
Distrib. Comput. (2010) 22:129–145
DOI 10.1007/s00446-009-0092-6

Model checking transactional memories

Rachid Guerraoui · Thomas A. Henzinger ·
Vasu Singh

Received: 28 February 2009 / Accepted: 3 October 2009 / Published online: 1 December 2009
© Springer-Verlag 2009

Abstract Model checking transactional memories (TMs) is
difficult because of the unbounded number, length, and delay
of concurrent transactions, as well as the unbounded size of
the memory. We show that, under certain conditions satis-
fied by most TMs we know of, the model checking problem
can be reduced to a finite-state problem, and we illustrate
the use of the method by proving the correctness of several
TMs, including two-phase locking, DSTM, and TL2. The
safety properties we consider include strict serializability and
opacity; the liveness properties include obstruction freedom,
livelock freedom, and wait freedom. Our main contribution
lies in the structure of the proofs, which are largely automated
and not restricted to the TMs mentioned above. In a first step
we show that every TM that enjoys certain structural prop-
erties either violates a requirement on some program with
two threads and two shared variables, or satisfies the require-
ment on all programs. In the second step, we use a model
checker to prove the requirement for the TM applied to a
most general program with two threads and two variables. In
the safety case, the model checker checks language inclusion
between two finite-state transition systems, a nondeterminis-
tic transition system representing the given TM applied to a
most general program, and a deterministic transition system

This research was supported by the Swiss National Science
Foundation. This paper is an extended and revised version of our
previous work on model checking transactional memories [11,12].

R. Guerraoui
LPD, I&C, EPFL, Station 14, 1015 Lausanne, Switzerland
e-mail: rachid.guerraoui@epfl.ch

T. A. Henzinger · V. Singh (B)
MTC, I&C, EPFL, Station 14, 1015 Lausanne, Switzerland
e-mail: vasu.singh@epfl.ch

T. A. Henzinger
e-mail: tah@epfl.ch

representing a most liberal safe TM applied to the same pro-
gram. The given TM transition system is nondeterministic
because a TM can be used with different contention manag-
ers, which resolve conflicts differently. In the liveness case,
the model checker analyzes fairness conditions on the given
TM transition system.

Keywords Transactional memories · Model checking

1 Introduction

Transactional memory (TM) has recently gained much inter-
est due to the advent of multicore architectures. A TM allows
to structure an application in terms of coarse-grained code
blocks that appear to be executed atomically [20,26]. A TM
provides the illusion of sequentiality to a programmer and
maximal flexibility to the underlying hardware. However,
behind the apparent simplicity of the TM abstraction, lie chal-
lenging algorithms that seek to ensure transactional atomicity
without restricting parallelism.

Inspired by how databases manage concurrency, TM was
first introduced by Herlihy and Moss [20] in multi-processor
design. Later Shavit and Touitou [26] introduced STM, a
software-based variant of the concept. Despite the large
amount of experimental work on TMs [21], little effort has
been devoted to their formalization [15,25]. Two safety prop-
erties, strict serializability [22] and opacity [15], have been
considered for TMs. The former requires committed trans-
actions to appear as if executed at indivisible points in time
during their lifetime. Opacity goes a step further and also
requires aborted transactions to always access consistent
state. The notion of opacity conveys an emerging consensus
about correctness in the TM community [7,19]. The live-
ness requirements we consider are the standard notions of

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159145638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

130 R. Guerraoui et al.

obstruction freedom [18], livelock freedom [2], and wait free-
dom [17]. Obstruction freedom requires that if a transaction
executes in isolation, then it eventually commits. Live-
lock freedom requires some transaction to eventually com-
mit. Wait freedom requires every transaction to eventually
commit.

Precisely because TMs encapsulate the difficulty of han-
dling concurrency, the potential of subtle errors in their
implementation is enormous. This makes TM a ripe and
important proving ground for formal verification. However,
three major challenges need to be tackled to model check
TMs.

1. Transactional memories, being highly performance ori-
ented, employ sophisticated techniques to ensure cor-
rectness in the face of conflicts due to concurrency.
Moreover, TMs generally rely on a separate module,
called a contention manager, to resolve conflicts when
they occur, and to guarantee liveness. A first step towards
verification is to create a formalism to express different
TMs and contention managers in a uniform framework.

2. While model checking is the verification technique
that is best equipped to find concurrency bugs, model
checking is severely handicapped by several sources of
unbounded state in TM: memory size, thread count, and
transaction length cannot be bounded, and neither can
the delay until a transaction commits, nor the number of
times that a transaction aborts. Special care is needed in
formulating a verification problem that is both relevant
and solvable, as some problems about sequentializing
concurrent systems are undecidable [1].

3. The specification of a TM universally quantifies over
all possible application programs, requiring the desired
safety and liveness conditions for all programs that are
executed on the TM.

We present in this paper a new technique for verifying TM
safety and liveness properties. We first provide a framework
to formalize TM together with specific contention managers
as TM algorithms, as well as TM safety and liveness proper-
ties. Then, we exploit the structural symmetries that are inher-
ent in TM algorithms to reduce the verification of unbounded
TM state spaces to a problem that involves only a small num-
ber of threads and shared variables. Specifically, we show that
every TM that enjoys certain structural properties either vio-
lates any of the considered safety and liveness requirements
with two threads and two shared variables, or always sat-
isfies the requirement. Basically, these structural properties
expect all threads to be treated equally. They are fulfilled
by most TMs, including for instance, two-phase locking,
DSTM [19], and TL2 [7]. Similar techniques for reducing
unbounded instances of model-checking tasks to small, char-
acteristic instances have been used for verifying protocols

with an unbounded number of identical processes [3] and
cache-coherence protocols [16].

Finally, we define two finite-state deterministic transition
systems, called TM specifications that generate exactly the
strictly serializable (resp. opaque) executions of programs
with two threads and two shared variables. These transition
systems are obtained by applying the most liberal TM safe
with respect to strict serializability (resp. opacity) to a most
general program. The finite size of the transition systems is
achieved by a careful choice of state, which encompasses for
every thread a set of read variables (at most two), a set of writ-
ten variables (at most two), a set of variables not allowed to be
read (at most two), a set of variables not allowed to be written
(at most two), a set of threads with commit-dependent pre-
decessor transactions (at most one), and a set of independent
predecessor transactions (at most one). As it is difficult to
directly prove the correctness of the deterministic TM specifi-
cations, we provide more natural nondeterministic TM spec-
ifications for strict serializability and opacity, and prove their
correctness. Then, we use an antichain-based tool [28] and
show automatically that these nondeterministic TM specifi-
cations are language equivalent to their deterministic coun-
terparts.

Putting all steps together, we reduce the problem of verify-
ing the safety of transactional memories, which is unbounded
in many dimensions (memory size, thread count, transaction
delay, etc.), to a language inclusion check between a nonde-
terministic and a deterministic finite-state system. Since the
TM specification is deterministic, language inclusion can be
checked in time linear in the size of the systems: For two-
phase locking, DSTM [19], and TL2 [7], we obtain transi-
tion systems with up to 20,000 states for the most general
program with 2 threads and 2 variables. We implemented a
checker that automatically verifies strict serializability and
opacity for two-phase locking, DSTM, and TL2 in less than
a minute. The liveness properties guaranteed by a TM depend
on the specific contention manager used with the TM. Gen-
erally a TM, by itself, does not guarantee any interesting
liveness properties. So, for liveness, we model check a TM
together with a specific contention manager to determine
which liveness property is satisfied. We again prove a struc-
tural reduction theorem to check the desired liveness require-
ment on the finite-state transition system that results from a
given TM algorithm applied to a most general program with
two threads and one variable. Our tool checked the different
liveness properties. In the case of obstruction freedom, this
amounts to checking a Streett condition [27]. For instance,
the check goes through for DSTM with the aggressive con-
tention manager. For two-phase locking and TL2 with the
polite contention manager, the model checker automatically
generates counterexamples to obstruction freedom.

Our methodology is applicable to any TM algorithm that
satisfies the structural properties. We find that correctness

123

Model checking transactional memories 131

is not self-evident in many TM algorithms. For example,
we found an ambiguity in ordering of two particular opera-
tions in the published TL2 algorithm [7]. One of the order-
ings makes TL2 unsafe. In this case, the check for language
inclusion provides as counterexample an execution that is
not strictly serializable (and thus not opaque). We therefore
expect our verification tool to be useful to TM designers when
they develop or modify TM algorithms.

2 Framework

We present a framework to express transactions and their
correctness properties.

2.1 Preliminaries

Let V be a set {1, . . . , k} of k variables, and let C =
{commit} ∪ ({read, write} × V) be the set of commands
on the variables V . Also, let Ĉ = C ∪ {abort}. Let T =
{1, . . . , n} be a set of n threads. Let Ŝ = Ĉ × T be the set of
statements. Also, let S = C × T . A word w ∈ Ŝ∗ is a finite
sequence of statements. Given a word w ∈ Ŝ∗, we define
the thread projection w|t of w on thread t ∈ T as the sub-
sequence of w consisting of all statements s in w such that
s ∈ Ĉ × {t}. Given a thread projection w|t = s0 . . . sm of a
word w on thread t , a statement si is finishing in w|t if it is a
commit or an abort. A statement si is initiating in w|t if it is
the first statement in w|t , or the previous statement si−1 is a
finishing statement.

2.2 Transactions

Given a thread projection w|t of a word w on thread t , a con-
secutive subsequence x = s0 . . . sm of w|t is a transaction of
thread t in w if (i) s0 is initiating in w|t , and (ii) sm is either
finishing in w|t , or sm is the last statement in w|t , and (iii)
no other statement in x is finishing in w|t . The transaction
x is committing in w if sm is a commit. The transaction x is
aborting in w if sm is an abort. Otherwise, the transaction x is
unfinished in w. Given a word w and two transactions x and
y in w (possibly of different threads), we say that x precedes
y in w, written as x <w y, if the last statement of x occurs
before the first statement of y in w. A word w is sequential
if for every pair x, y of transactions in w, either x <w y or
y <w x . We define a function com : Ŝ∗ → S∗ such that for
all words w ∈ Ŝ∗, the word com(w) is the subsequence of w

which consists of every statement in w that is a part of a com-
mitting transaction. A transaction x of a thread t writes to a
variable v if x contains a statement ((write, v), t). A state-
ment s = ((read, v), t) in x is a global read of a variable v

if there is no statement ((write, v), t) before s in the transac-

tion x . A transaction x of a thread t globally reads a variable
v if there exists a global read of variable v in transaction x .

