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Vekua theory for the Helmholtz operator
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Abstract. Vekua operators map harmonic functions defined on domain in R
2 to solutions of elliptic partial differential equa-

tions on the same domain and vice versa. In this paper, following the original work of I. Vekua (Ilja Vekua (1907–1977),
Soviet-Georgian mathematician), we define Vekua operators in the case of the Helmholtz equation in a completely explicit
fashion, in any space dimension N ≥ 2. We prove (i) that they actually transform harmonic functions and Helmholtz
solutions into each other; (ii) that they are inverse to each other; and (iii) that they are continuous in any Sobolev norm in
star-shaped Lipschitz domains. Finally, we define and compute the generalized harmonic polynomials as the Vekua trans-
forms of harmonic polynomials. These results are instrumental in proving approximation estimates for solutions of the
Helmholtz equation in spaces of circular, spherical, and plane waves.
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1. Introduction and motivation

Vekua’s theory (see [20,36]) is a tool for linking properties of harmonic functions (solutions of the Laplace
equation Δu = 0) to solutions of general second-order elliptic PDEs Lu = 0: the so-called Vekua operators
(inverses of each other) map harmonic functions to solutions of Lu = 0 and vice versa.

The original formulation targets elliptic PDEs with analytic coefficients in two space dimensions. Some
generalizations to higher space dimensions have been attempted, see [10–12,18,23,24] and the references
therein, but the Vekua operators in these general cases are not completely explicit.

Here, the PDE we are interested in is the homogeneous Helmholtz equation Lu := Δu+ ω2u = 0. In
this particular case, simple explicit integral operators have been defined in the original work of Vekua in
any space dimension N ≥ 2 (see [34,35], [36, p. 59], and Fig. 1), but no proofs of their properties are
provided, and to the best of our knowledge, these results have been used later on only in very few cases
[9,25].

Vekua’s theory has surprising relevance to numerical analysis. Several finite element methods used in
the numerical discretization of the Helmholtz equation Δu+ω2u = 0 are based on incorporating a priori
knowledge about the differential equation into the local approximation spaces by using Trefftz-type basis
functions, namely functions that belong to the kernel of the Helmholtz operator.

Examples of methods using local approximating spaces spanned by plane wave functions x �→ eiωx·d,
d ∈ SN−1, are the Plane Wave Partition of Unit Method (see [4]), the Ultra Weak Variational Formu-
lation (see [8]), the Plane Wave Least Squares Method (see [32]), the Discontinuous Enrichment Method
(see [16]), and the Plane Wave Discontinuous Galerkin Method (see [19,22]). Other methods are based on
generalized harmonic polynomials (Fourier–Bessel functions), like the Partition of Unit Method of [29],
the version of the Least Squares Method presented again in [32], and the method of [6], or on Hankel
functions, like the Method of Fundamental Solutions of [5].
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Fig. 1. Two paragraphs of Vekua’s book [36] addressing the theory for the Helmholtz equation

The convergence analysis of each of these techniques requires best approximation estimates: the finite
element space must contain a function that approximates the analytic solution of the problem with an
error that tends to zero when the mesh size h is reduced (h-convergence) or when the dimension p of the
local approximating space is raised (p-convergence). This error is usually measured in Sobolev norms, and
an explicit estimation of the convergence rate with respect to the parameters h and p is very desirable.

In the case of plane waves, only few approximation estimates are available in the literature. A first
one is contained in Theorem 3.7 of [8]: the proof was based on Taylor expansion, and only h-convergence
for two-dimensional domains was proved; moreover, the obtained order of convergence is not sharp. A
more sophisticated result is Proposition 8.4.14 of [27]: in this case, p-estimates were obtained in the two-
dimensional case by using complex analysis techniques and Vekua’s theory. A similar approach was used
in [30] to prove sharp estimates in h for the PWDG method in 2D; there, the dependence on the wave
number was made explicit. In order to generalize and make precise the results of [27,30], it is necessary
to study in more details the basic tool used: Vekua’s theory. This paper is devoted to this purpose:
the results developed here will be the main ingredients in the proof of best approximation estimates by
circular, spherical, and plane waves. This has been done in [21] and greatly improved in [31].

