) �[γ ] = Ωm, where
Ωm = sinωm, and (iii) γ = αm,k .

Proof. We will only sketch the proof, since the proof for open curves is slightly
easier than for closed curves. Indeed, we have two natural points to start our con-
struction if we equip γ with an orientation, namely the start- and endpoints of the
curve. Let ηp,t be the unit speed great-circle going through ηp,t (0) = p ∈ S

2 with
η′

p,t = t ∈ S
2. By Lemma 14 we have ηγ (0),t (2ω) ∈ γ (I ) for t · γ ′(0) � 0. If
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ω = π/2 then ηγ (0),t (2ω) = γ (1) is the other endpoint, and γ = α1,0 (otherwise
we would have |γ (0)−γ (1)| < Ω contradicting the fact that γ ∈ C′

Ω ). If ω < π/2
the set {ηγ (0),t (2ω) : t · γ ′(0) � 0, t ∈ S

2} will be a semicircle. As in Lemma 11,
we can continue this process stacking up semi-circles until we arrive either at

(i) a semi-circle of spherical radius ω, which implies ω = π/m for some odd
m ∈ N.

(ii) or a single point, which has to be γ (1). This implies ω = π/m for some even
m ∈ N.

In case (i) we can redo the construction with the endpoint and find the two hemi-
spheres each filled with (m − 1)/2 stacked up semi-circles and one single point.
Therefore γ must be equivalent to αm,k for some odd m and some k ∈ N. In case
(ii) both end caps are contained in one hemisphere, and in the boundary of this
hemisphere we find the characteristic pattern, so we can apply Lemma 10 and then
11 to see that the other hemisphere must consist of stacked up semi-circles, so γ is
again equivalent to αm,k for an even m and some k ∈ N. In both cases (i) and (ii)
the additional restrictions on k depending on whether m is even or odd are derived
in Lemmas 12 and 13. ��

Acknowledgments. The first author would like to thank Professor Micheal Farber and
Dr. Torsten Schöneborn, whose comments led to Proposition 2 and a simplification of the
uniqueness proof, respectively. The second author would like to thank the EPFL Lausanne,
in particular Professor John H. Maddocks, and also the Centro di Ricerca Matematica Ennio
de Giorgi at the Scuola Normale Superiore in Pisa, specifically Professor Mariano Giaquinta,
for their hospitality. In addition, we thank the DFG (project no. Mo 966/4-1) and the SNF
(project no. 107878 and 117898) for generously supporting this research.

References

1. Bach, E., Shallit, J.: Algorithmic Number Theory. MIT Press Cambridge,
Massachusetts, 1996

2. Cantarella, J., Fu, J.H.G., Kusner, R.B., Sullivan, J.M., Wrinkle, N.C.: Critical-
ity for the Gehring link problem. Geom. Topol. 10, 2055–2116 (2006)

3. Cantarella, J., Kusner, R.B., Sullivan, J.M.: On the minimum ropelength of knots
and links. Invest. Math. 150, 257–286 (2002)

4. Cantarella, J., Piatek, M., Rawdon, E.: Visualizing the tightening of knots. VIS’05:
Proceedings of the 16th IEEE Visualization 2005, 575–582. IEEE Computer Society,
Washington, DC, 2005

5. Carlen, M., Laurie, B., Maddocks, J.H., Smutny, J.: Biarcs, global radius of cur-
vature, and the computation of ideal knot shapes. Physical and Numerical Models in
Knot Theory, Ser. on Knots and Everything 36 (Eds. Calvo M. and Rawdon S.) World
Scientific, Singapore, 75–108, 2005

6. Do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, New
Jersey, 1976

7. Durumeric, O.C.: Local structure of ideal shapes of knots. Top. Appl. 154, 3070–3089
(2007)

8. Gerlach, H.: Der Globale Krümmungsradius für offene und geschlossene Kurven im
R

N. Diploma thesis at Bonn University, 2004. http://www.littleimpact.de/permanent/
math/2009/dipl/

http://www.littleimpact.de/permanent/math/2009/dipl/
http://www.littleimpact.de/permanent/math/2009/dipl/