2.3 Safety properties of TM

We consider two safety properties for transactional memo-
ries: strict serializability and opacity. Intuitively, strict seri-
alizability [22] requires that the order of conflicting state-
ments from committing transactions is preserved, and the
order of non-overlapping transactions is preserved. Opacity
[15], in addition to strict serializability, requires that even
aborting transactions do not read inconsistent values. The
motivation behind the stricter requirement for aborting trans-
actions in opacity is that in TMs, inconsistent reads may have
unexpected side effects, like infinite loops, or array bound
violations.

We define that a statement s1 of transaction x and a state-
ment s2 of transaction y (where x is different from y) conflict
in a word w if (i) s1 is a global read of some variable v, and
s2 is a commit, and y writes to v, or (ii) s1 and s2 are both
commits, and x and y write to some variable v. This notion
of conflict corresponds to the deferred update semantics [21]
in transactional memories, where the writes of a transaction
are made global upon the commit. Our methodology can be
adapted for direct update semantics by changing the defini-
tion of a conflict.

A word w = s0 . . . sm is strictly equivalent to a word w′
if (i) for every thread t ∈ T , we have w|t = w′|t , and (ii)
for every pair si , s j of statements in w, if si and s j conflict
and i < j , then si occurs before s j in w′, and (iii) for every
pair x, y of transactions in w, where x is a committing or an
aborting transaction, if x <w y, then it is not the case that
y <w′ x .

We define the safety property strict serializability πss ⊆
Ŝ∗ as the set of words w such that there exists a sequential
word w′, where w′ is strictly equivalent to com(w). Further-
more, we define opacity πop ⊆ Ŝ∗ as the set of words w such
that there exists a sequential word w′, where w′ is strictly
equivalent to w. We note that πop ⊆ πss, that is, if a word is
opaque, then it is strictly serializable.

2.4 Liveness properties of TM

We define two different notions of liveness, obstruction free-
dom and livelock freedom, as discussed in the TM literature.
A third notion, wait freedom [17], implies livelock freedom.
Since we will show that none of our TM examples satisfy
livelock freedom, they do not satisfy wait freedom either.

We consider infinite words on Ŝω. An infinite word w ∈
Ŝω is obstruction free [18] if for all threads t , if the word w

has an infinite number of aborts of t , then w has an infinite
number of commits of t , or there are infinitely many state-
ments of some thread u �= t . Formally, w is obstruction free

123

132 R. Guerraoui et al.

if
∧

t∈T (�♦(abort, t) → �♦((commit, t) ∨ ∨
c∈Ĉ,u∈T \{t}

(c, u))), where the temporal operation � denotes ‘always’
and the temporal operation ♦ denotes ‘eventually’. Obstruc-
tion freedom is a Streett condition [27].

An infinite word w ∈ Ŝω is livelock free [2] if the word
has an infinite number of commits, or there is a thread t such
that t has infinitely many statements and finitely many aborts
in w. Formally, w is livelock free if �♦(

∨
t∈T (commit, t))∨

∨
t∈T (�♦(

∨
c∈C (c, t))∧♦�¬(abort, t)). Note that livelock

freedom implies obstruction freedom. This is because if a
word w has an infinite number of commits, or if w has infi-
nitely many statements and finitely many aborts in w, then
w is obstruction free.

2.5 TM specifications for safety

We capture safety properties of TM using TM specifications.
A TM specification is a 3-tuple 〈Q, qinit, δ〉, where Q is a set
of states, qinit is the initial state, and δ ⊆ Q × ((Ĉ ∪ {ε}) ×
T)× Q is a transition relation. A finite word s0 . . . sm in Ŝ∗ is
a run of the TM specification if there exist states q0 . . . qm+1

in Q such that q0 = qinit , and for all i such that 0 ≤ i ≤ m,
we have either (qi , si , qi+1) ∈ δ, or (qi , (ε, t), qi+1) ∈ δ.
The language L of a TM specification is the set of all runs
of the TM specification. A TM specification � defines a cor-
rectness property π if L(�) = π . A TM specification is
deterministic if for every state q ∈ Q, we have (i) for every
statement s ∈ Ŝ, there is at most one state q ′ ∈ Q such that
(q, s, q ′) ∈ δ, and (ii) there is no state q ′ ∈ Q such that
(q, (ε, t), q ′) ∈ δ.

We shall provide both nondeterministic and deterministic
TM specifications for strict serializability and opacity.

2.6 Transactional memories

We characterize a TM by the set of infinite words it can pro-
duce. Formally, a transactional memory (TM) M is a subset
of Ŝω. We say that M ensures (n, k) strict serializability
(resp. (n, k) opacity) if for every prefix w of every word in
M such that w has at most n threads and at most k variables,
we have w ∈ πss (resp. w ∈ πop). Moreover, M ensures
strict serializability (resp. opacity) if M ensures (n, k) strict
serializability (resp. (n, k) opacity) for all n and k. A TM
M ensures (n, k) obstruction freedom (resp. (n, k) livelock
freedom) if every word w ∈ M such that w has at most n
threads and at most k variables is obstruction free (resp. live-
lock free). Moreover, M ensures obstruction freedom (resp.
livelock freedom) if M ensures (n, k) obstruction freedom
(resp. (n, k) livelock freedom) for all n and k.

In practice, TMs may employ a separate module, called
a contention manager, to enhance liveness [14,24]. A con-
tention manager resolves conflicts on the basis of the past
behavior of the transactions. Various contention managers

have been proposed in the literature. For example, the Karma
contention manager prioritizes transactions according to the
number of objects opened, whereas the Backoff contention
manager backs off conflicting transactions for a random dura-
tion [24]. When the transactional memory detects a conflict,
it requests the contention manager to resolve the conflict. The
contention manager proposes the TM the next statement to
be executed. A TM M and a contention manager cm define
a new transactional memory Mcm ⊆ Ŝω.

3 TM Algorithms

We now present a formalism to express various TMs using
TM algorithms. A TM algorithm consists of a set of states, an
initial state, an extended set of commands depending on the
underlying TM, a conflict function, a pending function, and a
transition relation. A command is executed as a sequence of
extended commands, all of which execute atomically. Thus,
the extended commands include the set C of commands, as
well as TM specific additional commands. For example, a
given TM may require that a thread locks a variable before
writing to the variable. The conflict function captures the
statements in a state, when the TM algorithm may consult
a contention manager for a decision. The pending function
represents the pending command of a thread in a state, and
ensures that if a thread has not finished the execution of all
extended commands corresponding to a particular command,
then no other command is executed by the thread.

We define a TM algorithm A = 〈Q, qinit, D, φ, γ, δ〉,
where

– Q is a set of states,
– qinit is the initial state,
– D ⊇ C is the set of extended commands,
– φ : Q × S → B is the conflict function,
– γ : Q × T → C ∪ {⊥} is the pending function, and
– δ ⊆ Q × C × ŜD × Resp × Q is the transition relation,

where ŜD = (D ∪ {abort})× T and Resp = {⊥, 0, 1} is
the set of responses.

For a TM algorithm A = 〈Q, qinit, D, φ, γ, δ〉, the following
rules hold:

– No command is pending in the initial state for all threads.
For all threads t ∈ T , we have γ (qinit, t) =⊥.

– If there is an incoming transition to state q ′ of thread t
with command c and response ⊥, then c is pending in q ′
for t . For all states q, q ′ ∈ Q such that there is an incom-
ing transition (q, c, (d, t), r, q ′) to q ′ in δ, if r =⊥, then
γ (q ′, t) = c, otherwise γ (q ′, t) =⊥.

– On a transition of a thread, the pending command of
other threads does not change. For all states q, q ′ ∈ Q

123

Model checking transactional memories 133

s.t. there is an incoming transition (q, c, (d, t), r, q ′) to
q ′ in δ, we have γ (q ′, u) = γ (q, u) for all threads u �= t .

– If a command is pending in a state for a thread t , then
all outgoing transitions from the state by t are for the
pending command. For all states q and all threads t , if
γ (q, t) = c with c �=⊥, then for all outgoing transitions
(q, c1, (d, t), r, q ′) from q in δ, we have c1 = c.

– If no command is pending in a state for a thread t , then
there is an outgoing transition from the state by thread
t for every command. For all states q and all threads
t , if γ (q, t) =⊥, then there is an outgoing transition
(q, c, (d, t), r, q ′) from q in δ for every command c ∈ C .

– For all transitions with the extended command as abort,
the response is 0. For all q ∈ Q, for all transitions
(q, c, (d, t), r, q ′) in δ, we have d = abort if and only
if r = 0.

– For all states, there is at most one transition correspond-
ing to a given command c, a given extended command d,
and a given thread t . For all q ∈ Q, if (q, c, (d, t), r1, q ′)
∈ δ and (q, c, (d, t), r2, q ′′) ∈ δ, then r1 = r2 and q ′ =
q ′′.

– For all states, if a statement s does not conflict in the
state, then there is at most one outgoing transition corre-
sponding to s from the state. For all q ∈ Q and c ∈ C , if
(q, c, (d1, t), r1, q ′) ∈ δ and (q, c, (d2, t), r2, q ′′) ∈ δ,
then either d1 = d2, or φ(q, (c, t)) = true.

Note that the rules above restrict the transition relation δ

and the pending function γ such that γ is unique. A com-
mand c is enabled in a state q for thread t if γ (q, t) ∈ {⊥, c}
(i.e., either no command is pending, or c itself is pending).
A command c is abort enabled in a state q for thread t
if c is enabled in q for thread t and there is no transition
(q, c, (d, t), r, q ′) ∈ δ such that d ∈ D. Note that a transi-
tion (q, c, (abort, t), 0, q ′) ∈ δ from a state q can exist in
two cases. First, if the command c is abort enabled for thread
t in state q, which implies that the TM algorithm does not
allow to continue the execution of command c for thread t in
the state q. Second, if φ(q, (c, t)) = true, which implies that
the TM algorithm can nondeterministically choose to abort
the thread t in state q, if the command c is issued.