We proceed as follows: in Sect. 2, we will start by defining the Vekua operators for the Helmholtz
equation with N ≥ 2 and prove their basic properties, namely, that they are inverse to each other and map
harmonic functions to solutions of the homogeneous Helmholtz equation and vice versa (see Theorem 2.5).
Next, in Sect. 3, we establish their continuity properties in (weighted) Sobolev norms, like in [27], but
with continuity constants explicit in the domain shape parameter, in the Sobolev regularity exponent
and in the product of the wavenumber times the diameter of the domain (see Theorem 3.1). The main
difficulty in proving these continuity estimates consists in establishing precise interior estimates. Finally,
in Sect. 4, we introduce the generalized harmonic polynomials, which are the mapping through the direct
Vekua operator of the harmonic polynomials, and derive their explicit expression. They correspond to
circular and spherical waves in two and three dimensions, respectively.

All the proofs are self-contained and do not need the use of other results connected with Vekua’s
theory. Theorem 2.5 was already stated in [36], but the proof given in this paper is new; all the other
results presented in this paper are new, although many ideas come from the work of M. Melenk (see
[27,28]).

We conclude this introduction by fixing some notation used throughout this paper.
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1.1. Notation

In order to prove inequalities with constants that are explicit and sharp with respect to the indices, we
need precise definitions of Sobolev norms and seminorms, because equivalent norms give different bounds.

We denote by N the set of natural numbers, including 0. We set

Br(x0) = {x ∈ R
N , |x− x0| < r}, Br = Br(0), SN−1 = ∂B1 ⊂ R

N .

We introduce the standard multi-index notation

Dαφ =
∂|α|

∂xα1
1 · · · ∂xαN

N

, |α| =
N∑

j=1

αj ∀ α = (α1, . . . , αN ) ∈ N
N , (1)

and define the Sobolev seminorms and norms

|u|Wk,p(Ω) =

⎛

⎝
∑

α∈NN ,|α|=k

∫

Ω

|Dαu(x)|p dx

⎞

⎠

1
p

,

‖u‖Wk,p(Ω) =

⎛

⎝
k∑

j=1

|u|pW j,p(Ω)

⎞

⎠

1
p

=

⎛

⎝
∑

α∈NN ,|α|≤k

∫

Ω

|Dαu(x)|p dx

⎞

⎠

1
p

,

|u|k,Ω = |u|Wk,2(Ω) , ‖u‖k,Ω = ‖u‖Wk,2(Ω) ,

|u|Wk,∞(Ω) = sup
α∈NN ,|α|=k

ess sup
x∈Ω

|Dαu(x)|,

‖u‖Wk,∞(Ω) = sup
j=0,...,k

|u|W j,∞(Ω) ,

and the ω-weighted Sobolev norms

‖u‖k,ω,Ω =

⎛

⎝
k∑

j=0

ω2(k−j) |u|2j,Ω

⎞

⎠

1
2

∀ ω > 0. (2)

We denote the space of harmonic functions and of solutions to the homogeneous Helmholtz equation,
respectively, by

Hj(D) : =
{
φ ∈ Hj(D) : Δφ = 0

} ∀ j ∈ N,

Hj
ω(D) : =

{
u ∈ Hj(D) : Δu+ ω2u = 0

} ∀ j ∈ N, ω ∈ C.

Finally, we denote the number of the independent spherical harmonics of degree l in R
N (see [33, eq. (11)]

and [3, Proposition 5.8]) by

n(N, l) : =

⎧
⎨

⎩

1 if l = 0,
(2l +N − 2)(l +N − 3)!

l! (N − 2)!
if l ≥ 1. (3)

2. N -dimensional Vekua theory for the Helmholtz operator

Throughout domains satisfy the following assumption.