342 Henryk Gerlach & Heiko von der Mosel

9. Gerlach, H.: Ideal Knots and other packing problems of tubes. PhD thesis No. 4601,
EPFL Lausanne (2010). http://library.epfl.ch/theses/?display=detail&nr=4601

10. Gerlach, H.: Construction of sphere-filling ropes. Website: http://www.littleimpact.
de/permanent/math/sphere_filling/

11. Gonzalez, O., de la Llave, R.: Existence of ideal knots. J. Knot Theory Ramif. 12,
123–133 (2003)

12. Gonzalez, O., Maddocks, J.H.: Global curvature, thickness and the ideal shapes of
knots. Proc. Natl. Acad. Sci. USA 96, 4769–4773 (1999)

13. Gonzalez, O., Maddocks, J.H., Schuricht, F., von der Mosel, H.: Global curvature
and self-contact of nonlinearly elastic curves and rods. Calc. Var. 14, 29–68 (2002)

14. Gray, A.: Tubes., 2nd edn. Progress in Mathematics, 221. Birkhäuser Verlag, Basel,
2004

15. Hotelling, H.: Tubes and spheres in n-spaces. Am. J. Math. 61, 440–460 (1939)
16. Katzav, E., Adda-Bedia, M., Boudaoud, A.: A statistical approach to close packing

of elastic rods and to DNA packaging in viral capsids. Proc. Natl. Acad. Sci. USA 103,
18900–18904 (2006)

17. Kusner, R.B.: On thickness and packing density for knots and links. Physical Knots:
Knotting, Linking, and Folding Geometric Objects in R

3 (Las Vegas, NV, 2001) (Eds.
Calvo M. and Rawdon S.) AMS Providence, Contemp. Math. 304, 175–180, (2002)

18. Pireranski, P.: In search of ideal knots. Ideal Knots, Ser. on Knots and Everything 19
(Eds. Stasiak, Katritch and Kauffman) World Scientific, Singapore, 20–41, 1998

19. Smutny, J.: Global radii of curvature and the biarc approximation of spaces curves:
in pursuit of ideal knot shapes. PhD thesis No. 2981, EPFL Lausanne (2004). http://
library.epfl.ch/theses/?display=detail&nr=2981

20. Schuricht, F., von der Mosel, H.: Global curvature for rectifiable loops. Math. Z.
243, 37–77 (2003)

21. Schuricht, F., von der Mosel, H.: Characterization of ideal knots. Calc. Var. Partial
Differ. Equ. 19, 281–305 (2004)

22. Strzelecki, P., von der Mosel, H.: On rectifiable curves with L p-bounds on global
curvature: self-avoidance, regularity, and minimizing knots. Math. Z. 257, 107–130
(2007)

23. Varea, C., Aragon, J.L., Barrio, R.A.: Turing patterns on a sphere. Phys. Rev. E 60,
4588–4592 (1999)

24. Weyl, H.: On the volume of tubes. Am. J. Math. 61, 461–472 (1939)
25. Wiggs, C.C., Taylor, C.J.C.: Bead puzzle. US Patent D269629 (issued 1983)

EPFL, SB IMB LCVMM, Bâtiment MA,
Station 8, 1015 Lausanne, Switzerland.

e-mail: henryk.gerlach@epfl.ch

and

Institut für Mathematik, RWTH Aachen University,
Templergraben 55, 52062 Aachen, Germany.

e-mail: heiko@instmath.rwth-aachen.de

(Received April 24, 2009 / Accepted November 3, 2010)
Published online January 8, 2011 – © Springer-Verlag (2011)

http://library.epfl.ch/theses/?display=detail&nr=4601
http://www.littleimpact.de/permanent/math/sphere_filling/
http://www.littleimpact.de/permanent/math/sphere_filling/
http://library.epfl.ch/theses/?display=detail&nr=2981
http://library.epfl.ch/theses/?display=detail&nr=2981

	What are the Longest Ropes on the Unit Sphere?
	Abstract
	1 Introduction
	2 Explicit solutions
	3 Existence, and properties of thickness, length and volume, of general solutions
	4 Uniqueness
	5 Open curves
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