3.1 Contention managers

A contention manager cm on a set D of commands is a tuple
〈P, pinit, δcm〉, where P is a set of states of the contention
manager, pinit ∈ P is the initial state of the contention man-
ager, and δcm ⊆ P × D × P is the transition relation.

We now formalize a TM which uses a contention manager.
Let a transactional memory M be represented by a TM algo-
rithm A = 〈Q, qinit, D, φ, γ, δ〉. Let cm = 〈P, pinit, δcm〉
be a contention manager. Then, Mcm is represented by a TM
algorithm Acm = 〈Q×, (qinit, pinit), D, φ×, γ×, δ×〉, where

– the set of states is Q× = Q × P ,
– the conflict function φ× is such that for all states q× ∈

Q×, for all commands c ∈ C , and for all threads t ∈
T , we have φ×(q×, (c, t)) = φ(q, (c, t)) where q× =
(q, p) for some state p ∈ P ,

– the pending function γ× is such that for all states q× ∈
Q× and all threads t ∈ T , we have γ×(q×, t) = γ (q, t)
where q× = (q, p) for some state p ∈ P ,

– the transition relation δ× is such that for all states q×, q ′×
∈ Q×, for all commands c ∈ C , for all statements
(d, t) ∈ ŜD , and for all responses r ∈ Resp, we have
(q×, c, (d, t), r, q ′×) ∈ δ× if and only if

(i) there exists a transition (q, c, (d, t), r, q ′) ∈ δ,
(ii) if φ(q, (c, t)) = true, then there exists a transi-

tion (p, (d, t), p′) ∈ δcm, and
(iii) if there does not exist a transition (p, (d, t), p′) ∈

δcm, then p = p′, else (p, (d, t), p′) ∈ δcm,

where q, q ′ ∈ Q and p, p′ ∈ P such that q× = (q, p)

and q ′× = (q ′, p′).

3.2 Languages of TM algorithms

A TM algorithm interacts with a scheduler. The scheduler
chooses the next thread to be executed. A command of the
chosen thread is given to the TM algorithm. The TM algo-
rithm decides whether the command can be executed in a
single or several atomic steps, or the command is in conflict.
The TM algorithm makes a transition according to the transi-
tion relation, and gives back to the program a response. The
response is ⊥ if the TM algorithm needs additional steps to
complete the command, 0 if the TM algorithm needs to abort
the transaction of the scheduled thread, and 1 if the TM algo-
rithm has completed the command. Given a scheduler and a
TM algorithm, we get a set of runs. Projecting a run to the set
of successful statements (that is, aborts, and statements that
get response 1) gives a finite word. The language of a TM
algorithm is the set of finite words that the TM algorithm can
produce for any scheduler.

Formally, a scheduler σ on T is a function σ : N → T .
A run ρ = 〈q0, c0, (d0, t0), r0〉 . . . 〈qn, cn, (dn, tn), rn〉 of
a TM algorithm A with scheduler σ is a finite sequence of
tuples of states, commands, statements, and responses, where
the following hold: (i) q0 = qinit , and (ii) for all j ≥ 0,
there exists a transition (q j , c j , (d j , t j), r j , q j+1) ∈ δ, and
(iii) t j = σ(j). A statement si = (di , ti) ∈ Ŝ is successful
in the run ρ = 〈q0, c0, s0, r0〉 . . . 〈qn, cn, sn, rn〉 if (i) ri ∈
{0, 1}, or (ii) rk = 1 with i < k and for all j such that
i < j < k, if t j = ti , then r j =⊥. We define the language
L(A) of a TM algorithm A as the set of all finite words
w ∈ Ŝ∗ such that w is the sequence of all successful state-
ments in a run of A with some scheduler. A TM algorithm

123

134 R. Guerraoui et al.

Algorithm 1 getSequential(Status, c, d, t, r)

if c = (read, v) or c = (write, v) then
if d = c and r = 1 then

if Status(u) = finished for all threads u �= t then
Status(t) := started
return Status

if c = commit then
if d = c and r = 1 then

if Status(u) = finished for all threads u �= t then
Status(t) := finished
return Status

if d = abort and r = 0 then
if c is abort enabled in q for thread t then

Status(t) := finished
return Status

return ⊥

A defines a TM M if every finite prefix w of every word
in M is in L(A), and every word w in L(A) can be extended
to an infinite word in M .

3.3 TM examples

We now describe different transactional memories as TM
algorithms. To keep our first example simple, we describe a
sequential TM.

3.3.1 The sequential TM

The sequential TM executes the transactions sequentially (as
ideally suited for a uniprocessor). We do not use a contention
manager for the sequential TM, and hence set the conflict
function to be always false. We define the sequential TM
algorithm Aseq as 〈Q, qinit, D, φ, γ, δseq〉. A state q ∈ Q is
defined as a function Status : T → {finished, started}. The
initial state is qinit = Status0, such that for all threads t ∈ T ,
we have Status0(t) = finished. The set of extended com-
mands is D = C . For all states q and all statements (c, t),
the conflict function φ(q, (c, t)) = false. The transition rela-
tion δseq is obtained using the procedure getSequential shown
in Algorithm 1. For all states q ∈ Q, all commands c ∈ C ,
all extended commands d ∈ D ∪ {abort}, all threads t ∈ T ,
and all responses r ∈ Resp, we have

– if getSequential(q, c, d, t, r) =⊥, then there does not
exist a state q ′ ∈ Q such that (q, c, (d, t), r, q ′) ∈ δseq,
and

– if getSequential(q, c, d, t, r) = q ′ for some state q ′ ∈
Q, then (q, c, (d, t), r, q ′) ∈ δseq.

For all TM examples we present in this section, we use a
similar notation.

Algorithm 2 get2PL(〈rs, ws〉, c, d, t, r)

if c is not enabled in q for thread t then return ⊥
if c = (read, v) then

if d = c and r = 1 and v ∈ ws(t) ∪ rs(t) then
return 〈rs, ws〉

if d = (rlock, v) and r =⊥ then
if v /∈ ws(u) for all threads u �= t then

rs(t) := rs(t) ∪ {v}
return 〈rs, ws〉

if c = (write, v) then
if d = c and r = 1 and v ∈ ws(t) then

return 〈rs, ws〉
if d = (wlock, v) and r =⊥ then

if v /∈ (ws(u) ∪ rs(u)) for all threads u �= t then
ws(t) := ws(t) ∪ {v}
return 〈rs, ws〉

if c = commit then
if d = c and r = 1 then

rs(t) := ∅; ws(t) := ∅
return 〈rs, ws〉

if d = abort and r = 0 then
if c is abort enabled in q for thread t then

rs(t) := ∅; ws(t) := ∅
return 〈rs, ws〉

return ⊥

3.3.2 The two-phase locking TM

Our second TM example is based on two-phase locking
(2PL) protocol, commonly used in database transactions.
Every transaction locks the variables it reads or writes before
accessing them, and releases all acquired locks during the
commit. A shared lock is acquired for reading, and an exclu-
sive lock is acquired for writing. We do not use a contention
manager with two-phase locking, and hence define the con-
flict function to be always false.

We define the 2PL TM algorithm A2PL as 〈Q, qinit, D, φ,

γ, δ2PL〉. A state q ∈ Q is represented as the pair 〈rs, ws〉,
where rs : T → 2V is the shared lock set, and ws : T → 2V

is the exclusive lock set. The initial state qinit = 〈rs0, ws0〉,
where for all threads t ∈ T , we have rs0(t) = ws0(t) = ∅.
The set of extended commands is D = C∪({rlock, wlock}×
V). For all states q and all statements (c, t), the conflict
function φ(q, (c, t)) = false. The transition relation δ2PL is
obtained using the procedure get2PL shown in Algorithm 2.

3.3.3 The dynamic software transactional memory

Dynamic software transactional memory (DSTM) [19] is one
of the most popular transactional memories. DSTM faces a
conflict when a transaction wants to own a variable which
is owned by another thread. DSTM is our first example that
uses a contention manager. Thus, we identify pairs of states
and statements that lead to a conflict, and set the conflict
function as true at those places.

123

Model checking transactional memories 135

Algorithm 3 getDSTM(〈Status, rs, os〉, c, d, t, r)

if c is not enabled in q for thread t then return ⊥
if Status(t) = aborted and d �= abort then return ⊥
if c = (read, v) then

if d = c and r = 1
if v ∈ os(t) then

return 〈Status, rs, os〉
if v /∈ os(t) and Status(t) = finished then

rs(t) := rs(t) ∪ {v}
return 〈Status, rs, os〉

if c = (write, v) then
if d = c and v ∈ os(t) and r = 1 then

return 〈Status, rs, os〉
if d = (own, v) and r =⊥ then

os(t) := os(t) ∪ {v}
for all threads u �= t such that v ∈ os(u) do

Status(u) := aborted rs(u) := ∅ os(u) := ∅
return 〈Status, rs, os〉

if c = commit then
if d = validate and r =⊥ and Status(t) = finished then

Status(t) := validated
for all threads u �= t such that rs(t) ∩ os(u) �= ∅ do

Status(u) := aborted rs(u) := ∅ os(u) := ∅
return 〈Status, rs, os〉

if d = c and r = 1 and Status(t) = validated then
Status(t) := finished rs(t) := ∅ os(t) := ∅
for all threads u �= t such that rs(u) ∩ os(t) �= ∅ do

Status(u) := invalid
return 〈Status, rs, os〉

if d = abort and r = 0 then
Status(t) := finished rs(t) := ∅ os(t) := ∅
if c is abort enabled in q for thread t then

return 〈Status, rs, os〉
if φ(q, (c, t)) = true then

return 〈Status, rs, os〉
return ⊥

We define the DSTM algorithm Adstm as 〈Q, qinit, D, φ,

γ, δdstm〉. A state q ∈ Q is defined as a 3-tuple 〈Status, rs, os〉,
where Status : T → {aborted, validated, invalid,
finished} is the status function, rs : T → 2V is the read
set, and os : T → 2V is the ownership set. The ini-
tial state qinit = 〈Status0, rs0, os0〉, where for all threads
t ∈ T , we have Status0(t) = finished and rs0(t) =
os0(t) = ∅. The set of extended commands is D =
C ∪ ({own} × V) ∪ {validate}. The conflict function
φ(q, (c, t)) = true if and only if (i) c = (write, v) and
for some thread u �= t we have v ∈ os(u), or (ii) c =
commit and Status(t) = finished and for some thread
u �= t we have rs(t) ∩ os(u) �= ∅. The transition relation
δdstm is obtained using the procedure getDSTM shown in
Algorithm 3.