Assumption 2.1. The domain D ⊂ R
N , N ≥ 2, is a bounded Lipschitz open set such that

• D is star shaped with respect to the origin,
• and there exists ρ ∈ (0, 1/2] such that Bρh ⊆ D, where h := diamD.

For an example of domain that satisfies Assumption 2.1, see Fig. 2.
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Fig. 2. A domain that satisfies Assumption 2.1

Not all these assumptions are necessary in order to establish the results of this section (see Remark 2.7
below).

Remark 2.2. If D is a domain as in Assumption 2.1, then

Bρh ⊆ D ⊆ B(1−ρ)h.

The maximum 1/2 for the parameter ρ is achieved when the domain is a sphere: D = Bh
2
.

Definition 2.3. Given a positive number ω, we define two continuous functions M1,M2 : D × [0, 1) → R

as follows

M1(x, t) := −ω|x|
2

√
t
N−2

√
1 − t

J1(ω|x|√1 − t),

M2(x, t) := − iω|x|
2

√
t
N−3

√
1 − t

J1(iω|x|
√
t(1 − t)), (4)

where J1 is the first-order Bessel function of the first kind, see Appendix A.

Using the expression (60), we can write

M1(x, t) = −tN
2 −1

∑

k≥0

(−1)k
(
ω|x|
2

)2k+2

(1 − t)k

k! (k + 1)!
,

M2(x, t) =
∑

k≥0

(
ω|x|
2

)2k+2

(1 − t)k tk+
N
2 −1

k! (k + 1)!
.

Note that M1 and M2 are radially symmetric in x and belong to C∞(D× (0, 1]); if N is even, they have
a C∞-extension to R

N × R.

Definition 2.4. We define the Vekua operator V1 : C(D) → C(D) and the inverse Vekua operator
V2 : C(D) → C(D) for the Helmholtz equation according to

Vj [φ](x) = φ(x) +

1∫

0

Mj(x, t)φ(tx) dt ∀ x ∈ D, j = 1, 2, (5)

where C(D) is the space of the complex-valued continuous functions on D. V1[φ] is called the Vekua
transform of φ.
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Notice that t �→ Mj(x, t)φ(tx), j = 1, 2, belong to L1([0, 1]) for every x ∈ D; consequently, V1 and V2

are well defined. The operators V1 and V2 can also be defined with the same formulas from the space
of the essentially bounded functions L∞(D) to itself or from Lp(D) to L2(D), with p sufficiently large,
depending on the spatial dimension N . In the following theorem, we summarize general results about the
Vekua operators, while their continuity will be proved in Theorem 3.1 below.

Theorem 2.5. Let D be a domain as in Assumption 2.1; the Vekua operators satisfy:
(i) V2 is the inverse of V1:

V1 [V2[φ]] = V2 [V1[φ]] = φ ∀ φ ∈ C(D). (6)

(ii) If φ is harmonic in D, i.e.,

Δφ = 0 in D, (7)

then

ΔV1[φ] + ω2V1[φ] = 0 in D.

(iii) If u is a solution of the homogeneous Helmholtz equation with wavenumber ω > 0 in D, i.e.,

Δu+ ω2u = 0 in D, (8)

then

ΔV2[u] = 0 in D.

Theorem 2.5 states that the operators V1 and V2 are inverse to each other and map harmonic functions
to solutions of the homogeneous Helmholtz equation and vice versa.

The results of this theorem were stated in [36, Chap. 1, § 13.2-3]. In two space dimensions, the
definition of the operator V1 followed from the general Vekua theory for elliptic PDEs; this implies that
V1 is a bijection between the space of complex harmonic function and the space of solutions of the homo-
geneous Helmholtz equation.1 The fact that the inverse of V1 can be written as the operator V2 (part (i)
of Theorem 2.5) was stated in [35], and the proof was skipped as an “easy calculation”, after reducing
the problem to a one-dimensional Volterra integral equation. Here, we give a completely self-contained
and general proof of Theorem 2.5 merely using elementary calculus.