We define an aggressive contention manager as aggr =
〈{pinit}, pinit, δ〉 such that for all threads t ∈ T and for all
extended commands d ∈ D such that d �= abort, we have
(pinit, (d, t), pinit) ∈ δ. Intuitively, the aggressive contention
manager does not allow a transaction to abort itself in case
of conflict.

Algorithm 4 getTL2(〈Status, rs, ws, ls, ms〉, c, d, t, r)

if c is not enabled in q for thread t then return ⊥
if c = (read, v) then

if d = c and v ∈ ws(t) and r = 1 then
return 〈Status, rs, ws, ls, ms〉

if d = c and v /∈ ws(t) ∪ ms(t) and r = 1 then
rs(t) := rs(t) ∪ {v}
return 〈Status, rs, ws, ls, ms〉

if c = (write, v) then
if d = c and r = 1 then

ws(t) := ws(t) ∪ {v}
return 〈Status, rs, ws, ls, ms〉

if c = commit then
if d = (lock, v) and r =⊥ then

if Status(t) = finished and v ∈ ws(t) then
ls(t) := ls(t) ∪ {v}
for all threads u �= t such that v ∈ ls(u) do

Status(u) := aborted
return 〈Status, rs, ws, ls, ms〉

if d = validate and r =⊥ and Status(t) = finished then
if rs(t) ∩ ms(t) = ∅ and ws(t) = ls(t) then

Status(t) := validated
for all threads u �= t such that rs(t) ∩ os(u) �= ∅ do

Status(u) := aborted rs(u) := ∅ os(u) := ∅
return 〈Status, rs, ws, ls, ms〉

if d = c and r = 1 and Status(t) = validated then
for all threads u �= t such that rs(t) ∪ ws(t) �= ∅ do

ms(u) := ms(u) ∪ ws(t)
rs(t) := ∅ ws(t) := ∅ ls(t) := ∅ ms(t) := ∅
Status(t) := finished
return 〈Status, rs, ws, ls, ms〉

if d = abort and r = 0 then
Status(t) := finished
rs(t) := ∅ ws(t) := ∅ ls(t) := ∅ ms(t) := ∅
if c is abort enabled in q for thread t then

return 〈Status, rs, ws, ls, ms〉
if φ(q, (c, t)) = true then

return 〈Status, rs, ws, ls, ms〉
return ⊥

3.3.4 The TL2 TM

Transactional locking 2 (TL2) [7] is a TM that uses global
version numbers to ensure correctness. Version numbers
allow efficient read set validation in a distributed setting. We
model version numbers using modified sets for each thread.
When a transaction commits, it adds its write set to the mod-
ified set of every thread with an unfinished transaction.

We define the TL2 TM algorithm MTL2 as the tuple
〈Q, qinit, D, φ, γ, δTL2〉. A state q ∈ Q is defined as a 5-tuple
〈Status, rs, ws, ls, ms〉, where Status : T → {validated,
finished, aborted}, rs : T → 2V is the read set, ws :
T → 2V is the write set, ls : T → 2V is the lock set, and
ms : T → 2V is the modified set. The initial state is given
by qinit = 〈Status0, rs0, ws0, ls0, ms0〉, where for all threads
t , we have Status0(t) = finished, and rs0(t) = ws0(t) =
ls0(t) = ms0(t) = ∅. The set of extended commands is
D = C ∪ ({lock} × V) ∪ {validate}. The conflict function
φ(q, (c, t)) = true if and only if c = commit and for some

123

136 R. Guerraoui et al.

v ∈ ws(t) we have v ∈ ls(u) for some thread u �= t . The tran-
sition relation δTL2 is obtained using the procedure getTL2
shown in Algorithm 4.

We define a polite contention manager for the TL2 TM
algorithm as pol = 〈{pinit}, pinit, δ〉, where δ = {(pinit,

(abort, t), pinit) | t ∈ T }. Intuitively, the polite contention
manager always requires a transaction to abort in case of
conflict.

Table 1 shows runs with different schedules for each TM
algorithm described above.

4 Reduction theorem for safety

We wish to prove the safety of TMs for any number of threads
and variables. Also, the safety of a TM should not depend
on the choice of the contention manager, i.e., a TM should
be safe with any contention manager. Modeling contention
managers explicitly in our formalism is not a feasible option.
Contention managers may blow up the state space as the deci-
sions of a contention manager may depend intricately on past
behavior. For example, a simple random backoff contention
manager, which asks a conflicting thread to back off for an
arbitrarily long period of time would require an unbounded
number of states. Moreover, we shall show that some of the
structural properties break when we model a TM algorithm
in conjunction with a particular contention manager.

We observe that a TM algorithm, without a contention
manager, nondeterministically chooses a transition at the
point of conflict. On the other hand, when the TM algorithm
is used with a contention manager, the transition should exist
in the transition relation of the TM algorithm and that of
the contention manager. In other words, a contention man-
ager restricts the set of runs of a TM algorithm. Thus, given
a TM algorithm A and a contention manager cm, we have
L(Acm) ⊆ L(A).

Thus, it is sufficient to prove the safety of a TM without
a contention manager, in order to show that the TM using
any contention manager is safe. We shall present a reduc-

tion theorem for strict serializability and opacity. The the-
orem states that if a TM ensures (2, 2) strict serializability
(resp. (2, 2) opacity), then the TM ensures strict serializabil-
ity (resp. opacity). The reduction theorem relies on certain
structural properties of TMs.

We now define four structural properties for TMs. These
properties are satisfied by sequential TM, two-phase lock-
ing TM, DSTM, and TL2 TM. For every property, we also
explain why the mentioned TMs satisfy that property. Note
that the properties are sufficient (and not necessary) condi-
tions for the reduction theorem to hold.

Let M be a transactional memory, and let w be a finite
prefix of a word in M .

P1. Transaction projection. Aborting and unfinished trans-
actions can influence other transactions only by forcing them
to abort. Thus, removing all aborting transactions and some
of the unfinished transactions do not change the response of
the TM to the remaining statements. Formally, let X be the
set of transactions in w. We define the transaction projection
of w on X ′ ⊆ X as the subsequence of w that contains every
statement of all transactions in X ′. The property P1 states
that the transaction projection of w on X ′, where X ′ contains
all committing transactions, no aborting transactions, and
any subset of the unfinished transactions in w, is in M . For
instance, a TM satisfies P1 if for every thread t : (i) whenever
a statement of an aborting or unfinished transaction of thread
t changes the state of another thread u, then u cannot com-
mit, and (ii) upon an abort, the state of t is reset to the initial
state of t . All TMs (without contention managers) we know
of satisfy P1. But, a TM with a contention manager that pri-
oritizes transactions according to the number of times it has
aborted in the past, does not satisfy the structural property of
transactional projection. This is because, an abort of a trans-
action of thread t may be the reason why the next transaction
of thread t commits.

P2. Thread symmetry. For non-overlapping transactions, the
TM is oblivious to the identity of the thread executing the
transaction. The property P2 states that if (i) w have no

Table 1 Examples of runs and words in the language of different TM algorithms

TM Scheduler output The sequence s0s1 . . . in the run of L(A) The word for the run of L(A)

seq 11122 … (r, 1)1, (w, 2)1, c1, (w, 1)2, c2 . . . (r, 1)1, (w, 2)1, c1, (w, 1)2, c2 . . .

112122… (r, 1)1, (w, 2)1, a2, c1, (w, 1)2, c2 . . . (r, 1)1, (w, 2)1, a2, c1, (w, 1)2, c2 . . .

2PL 111112… (rl, 1)1, (r, 1)1, (wl, 2)1, (w, 2)1, c1, (wl, 2)2 . . . (r, 1)1, (w, 2)1, c1 . . .

1211112… (rl, 1)1, a2, (r, 1)1, (wl, 2)1, (w, 1)1, c1, (wl, 2)2 . . . a2, (r, 1)1, (w, 2)1, c1 . . .

dstm 12211112… (r, 1)1, (o, 1)2, (w, 1)2, (o, 2)1, (w, 2)1, v1, c1, a2 . . . (r, 1)1, (w, 1)2, (w, 2)1, c1, a2 . . .

12222111… (r, 1)1, (o, 1)2, (w, 1)2, v2, c2, (o, 2)1, (w, 2)1, a1 . . . (r, 1)1, (w, 1)2, c2, (w, 2)1, a1 . . .

TL2 112112212… (r, 1)1, (w, 2)1, (w, 1)2, (l, 2)1, v1, (l, 1)2, v2, c1, c2 . . . (r, 1)1, (w, 2)1, (w, 1)2, c1, c2 . . .

11212122… (r, 1)1, (w, 2)1, (w, 1)2, (l, 2)1, (l, 1)2, a1, v2, c2 . . . (r, 1)1, (w, 2)1, (w, 1)2, a1, c2 . . .

r read, w write, c commit, a abort, rl rlock, wl wlock, l lock, o own, v validate, and k chklock. Command (c, t) is written as ct

123

Model checking transactional memories 137

aborting transactions, and (ii) there exist two threads u and
t such that for all committing transactions x of u and y of t
in the word w, either x <w y or y <w x , then the word w′
obtained by renaming all transactions of thread u to be from
thread t is a finite prefix of a word in M . For instance, a TM
satisfies P2 if (i) the state of a thread is set to its initial state
upon a commit, and (ii) the transition relation is identical for
all threads. All TMs we know of satisfy P2.

P3. Variable projection. If a transaction can commit, then
removing all statements that involve some particular vari-
ables does not cause the transaction to abort. We define the
variable projection of w on V ′ ⊆ V as the subsequence of w

that contains all commit and abort statements, and all read and
write statements to variables in V ′. The property P3 states
that if w has no aborting transactions, then for all V ′ ⊆ V , the
variable projection of w on V ′ is in M . For instance, a TM
satisfies P3 if reading or writing a variable does not remove
a conflict on other variables. All TMs we know of satisfy P3
as they track every variable accessed by every thread inde-
pendently.

P4. Monotonicity. If a word is allowed by the TM, then more
sequential forms of the word are also allowed. Formally, let
F ⊆ S∗ be the set of opaque (resp. strict serializable) words
with exactly one unfinished transaction. We define a func-
tion seq : F → 2F such that if w2 ∈ seq(w1) and y is the
unfinished transaction in w1, then (i) com(w2) is sequential
and strictly equivalent to com(w′

1), and (ii) all statements
of y in w′

1 occur in w2 in some order such that order of all
conflicts of global reads in y with other transactions in w′

1
is preserved, where w′

1 is obtained from w1 by adding for
every transaction x that commits before y in w, a write of an
auxiliary variable vxy to x , and a read of vxy to y. (These vari-
ables are introduced to maintain the order of transactions.)
The monotonicity property for opacity (resp. strict serializ-
ability) states that if w = w′ ·s, where w′ ∈ F , and s is not an
abort, and s is a statement of the unfinished transaction in w′,
then for every word w2 ∈ seq(w′), the word w2 · s is a finite
prefix of a word in M . For instance, a TM satisfies P4 if it
is unfinished commutative and commit commutative. A TM
is unfinished commutative if for all words wp, wq , ws ∈ S∗,
if the word wp · wq · s · ws is a finite prefix of a word in M ,
where s is a global read and no statement in wq conflicts with
s, then wp · s ·wq ·ws is a finite prefix of a word in M . A TM
is commit commutative if for all words wp, wq , ws ∈ S∗, if
wp · wq · s · ws is a finite prefix of a word in M , where s
is a commit of some transaction x and no statement in wq

conflicts with s, then the word wp ·x ·w′
q ·ws is a finite prefix

of a word in M , where w′
q is the word obtained by remov-

ing transaction x from wq . These commutativity rules allow
to make an interleaved word sequential. The TMs, sequen-
tial, 2PL, DSTM, and TL2 are unfinished commutative and
commit commutative, and thus satisfy monotonicity.

Now, we shall use these four structural properties to prove
the reduction theorem. The idea of the proof is as follows. We
assume that a TM ensures the correctness property for two
threads and two variables, but does not ensure the correctness
property for more threads or variables. We start with an incor-
rect word in the language of the TM. We consider the shortest
incorrect prefix of this word. We remove all aborting and all
pending transactions except one pending transaction using
the transaction projection property. Using the monotonicity
property, we sequentialize this prefix. Using the thread sym-
metry property, we rename the word to be with two threads.
Using the variable projection property, we get an incorrect
word with two threads and two variables, which is in the
language of the TM. This leads to a contradiction.

Theorem 1 If a TM M ensures (2, 2) strict serializability
(resp. (2, 2) opacity) and satisfies the properties P1, P2,
P3, and P4 for strict serializability (resp. opacity), then M
ensures strict serializability (resp. opacity).

Proof We prove the theorem for strict serializability. A sim-
ilar proof holds for opacity. The proof is by contradiction.
Let w ∈ M be not strictly serializable. Let wp be the longest
finite prefix of w such that wp is strictly serializable and let
w1 = wp · s, where s = (c, t) is a statement of transac-
tion x . Let X be the set of committed transactions in wp. By
property P1, there exists a word w2 generated by projecting
w1 to X ∪ {x} such that w2 is a finite prefix of a word in
M . We note that w2 = w′

p · s and w′
p is strictly serializable

and w2 is not strictly serializable. So, using property P4 for
strict serializability, there exists a word w′′

p ∈ seq(w′
p) such

that the word w3 = w′′
p · s is a finite prefix of a word in M .

In w3 only one transaction, x , does not execute sequentially.
We note that the last statement of x is a commit. This is
because strict serializability concerns only committed trans-
actions, and the word w′′

p is strictly serializable while w3 is
not. Using property P2, we rename the threads for the trans-
actions in w3. We let all transactions except x to be executed
by thread u. Let this renaming give word w4. As w4 is not
strictly serializable, we know (by the definition of conflict)
that one of the following holds: (i) s1 = ((read, v1), t) and
s2 = ((read, v2), t) are global reads of transaction x such
that some transaction y of thread u writes to v1 and some
transaction y′ of u with y′ = y or y <w4 y′ writes to v2 and
both commit between s1 and s2, (note that y and y′ cannot
overlap due to the structure of w4,) or (ii) s1 = ((read, v1), t)
is a global read of transaction x such that some transaction
y of thread u writes to v1 and commits after s1, and there is
a committing transaction y′ with y′ = y or y <w4 y′ which
has a command (read, v2) or (write, v2), and x also writes
to v2. (Note that v1 may be same as v2). Let w5 be a vari-
able projection of w4 on {v1, v2}. We know that w5 is a finite
prefix of a word in M on two threads and two variables, by
property P3. Also, we note that w5 is not strictly serializable.

123

138 R. Guerraoui et al.

As we know that all words w ∈ M on two threads and two
variables are strictly serializable, we get a contradiction. ��

5 TM specifications for safety

Using the reduction theorem mentioned above, our safety
verification problem reduces to checking the safety prop-
erty for two threads and two variables. We now describe TM
specifications for strict serializability and opacity. Suitable
TM specifications can also be defined for stronger notions
of safety, such as the notions described by Scott [25], by
modifying the semantics of conflict.

Our verification technique relies on the fact that the TM
specifications for strict serializability and opacity for two
threads and two variables can be defined using a finite number
of states. This is not obvious, as threads may be delayed arbi-
trarily, transactions may contain arbitrarily many statements
and may be aborted arbitrarily often. The classical approach
to checking whether a word is strictly serializable is to con-
struct a directed graph G = (V, E), called the conflict graph
[22], of the committing transactions in the word. The conflict
graph captures the precedence of the committing transactions
based on the conflicts. Given a word w = s0 . . . sn , the trans-
actions in w form the set V of vertices in the conflict graph.
There exists an edge from a vertex v1 to a vertex v2 if v2 com-
mits or aborts before v1 starts, or a statement si of v1 conflicts
with a statement s j of v2 and i > j . The conflict graph G is
acyclic if and only if the word w is strictly serializable. We
note that the size of this construction is unbounded. The fol-
lowing parametrized word illustrates the point: wm =((read,
v1), t1), (((write, v1), t2), (commit, t2))m , (commit, t1). The
number of vertices in the conflict graph of wm is m + 1.
Thus, we cannot aim to create a finite-state TM specification
for strict serializability using conflict graphs.

We look at the issues we face in creating TM specifications
for strict serializability and opacity.

Analysis of strict serializability. We look at two words and
reason whether they are strictly serializable.

– Consider the word w = ((write, v1), t2), ((read, v1), t1),
((read, v2), t3), (commit, t2), ((write, v2), t1), ((read,
v1), t3), (commit, t1), (commit, t3). The word w is illus-
trated in Fig. 1a. The transaction x has to serialize before
y due to a conflict on v1 (as x reads v1 before y commits
and y writes to v1). Similarly, the transaction z has to
serialize before x due to a conflict on v2. However, z has
to serialize after y due to a conflict on v1 (z reads v1 after
v1 is written and committed by y). So, w is not strictly
serializable. On the other hand, if one of the transactions
had not committed, the word would have been strictly
serializable.

(a)

(b)

Fig. 1 Examples for strict serializability. The words are fragmented
into transactions of different threads. We use the notation: w for write, r
for read, c for commit, and a for abort

– Consider the word w = ((write, v1), t2), ((read, v2), t2),
((read, v3), t3), ((read, v1), t1), (commit, t2), ((write,
v2), t3), ((write, v3), t1), (commit, t1), (commit, t3). The
word is illustrated in Fig. 1b. The transaction x has to
serialize before y due to a conflict on v1. Similarly, the
transaction z has to serialize before x due to a conflict
on v3. Also, z writes to the variable v2 which is read by
transaction y before z commits. Thus, z has to serialize
after y. This makes w not strictly serializable.

These examples show that strict serializability is a prop-
erty concerned with committing transactions.

Analysis of opacity. Designing a TM specification for opac-
ity requires even further care. This is because even aborting
transactions should be prevented from reading inconsistent
values. To demonstrate the intricacies involved, we again give
two examples.

– Consider the word w = ((write, v1), t2), ((read, v1), t1),
((read, v2), t3), (commit, t2), ((write, v2), t1), ((read,
v1), t3), (commit, t1). The word is illustrated in Fig. 2a.
Transaction x has to serialize before y due to a conflict on
v1. Also, z has to serialize after y due to a conflict on v1,
and before x due to a conflict on v2. Note that although

123

Model checking transactional memories 139

(b)

(a)

Fig. 2 Examples for opacity. The words are fragmented into transac-
tions of different threads

z does not commit, opacity requires that transaction x
does not commit. So, w is not opaque.

– Consider the word w = ((write, v1), t2), ((read, v1),
t1), (commit, t2), ((read, v2), t3), (abort, t3), ((write,
v2), t1), (commit, t1). The word is illustrated in Fig. 2b.
Transaction x has to serialize before y due to a conflict
on v1. Transaction z has to serialize after y as they do
not overlap in w. Also, z has to serialize before x due to
the conflict on v2. This makes w not opaque. This shows
how a read of an aborting transaction may disallow a
commit of another transaction, for the sake of opacity.

The key idea to get around the problem of infinite states is
to maintain sets called prohibited read and write sets for every
thread. These sets allow to handle unbounded delay between
transactions, as committing transactions store the required
information in the sets of other threads. Once a transaction
commits or aborts, we need not remember it (unlike conflict
graphs). Thus, we need to store information of at most one
transaction per thread.

We now present TM specifications for strict serializability
and opacity, and manually prove their correctness. Later, we
give deterministic TM specifications, and use an antichain-
based tool to prove that the language of deterministic TM
specifications for two threads and two variables is indeed
equivalent to that of the nondeterministic counterparts.

5.1 Nondeterministic specifications

Nondeterminism allows a natural construction of the TM
specifications, where a transaction nondeterministically
guesses a serialization point during its lifetime. A branch of
the nondeterministic TM specification corresponds to a spe-
cific serialization choice of the transactions, which makes the
construction simple and intuitive, though redundant.

Nondeterministic TM specification for strict serializabil-
ity. The TM specification for strict serializability is based
on the observation that every committing transaction serial-
izes at some point during its execution. The TM specification
makes a nondeterministic guess of when a transaction serial-
izes. Depending upon the guess, the TM specification checks
upon the commit of a transaction, whether the commit can
be executed, or the transaction needs to abort.