As in Theorem 2.5, in the following, we will usually denote the solutions of the homogeneous Helmholtz
equation with the letter u, and harmonic functions, as well as generic functions defined on D, with the
letter φ.

Remark 2.6. Theorem 2.5 holds with the same proof also for every ω ∈ C, i.e., for the Helmholtz equation
in lossy materials.

Remark 2.7. Theorem 2.5 holds also for an unbounded or irregular domain: the only necessary hypotheses
are that D has to be open and star shaped with respect to the origin. In fact, the proof only relies on
the local properties of the functions on the segment [0, x]. For the same reason, the singularities of φ and
u on the boundary of D do not affect the results of the theorem.

Theorem 2.5 can be proved by using elementary mathematical analysis results. We proceed by proving
the parts (i) and (ii) separately.

Proof of Theorem 2.5, part (i). We define a function

g : [0,∞) × [0,∞) → R,

g(r, t) =
ω
√
r t

2
√
r − t

J1(ω
√
r
√
r − t).

1The proof in higher space dimensions might be contained in the Georgian language article [34] that is hard to obtain.
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Note that if r < t the argument of the Bessel function J1 is imaginary on the standard branch cut but
the function g is always real valued.

Using the change of variable s = t|x|, for every φ ∈ C(D) and for every x ∈ D, we can compute

V1[φ](x) = φ(x) +

|x|∫

0

M1

(
x,

s

|x|
)
φ

(
s
x

|x|
)

1
|x| ds

= φ(x) −
|x|∫

0

ω|x|
2

√
s

|x|
N−2

√|x|√|x| − s

1
|x| J1

(
ω
√

|x|
√

|x| − s
)
φ

(
s
x

|x|
)

ds

= φ(x) −
|x|∫

0

s
N−4

2

|x|N−2
2

g(|x|, s) φ
(
s
x

|x|
)

ds,

V2[φ](x) = φ(x) +

|x|∫

0

M2

(
x,

s

|x|
)
φ

(
s
x

|x|
)

1
|x| ds

= φ(x) −
|x|∫

0

iω|x|
2

√
s

|x|
N−3

√|x|√|x| − s

1
|x| J1

(
iω

√
s
√

|x| − s
)
φ

(
s
x

|x|
)

ds

= φ(x) +

|x|∫

0

s
N−4

2

|x|N−2
2

g(s, |x|) φ
(
s
x

|x|
)

ds,

because s ≤ |x|, and we have fixed the sign
√
s− |x| = i

√|x| − s. Note that in the expressions for the
two operators, the arguments of the functions g are swapped. Now, we apply the first operator after the
second one, switch the order of the integration in the resulting double integral and get

V1 [V2[φ]] (x) =

⎡

⎢⎣φ(x) +

|x|∫

0

s
N−4

2

|x|N−2
2

g(s, |x|) φ
(
s
x

|x|
)

ds

⎤

⎥⎦

−
|x|∫

0

s
N−4

2

|x|N−2
2

g(|x|, s)
⎡

⎣φ
(
s
x

|x|
)

+

s∫

0

z
N−4

2

s
N−2

2

g(z, s)φ
(
z
x

|x|
)

dz

⎤

⎦ ds

= φ(x) +

|x|∫

0

s
N−4

2

|x|N−2
2

(g(s, |x|) − g(|x|, s))φ
(
s
x

|x|
)

ds

−
|x|∫

0

z
N−4

2

|x|N−2
2

φ

(
z
x

|x|
) |x|∫

z

1
s
g(z, s) g(|x|, s) dsdz.