Formally, we define the nondeterministic TM specifica-
tion for strict serializability �ss for n threads and k vari-
ables as the tuple 〈Q, qinit, δss〉. A state q ∈ Q is a 6-tuple
〈Status, rs, ws, prs, pws, sp〉, where Status : T → {started,
invalid, serialized, finished} is the status, rs : T → 2V is
the read set, ws : T → 2V is the write set, prs : T → 2V

is the prohibited read set, pws : T → 2V is the prohibited
write set, and sp : T → 2T is the serialization predeces-
sor set for the threads. If v ∈ prs(t) (resp. v ∈ pws(t)),
then the status of the thread t is set to invalid if t glob-
ally reads (resp. writes to) v. A thread u is in the weak
predecessor set of thread t if the unfinished transaction of
u is a weak predecessor of the unfinished transaction of t .
The initial state qinit is 〈Status0, rs0, ws0, prs0, pws0, sp0〉,
where Status0(t) = finished for all threads t ∈ T , and
rs0(t) = ws0(t) = prs0(t) = pws0(t) = sp0(t) = ∅
for all threads t ∈ T . We express the transition function
δss using the procedure nondet Spec shown in Algorithm 5.
For all states q ∈ Q and all statements s ∈ Ŝ, the fol-
lowing hold: (i) if nondet Spec(q, s, πss) =⊥, then there
is no state q ′ ∈ Q such that (q, s, q ′) ∈ δss, and (ii) if
nondet Spec(q, s, πss) = q ′ for some state q ′ ∈ Q, then
(q, s, q ′) ∈ δss.

Given a state q and a thread t ∈ T , the proce-
dure ResetState(q, t) makes the following updates: (i) sets
Status(t) to finished, (ii) sets rs(t), ws(t), prs(t), pws(t),
and sp(t) to ∅, and (iii) for all threads u �= t , removes t
from sp(u).

Nondeterministic TM specification for opacity. Apart
from the requirements of the above mentioned TM specifica-
tion for strict serializability, opacity requires that even global
reads of aborting transactions observe consistent values.

The nondeterministic TM specification for opacity is
based on the observation that every committing and abort-
ing transaction should serialize at some point during its
execution. As for �ss, the TM specification �op makes

123

140 R. Guerraoui et al.

Algorithm 5 nondet Spec(〈Status, rs, ws, prs, pws, sp〉, s, π)

if s = ((read, v), t) then
if v ∈ ws(t) then return 〈Status, rs, ws, prs, pws, sp〉
if Status(t) = finished then

sp(t) := {u ∈ T | Status(u) = serialized}
Status(t) := started

rs(t) := rs(t) ∪ {v}
if π = πop then

if v ∈ prs(t) then return ⊥
for all threads u �= t do

if Status(u) = serialized and t /∈ sp(u) then
if v ∈ ws(u) then

Status(u) := invalid
else

pws(u) := pws(u) ∪ {v}
if π = πss then

if Status(t) = serialized and v ∈ prs(t) then
Status(t) := invalid

if s = ((write, v), t) then
if Status(t) = finished then

sp(t) := {u ∈ T | Status(u) = serialized}
Status(t) := started

else if Status(t) = serialized and v ∈ pws(t) then
Status(t) := invalid

ws(t) := ws(t) ∪ {v}
if s = (commit, t) then

if Status(t) ∈ {started, invalid} then return ⊥
for all threads u �= t do

if u ∈ sp(t) then
prs(u) := prs(u) ∪ ws(t)
pws(u) := pws(u) ∪ rs(t) ∪ ws(t)
if (ws(u) ∩ (ws(t) ∪ rs(t)) �= ∅ then

Status(u) := invalid
if u /∈ sp(t) then

if ws(t) ∩ rs(u) �= ∅ then
Status(u) := invalid

ResetState(q, t)
if s = (ε, t) then

if Status(t) �= started then return ⊥
Status(t) := serialized
sp(t) := {u ∈ T | Status(u) = serialized}
if π = πop then

for all threads u �= t do
if Status(u) = started then

if rs(u) ∩ ws(t) �= ∅ then Status(t) := invalid
pws(t) := pws(t) ∪ rs(u)

if Status(u) = serialized then
if ws(u) ∩ rs(t) �= ∅ then Status(u) := invalid
pws(u) := pws(u) ∪ rs(t)

if s = (abort, t) then ResetState(q, t)
return 〈Status, rs, ws, prs, pws, sp〉

a nondeterministic guess of when a transaction serializes.
Upon every global read and every commit of a transac-
tion, �op checks whether the command can be executed
or the transaction needs to be aborted. The nondetermin-
istic TM specification for opacity �op is given by the tuple
〈Q, qinit, δop〉. The set Q of states and the initial state qinit are
identical to that of �ss. The only difference comes in the tran-
sition relation δop. As for strict serializability, we obtain δop

using the procedure nondet Spec with property πop, instead
of πss.

Theorem 2 Given a word w on n threads and k variables,
the word w is strictly serializable (resp. opaque) if and only
if w ∈ L(�ss) (resp. w ∈ L(�op)).

Proof We prove the theorem for strict serializability here.
The TM specification �ss for strict serializability guaran-
tees by construction, that a transaction x does not commit iff
one of the conditions, C1–C4, holds (graphically shown in
Fig. 3):

C1. there exists a transaction y such that x serializes before
y and y writes to a variable v and commits, and then x
reads v

C2. there exists a transaction y such that x serializes before
y and x writes to v and y reads v before x commits,
and y commits

C3. there exists a transaction y such that x serializes before
y and both x and y write to a variable v, and y commits
before x does.

C4. there exists a transaction y such that x serializes after
y and y writes to v and x reads v before y commits,
and then y commits

The TM specification �ss makes a guess of when every
committing transaction serializes. Depending upon the guess,
each committing transaction follows certain restrictions on
the commands which can be executed. Consider a run w of
�ss. Let X be the set of finished transactions in w. Let w′ be
the sequential word such that w′ is transaction equivalent to
w and for all transactions x, y ∈ X , we have x <w′ y if the ε

command of x comes before that of transaction y in w (Note
that every non-empty transaction has the ε command exactly
once.) Then, com(w′) is strictly equivalent to com(w), as for
every transaction x ∈ X , the transaction x commits in w only
if none of the conditions C1–C4 holds for x . Hence, every
word in L(�ss) is strictly serializable.

Conversely, let w be strictly serializable. As w is strictly
serializable, there is a sequential word ws such that com(ws)

is strictly equivalent to com(w). Let the committing trans-
actions in the sequential word ws be given by the sequence
x1x2 . . . of transactions. We claim that w is a run of the TM

Fig. 3 The commits inside ovals are disallowed by the TM specifica-
tion for strict serializability. Each condition shows various cases. The
arrows represent different possible positions for a command to occur in
a given condition. We write w for write, r for read, and c for commit.
We write the statement ((w, v), tk) as (w, v)k . Thread t1 executes trans-
action x and thread t2 executes transaction y

123

Model checking transactional memories 141

specification �ss such that for all i and j such that i < j , the
transaction xi serializes before x j in the run. This is because
(i) the TM specification nondeterministically guesses every
possible serialization for every transaction during its execu-
tion, and (ii) given that w is strictly serializable, there is no
transaction x in the sequence x1x2 . . . that satisfies any of the
conditions C1–C4, and commits in w. Thus, the word w is
in the language L(�ss). ��

5.2 Deterministic specifications

In nondeterministic TM specifications, we consider a partic-
ular order of serialization of transactions in a given branch.
This allows us to argue individually for different serialization
orders, which in turn, allows us to locally reason for every
pair of transactions. On the other hand, in a deterministic TM
specification, we have to consider all possible serialization
orders at the same time, which complicates the specification.

We use two different predecessor notions for creating
deterministic TM specifications. We define that a transac-
tion x is a weak predecessor of transaction y in a word w

if y must serialize after x for both x and y to be commit-
ting transactions. Note that the relation, weak predecessor,
is not a transitive relation. But, when a transaction y com-
mits, all weak predecessors of y become weak predecessors
of the transactions of which y is a weak predecessor. We say
that a transaction x is a strong predecessor of transaction y
in a word w if y must serialize after x in w. Unlike weak
predecessor, strong predecessor is a transitive relation.

We now present the formal definitions of the deterministic
TM specifications for strict serializability and opacity.

Deterministic TM specification for strict serializability.
The deterministic TM specification for strict serializabili-
ty �d

ss is given by the tuple 〈Q, qinit, δ
d
ss〉. A state q ∈ Q

is a 7-tuple 〈Status, rs, ws, prs, pws, wp, sp〉, where Status :
T → {started, invalid, pending, finished} is the status,
rs : T → 2V is the read set, ws : T → 2V is the write
set, prs : T → 2V is the prohibited read set, pws : T → 2V

is the prohibited write set, wp : T → 2T is the weak pre-
decessor set, and sp : T → 2T is the strong predeces-
sor set for the threads. If v ∈ prs(t) (resp. v ∈ pws(t)),
then the status of the thread t is set to invalid if t globally
reads (resp. writes to) v. A thread u is in the weak prede-
cessor set of thread t if the unfinished transaction of u is
a weak predecessor of the unfinished transaction of t . The
initial state qinit is 〈Status0, rs0, ws0, prs0, pws0, wp0, sp0〉,
where Status0(t) = finished for all threads t ∈ T , and
rs0(t) = ws0(t) = prs0(t) = pws0(t) = wp0(t) =
sp0(t) = ∅ for all threads t ∈ T . We express the tran-
sition function δd

ss using the procedure det Spec shown
in Algorithm 6. The notation of det Spec is similar to
that of the procedure nondet Spec. Given a state q and a

thread t ∈ T , the procedure ResetState(q, t) makes the
following updates: (i) sets Status(t) to finished, (ii) sets
rs(t), ws(t), prs(t), pws(t),
wp(t), and sp(t) to ∅, and (iii) for all threads u �= t , removes
t from wp(u) and sp(u).

Deterministic TM specification for opacity. The determin-
istic TM specification for opacity builds upon the determin-
istic TM specification for strict serializability. The difference
comes in the strong predecessor set. We exploit the relation
of strong predecessors in such a way that even aborting trans-
actions see consistent values. For example, if a thread u is
a strong predecessor of t , and t is a weak predecessor of u,
then u cannot commit but t can. Many similar cases of conflict
have to be carefully considered to capture the exact notion of
opacity. The deterministic TM specification for opacity �d

op

is given by the tuple 〈Q, qinit, δ
d
op〉. The set of states and the

initial state are the same as those for �d
ss. Also, the transi-

tion relation δd
op can be similarly obtained from Algorithm 6

using the property πop instead of πss.

5.3 Equivalence checking of nondeterministic
and deterministic TM specifications

We build nondeterministic and deterministic TM specifica-
tions for two threads and two variables. We observe that
the nondeterministic TM specifications presented are too
large to be automatically determinized. However, surpris-
ingly enough, the deterministic TM specifications we present
turn out to be much smaller in size. Using an antichain-based
tool [28], we establish that for two threads and two variables,
the language of our deterministic TM specification for strict
serializability (resp. opacity) is equivalent to the language
of the nondeterministic specification for strict serializability
(resp. opacity).

For strict serializability, our deterministic TM specifica-
tion �d

ss has only 3,520 states, whereas the nondeterministic
one �ss has 12,345 states. Similarly, for opacity, �d

op has
2,272 states, while the nondeterministic specification �op

consists of 9,202 states. The antichain-based tool can prove
both equivalences within 5 s. This leads us to the following
theorem.

Theorem 3 L(�ss) = L(�d
ss) and L(�op) = L(�d

op).

5.4 Safety verification results

The reduction theorem for safety states that if we prove that
an TM ensures (2, 2) strict serializability (resp. (2, 2) opac-
ity), then the TM ensures strict serializability (resp. opac-
ity). This in turn implies that the TM using any contention
manager ensures strict serializability (resp. opacity). We now
check the safety (strict serializability or opacity) of different
TMs by checking whether the language of the TM algorithm

123

142 R. Guerraoui et al.

Algorithm 6 det Spec(〈Status, rs, ws, prs, pws, wp, sp〉, s, π)

if s = ((read, v), t) then
if v ∈ ws(t) then return 〈Status, rs, ws, prs, pws, wp, sp〉
if π = πop then

U := {u ∈ T | v ∈ prs(u) or v ∈ prs(u′) s.t. u ∈ sp(u′)}
if t ∈ U then return ⊥

if Status(t) = finished then
U := {u ∈ T | Status(u) = pending}
U ′ := {u′ ∈ T | ∃u · u′ ∈ sp(u) and Status(u) = pending}
wp(t) := wp(t) ∪ U
sp(t) := sp(t) ∪ U ∪ U ′
Status(t) := started

rs(t) := rs(t) ∪ {v}
if v ∈ prs(t) then Status(t) := invalid
for all threads u ∈ T do

if v ∈ ws(u) then wp(u) := wp(u) ∪ {t}
if v ∈ prs(u) then wp(t) := wp(t) ∪ {u}

if π = πss then return 〈Status, rs, ws, prs, pws, wp, sp〉
for all threads u ∈ T such that u = t or t ∈ sp(u) do

sp(u) := sp(u) ∪ U
for all threads u ∈ T such that u ∈ sp(t) do

pws(u) := pws(u) ∪ {v}
if v ∈ ws(u) then

Status(u) := invalid
if s = ((write, v), t) then

if Status(t) = finished then
U := {u ∈ T | Status(u) = pending}
U ′ := {u′ ∈ T | ∃u · u′ ∈ sp(u) and Status(u) = pending}
wp(t) := wp(t) ∪ U
sp(t) := sp(t) ∪ U ∪ U ′
Status(t) := started

ws(t) := ws(t) ∪ {v}
if v ∈ pws(t) then Status(t) := invalid
for all threads u �= t do

if v ∈ rs(u) then
wp(t) := wp(t) ∪ {u}
if π = πop and t ∈ sp(u) then Status(t) := invalid

if v ∈ pws(u) then wp(t) := wp(t) ∪ {u}
if s = (commit, t) then

if t ∈ wp(t) then return ⊥
if Status(t) = invalid then return ⊥
if π = πop then

U := {u | u ∈ wp(t) or u ∈ sp(u′) for some u′ ∈ wp(t)}
if t ∈ U then return ⊥

for all threads u ∈ T such that u ∈ wp(t) do
if ws(u) ∩ ws(t) �= ∅ then Status(u) := invalid
else Status(u) := pending
prs(u) := prs(u) ∪ prs(t) ∪ ws(t)
pws(u) := pws(u) ∪ pws(t) ∪ ws(t) ∪ rs(t)
for all threads u′ ∈ T such that t ∈ wp(u′) do

wp(u′) := wp(u′) ∪ {u}
for all threads u′ ∈ T such that ws(u′) ∩ ws(t) �= ∅ do

wp(u′) := wp(u′) ∪ {u}
for all threads u ∈ T such that u = t or t ∈ sp(u) do

sp(u) := sp(u) ∪ U
ResetState(q, t)

if s = (abort, t) then ResetState(q, t)
return 〈Status, rs, ws, prs, pws, wp, sp〉

is included in the language of the deterministic TM specifi-
cation for the safety property. Table 2 shows our results and
leads to the following theorem.

Table 2 Time for checking language inclusion for TM algorithms on
a dual core 2.8 GHz PC with 2 GB RAM

TM Size L(A) ⊆ L(�ss) L(A) ⊆ L(�op)

seq 3 Y, 0.01s Y, 0.01s

2PL 99 Y, 0.01s Y, 0.01s

dstm 1,846 Y, 0.16s Y, 0.13s

TL2 21,568 Y, 3.2s Y, 2.4s

modTL2pol 17,520 N, w1, 9s N, w1, 8s

Counterexamples

w1 (w, 2)1, (w, 1)2, (r, 2)2, (r, 1)1, c2, c1

In case the language inclusion holds, we write Y followed by the time
required for finding it. Otherwise, we write N followed by the counter-
example produced, followed by the time required to find the counter-
example

Theorem 4 The sequential TM, two-phase locking TM,
DSTM, and TL2 ensure opacity.

Our tool discovered a subtle point in TL2. In the descrip-
tion of the published TL2 algorithm, we found the order of
two operations, validating the read set (rvalidate), and check-
ing whether a variable in the read set is locked (chklock),
ambiguous. We refined the TL2 algorithm shown in Algo-
rithm 4 such that the extended command validate executes
as two separate atomic operations, chklock and rvalidate,
where chklock happens after rvalidate. We call this new
TM algorithm as the modified TL2 TM algorithm. We use
the polite contention manager with the modified TL2 TM
algorithm. We found that the language of the TL2 TM algo-
rithm with the polite contention manager is not included in
the language of the TM specification for strict serializabili-
ty. We obtain a counterexample. In the published TL2 algo-
rithm, the authors maintain the version number and the lock
bit of every variable in the same memory word. This ensures
that the two operations chklock and rvalidate execute atom-
ically, and thus they can be executed in any order. So, our
experiments discover that the correctness of TL2 is based on
the subtle fact that either the version number and the lock
bit have to be accessed atomically, or rvalidate has to occur
after chklock.

6 Model checking liveness

Unlike the safety properties, the liveness properties guaran-
teed by a TM may depend on the contention manager used
with the TM. This is because the decision of a contention
manager may require a thread to wait for an arbitrarily long
period of time, or may require a thread to abort any conflict-
ing transaction. Thus, we need to prove the liveness property
of an TM using a specific contention manager.

123

Model checking transactional memories 143

We use the formalism of TM algorithms to verify live-
ness properties of TMs. We define a loop l in a TM algo-
rithm A as a finite word s0 . . . sm such that there exists a run
〈q0, c0, s0, r0〉 . . . 〈qm, cm, sm, rm〉 of A such that q0 = qm .

Note that we defined obstruction freedom using a Streett
condition in Sect. 2 as

∧
t∈T (�♦(abort, t)→�♦((commit,

t) ∨ ∨
c∈Ĉ,u∈T \{t}(c, u))).

Note that every word w that is not obstruction free violates
at least one of the conjuncts of the Streett condition stated
above. Each conjunct (Streett pair) corresponds to one thread.
A word w can violate the condition for thread t , only if w

has from some point on only statements of t . Note that in this
case w trivially satisfies the Streett pairs for other threads.
This fact allows us to use a simple model checking proce-
dure, even though obstruction freedom is formally a Streett
condition.

In particular, a TM defined by a TM algorithm A ensures
obstruction freedom iff there is no loop l in A such that all
statements in l are from the same thread, and l contains no
commit, and l contains an abort. Similarly, a TM ensures
livelock freedom iff there is no loop l in A such l contains
no commit, and every thread that has a statement in l, has an
abort in l.

6.1 Reduction theorem for liveness

As we did for safety, we state a reduction theorem that proves
that it is sufficient to verify liveness of a TM on words with
two threads and one variable to generalize the result to all
words. For this purpose, we describe two more structural
properties of TMs. These properties are again satisfied by all
TMs that we have discussed. Let w = w1 · w2 be an infinite
word such that w is in TM M , and no unfinished transaction
in w1 has a statement in w2, and all statements in w2 are from
the same thread, and there is no commit command in w2. For
i ∈ {1, 2}, let Vi be the variables accessed in wi .

P5. Transaction projection. A thread t running in isolation
(no interleaved step from other threads) shall abort repeat-
edly only if it conflicts with some unfinished transaction. As
the number of threads is finite, and a thread can have at most
one unfinished transaction, there are infinitely many aborts
of t due to a particular thread. The property P5 states that (i)
the word w′

1 ·w2 is in M , where w′
1 is obtained by taking the

transaction projection of w1 on non-aborting transactions,
and (ii) if w1 has no aborting transactions and w2 reads or
writes only one variable, then there exists a wordw′ = w′′

1 ·w2

in M , where w′′
1 is obtained by projecting w1 to transactions

of some thread t that has statements in w1. For instance, a
TM satisfies P5 if the state of a thread is reset to the initial
state upon an abort command, and every variable accessed
by every thread is tracked independently.

P6. Variable projection. A thread t running in isolation shall
abort repeatedly only if some commands corresponding to
some variables are not allowed. As the number of variables
is finite, there are infinitely many aborts of t due to a par-
ticular variable. The property P6 states that (i) there exists
a word w1 · w′

2 ∈ M such that w′
2 is the variable projection

of w2 on {v} for some variable v ∈ V2, and (ii) if w1 has no
aborting transactions, then the word w′ = w′

1 · w2 is in M ,
where w′

1 is the variable projection of w1 on V2. For instance,
a TM satisfies P6 if the TM tracks every variable accessed
by every thread independently.