The exchange of the order of integration is possible because φ is continuous and in the domain of inte-
gration |s−1z−1g(|x|, s)g(z, s)| ≤ ω4

16 s |x| eω|x| thanks to (63), so Fubini theorem can be applied.
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Notice that V1 [V2[φ]] = V2 [V1[φ]], so we only have to show that V2 is right inverse of V1. In order to
prove that V1 [V2[φ]] = φ, it is enough to show that

g(t, r) − g(r, t) =

r∫

t

g(t, s) g(r, s)
s

ds ∀ r ≥ t ≥ 0, (9)

so that all the integrals in the previous expression vanish, and we are done. Using (60), we expand g in
power series (recall that, for k ≥ 0 integer, Γ(k + 1) = k!):

g(r, t) =
ω2 r t

4

∑

l≥0

(−1)l ω2l rl (r − t)l

22l l! (l + 1)!
, (10)

from which we get

g(t, r) − g(r, t) =
ω2 r t

4

∑

l≥0

(−1)l ω2l (r − t)l
(
(−t)l − rl

)

22l l! (l + 1)!
. (11)

We compute the following integral using the change of variables z = s−t
r−t and the expression of the beta

integral
∫ 1

0
(1 − z)pzq dz = B(p+ 1, q + 1) =

p! q!
(p+ q + 1)!

:

r∫

t

s(r−s)j(t−s)k ds = (−1)k(r−t)j+k+1

1∫

0

(1−z)jzk (zr + (1−z)t) dz

= (−1)k(r−t)j+k+1 j! k!
(j + k + 2)!

(r(k+1) + t(j+1)) . (12)

Thus, expanding the product of g(t, s) g(r, s) in a double power series, integrating term by term, and
using the previous identity give
r∫

t

g(t, s) g(r, s)
s

ds
(10)
=

ω2 r t

4

∑

j,k≥0

(−1)j+k ω2(j+k+1) rj tk

22(j+k+1) j! (j + 1)! k! (k + 1)!

r∫

t

s2(r − s)j(t− s)k

s
ds

(12)
=

ω2 r t

4

∑

j,k≥0

(−1)j ω2(j+k+1) rj tk (r − t)j+k+1

22(j+k+1) (j + 1)! (k + 1)! (j + k + 2)!
(r(k + 1) + t(j + 1))

(l=j+k+1)
=

ω2 r t

4

∑

l≥1

ω2l (r − t)l

22l (l + 1)!
1
l!

l−1∑

j=0

l!
(−1)j rj tl−j−1

(j + 1)! (l − j)!
(r(l−j) + t(j+1))

=
ω2 r t

4

∑

l≥1

ω2l (r − t)l

22l (l + 1)! l!

l−1∑

j=0

[
−
(
l
j + 1

)
(−r)j+1 tl−j−1 +

(
l
j

)
(−r)j tl−j

]

=
ω2 r t

4

∑

l≥1

ω2l (r − t)l

22l (l + 1)! l!
[−(t− r)l + tl + (t− r)l − (−r)l]

(11)
= g(t, r) − g(r, t),

thanks to the binomial theorem and (11), where the term corresponding to l = 0 is zero. This proves (9),
and the proof is complete. �

Proof of Theorem 2.5, parts (ii) and (iii). Let φ be a harmonic function, then φ ∈ C∞(D), thanks
to the regularity theorem for harmonic functions (see, e.g., [17, Corollary 8.11]). We prove that
(Δ + ω2)V1[φ](x) = 0. In order to do that, we establish some useful identities.
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We set r := |x| and compute

∂

∂|x|M1(x, t) = ω
√

1 − t
∂

∂(ωr
√

1 − t)

[
−

√
t
N−2

2(1 − t)
ωr

√
1 − t J1(ωr

√
1 − t)

]

(65)
= −ω2r

√
t
N−2

2
J0(ωr

√
1 − t),

ΔM1(x, t) =
N − 1
r

∂

∂|x|M1(x, t) +
∂2

∂|x|2M1(x, t)

= −ω2
√
t
N−2

2
(
N J0(ωr

√
1 − t) − ωr

√
1 − t J1(ωr

√
1 − t)