Theorem 5 If a TM M ensures (2, 1) obstruction freedom
and satisfies the properties P5 and P6, then M ensures
obstruction freedom.

Proof Let M be a TM that ensures (2, 1) obstruction free-
dom but not (n, k) obstruction freedom for some arbitrary n
and k. Let w ∈ M be a word such that w is not obstruction
free. As w is not obstruction free, it can be written in the form
w1 · w2, such that (i) no unfinished transaction in w1 has a
statement in w2, and (ii) all statements in w2 are from the
same thread, and (iii) there is no commit instruction in w2.
Let w3 = w1 ·w′

2 be a word such that w′
2 is the projection of

w2 on one variable v. Using the variable projection property
(P6 (ii)), we have w3 ∈ M . We take a word w4 = w′

1 · w′
2

such that w′
1 has no aborting transactions and w′

1 is on v.
Using transaction projection (P5 (i)) and variable projection
(P6 (i)), we get w4 ∈ M . We now take a word w5 = w′′

1 ·w′
2

such that all commands in w′′
1 are from one thread. From

transaction projection (P5 (ii)), we get w5 ∈ M . As w5 is
not obstruction free and w5 is a word on two threads and one
variable, we get a contradiction. ��

6.2 Liveness verification results

We built a verification tool to check obstruction freedom
and livelock freedom properties of TM algorithms. To check
obstruction freedom, our tool tries to find a loop l in the
TM transition system such that all statements in l are from
the same thread, and l has no commit, and l has an abort.
If the tool finds such a loop, the loop is a counterexample
to obstruction freedom. If the tool does not find a loop, we
know that the TM ensures obstruction freedom. Similarly, to
check livelock freedom, our tool tries to find a loop l in the
TM transition system such that there is no commit in l, and
every thread that has a statement in l, has an abort in l.

In this way, our tool provides a platform for TM designers
to check which liveness properties are ensured. If the live-
ness property fails, then the tool provides feedback in the
form of a word that represents a counterexample. Our results
are shown in Table 3 and lead to the following theorem.

Theorem 6 DSTM with the aggressive contention manager
ensures obstruction freedom but does not ensure livelock

123

144 R. Guerraoui et al.

Table 3 Results of model checking liveness on a dual core 2.66 GHz
desktop PC with 2 GB RAM

TM algorithm Obstruction freedom Livelock freedom

seq N, w1, 0.1s N, w1, 0.1s

2PL N, w1, 0.1s N, w1, 0.1s

dstmaggr Y, 2s N, w2, 0.2s

TL2pol N, w1, 0.4s N, w1, 0.4s

Counterexamples

w1 a1

w2 a1, (r, 1)1, (o, 1)1, a2, (o, 1)2

The notation is similar to Table 2. The time denotes the time required
to prove a liveness property or find a counterexample. The counterex-
amples obtained are of the form a · bω. We write the looping part b
here

freedom. The sequential TM and two-phase locking TM do
not ensure obstruction freedom. TL2 with the polite conten-
tion manager does not ensure obstruction freedom.

7 Related work

There has been recent independent work on the formal verifi-
cation of TMs [5]. Cohen et al. model checked TMs applied
to programs with a small number of threads and variables
against the strong safety criteria of Scott [25]. They do not
offer a reduction theorem and do not consider liveness prop-
erties. Cohen et al. later extended their safety verification
technique [6] to programs with both transactional and non-
transactional operations.

Our construction of the TM specifications is related to the
work of Fle and Roucairol [8]. They investigated the set of
concurrent traces that are generated by a finite set of iterat-
ing transactions. They proved that the language consisting
of all traces that are conflict equivalent to a sequential trace
is regular. Their results cannot be applied in the presence
of aborting transactions, as they require the transitivity of
conflicts, which does not hold when transactions may abort.

There has been much research on the formal verification of
relaxed memory models and cache-coherence protocols for
modern multi-processors, e.g., [4,10,16,23]. In this work, the
semantics of a shared memory is generally given by a mem-
ory consistency model, which defines the possible outcomes
of executing a concurrent program.

8 Conclusion

We presented a new technique for verifying TM safety
and liveness properties. The cornerstones of our technique
are finite-state representations for the languages of strictly

serializable and opaque executions, a theorem that reduces
the general verification problem to one for 2 threads and 2
variables, and a model-checking tool for TMs. Our method
applies to all TM protocols that satisfy certain structural prop-
erties, and we successfully verified opacity for two-phase
locking TM, DSTM, and TL2, and the obstruction freedom
of DSTM.

To verify the correctness of a new TM using our meth-
odology, one would proceed as follows. First, one needs to
manually express the TM as a transition system, and man-
ually check that the structural properties hold for the TM.
Then, our tool automatically checks the desired safety or
liveness property.

8.1 Limitations

Currently, our framework does not apply when transactions
help each other. For instance, we cannot model Fraser’s STM
[9] where threads help each other in order to ensure livelock
freedom. Also, our liveness properties capture determinis-
tic notions. It will be interesting to account for probabilistic
means to deal with contention, such as random exponential
backoff. We assumed that the commands in the extended
alphabet, like read, write, validate, and commit, execute
atomically. So, TM algorithms have to guarantee this level of
atomicity to ensure correctness using our methodology. We
have extended our verification technique to hardware level
atomicity [13]. Also, currently our framework does not sup-
port non-transactional code and nested transactions.

References

1. Alur, R., McMillan, K.L., Peled, D.: Model-checking of correct-
ness conditions for concurrent objects. Inf. Comput. 160, 167–188
(2000)

2. Anderson, J.H., Kim, Y., Herman, T.: Shared-memory mutual
exclusion: major research trends since 1986. Distrib. Comput.
16, 75–110 (2003)

3. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about net-
works with many identical finite state processes. Inf. Comput.
81(11), 13–31 (1989)

4. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: checking
consistency of concurrent data types on relaxed memory models.
In: PLDI, pp. 12–21 (2007)

5. Cohen, A., O’Leary, J., Pnueli, A., Tuttle, M.R., Zuck, L.: Verify-
ing correctness of transactional memories. In: FMCAD, pp. 37–44
(2007)

6. Cohen, A., Pnueli, A., Zuck, L.D.: Mechanical verification of trans-
actional memories with non-transactional memory accesses. In:
CAV, pp. 121–134. Springer (2008)

7. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: DISC,
pp. 194–208. Springer (2006)

8. Flé, M., Roucairol, G.: Maximal serializability of iterated transac-
tions. Theor. Comput. Sci. 38(11), 1–16 (1985)

9. Fraser, K., Harris, T.: Concurrent programming without locks.
ACM Trans. Comput. Syst. (2007)

123

Model checking transactional memories 145

10. Gopalakrishnan, G., Yang, Y., Sivaraj, H.: QB or Not QB: an effi-
cient execution verification tool for memory orderings. In: CAV,
pp. 401–413. Springer (2004)

11. Guerraoui, R., Henzinger, T.A., Jobstmann, B., Singh, V.: Model
checking transactional memories. In: PLDI, pp. 372–382 (2008)

12. Guerraoui, R., Henzinger, T.A., Singh, V.: Completeness and non-
determinism in model checking transactional memories. In: CON-
CUR, pp. 21–35 (2008)

13. Guerraoui, R., Henzinger, T.A., Singh, V.: Software transactional
memory on relaxed memory models. In: CAV, pp. 321–336 (2009)

14. Guerraoui, R., Herlihy, M., Pochon, B.: Polymorphic contention
management. In: DISC, pp. 303–323 (2005)

15. Guerraoui, R., Kapalka, M.: On the correctness of transactional
memory. In: PPoPP, pp. 175–184 (2008)

16. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Verifying sequential
consistency on shared-memory multiprocessor systems. In CAV,
pp. 301–315. Springer (1999)

17. Herlihy, M.: Wait-free synchronization. ACM Trans. Program.
Lang. Syst. 13(1), 124–149 (1991)

18. Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free syn-
chronization: double-ended queues as an example. In: ICDCS,
pp. 522–529. IEEE Computer Society (2003)

19. Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N.: Software
transactional memory for dynamic-sized data structures. In: PODC,
pp. 92–101 (2003)

20. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural
support for lock-free data structures. In: ISCA, pp. 289–300. ACM
Press (1993)

21. Larus, J.R., Rajwar, R.: Transactional Memory. Synthesis Lectures
on Computer Architecture. Morgan & Claypool (2007)

22. Papadimitriou, C.H.: The serializability of concurrent database
updates. J. ACM 26(4), 631–653 (1979)

23. Qadeer, S.: Verifying sequential consistency on shared-memory
multiprocessors by model checking. IEEE Transactions on Paral-
lel and Distributed Systems, 730–741 (2003)

24. Scherer, W.N., Scott, M.L.: Advanced contention management for
dynamic software transactional memory. In: PODC, pp. 240–248
(2005)

25. Scott, M.L.: Sequential specification of transactional memory
semantics. In: TRANSACT (2006)

26. Shavit, N., Touitou, D.: Software transactional memory. In: PODC,
pp. 204–213 (1995)

27. Streett, R.S.: Propositional dynamic logic of looping and converse
is elementarily decidable. Inf. Control 54, 121–141 (1982)

28. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains:
a new algorithm for checking universality of finite automata. In:
CAV, pp. 17–30. Springer (2006)

123

	Model checking transactional memories
	Abstract
	1 Introduction
	2 Framework
	2.1 Preliminaries
	2.2 Transactions
	2.3 Safety properties of TM
	2.4 Liveness properties of TM
	2.5 TM specifications for safety
	2.6 Transactional memories

	3 TM Algorithms
	3.1 Contention managers
	3.2 Languages of TM algorithms
	3.3 TM examples
	3.3.1 The sequential TM
	3.3.2 The two-phase locking TM

	4 Reduction theorem for safety
	5 TM specifications for safety
	5.1 Nondeterministic specifications
	5.2 Deterministic specifications
	5.3 Equivalence checking of nondeterministicand deterministic TM specifications
	5.4 Safety verification results

	6 Model checking liveness
	6.1 Reduction theorem for liveness
	6.2 Liveness verification results

	7 Related work
	8 Conclusion
	8.1 Limitations

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