)
,

(13)

where the Laplacian acts on the x variable.
Since M1 depends on x only through r, we can compute

Δ (M1(x, t)φ(tx)) = ΔM1(x, t) φ(tx) + 2∇M1(x, t) · ∇φ(tx) +M1(x, t)Δφ(tx)

= ΔM1(x, t) φ(tx) + 2
∂

∂|x|M1(x, t)
x

r
· t∇φ

∣∣∣∣
tx

+ 0

= ΔM1(x, t) φ(tx) + 2
t

r

∂

∂|x|M1(x, t)
∂

∂t
φ(tx),

because ∂
∂tφ(tx) = x · ∇φ∣∣

tx
.

Finally, we define an auxiliary function f1 : [0, h] × [0, 1] → R by

f1(r, t) =
√
t
N
J0(ωr

√
1 − t).

This function verifies

∂

∂t
f1(r, t) =

N
√
t
N−2

2
J0(ωr

√
1 − t) +

√
t
N
ωr

2
√

1 − t
J1(ωr

√
1 − t),

f1(r, 0) = 0, f1(r, 1) = 1.

At this point, we can use all these identities to prove that V1[φ] is a solution of the homogeneous
Helmholtz equation:

(Δ + ω2)V1[φ](x) = Δφ(x) + ω2φ(x) +

1∫

0

Δ(M1(x, t)φ(tx)) dt+

1∫

0

ω2M1(x, t)φ(tx) dt

= ω2φ(x) − ω2

1∫

0

√
t
N
J0(ωr

√
1 − t)

∂

∂t
φ(tx) dt

−ω2

1∫

0

(
N

√
t
N−2

2
J0(ωr

√
1 − t) − ωr

√
t
N−2

2
1 − t√
1 − t

J1(ωr
√

1 − t)

+
ωr

√
t
N−2

2
√

1 − t
J1(ωr

√
1 − t)

)
φ(tx) dt

= ω2φ(x) − ω2

1∫

0

(
f1(r, t)

∂

∂t
φ(tx) +

∂

∂t
f1(r, t)φ(tx)

)
dt

= ω2
(
φ(x) − [f1(r, t)φ(tx)]t=1

t=0

)
= 0.
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We have used the values assumed by φ only in the segment [0, x] that lies inside D, because D is star
shaped with respect to 0. Thus, the values of the function φ and of its derivative are well defined and the
fundamental theorem of calculus applies, thanks to the regularity theorem for harmonic functions.

Now, let u be a solution of the homogeneous Helmholtz equation. Since interior regularity results also
hold for solutions of the homogeneous Helmholtz equation, we infer u ∈ C∞(D). In order to prove that
ΔV2[u] = 0, we proceed as before and compute

∂

∂|x|M2(x, t) =
ω2r

√
t
N−2

2
J0

(
iωr

√
t(1 − t)

)
,

ΔM2(x, t) =
ω2

√
t
N−2

2

(
N J0

(
iωr

√
t(1 − t)

)
− iωr

√
t(1 − t) J1

(
iωr

√
t(1 − t)

))
,

Δ(M2(x, t)u(tx)) = ΔM2(x, t)u(tx) + 2
t

r

∂

∂r
M2(x, t)

∂

∂t
u(tx) − ω2t2M2(x, t)u(tx),

and we define the function

f2(r, t) =
√
t
N
J0

(
iωr

√
t(1 − t)

)
,

which verifies

∂

∂t
f2(r, t) =

N
√
t
N−2

2
J0

(
iωr

√
t(1 − t)

)
−

√
t
N
iωr(1 − 2t)

2
√
t(1 − t)

J1

(
iωr

√
t(1 − t)

)
,

f2(r, 0) = 0, f2(r, 1) = 1.

We conclude by computing the Laplacian of V2[u]:

ΔV2[u](x) = Δu(x) +

1∫

0

Δ(M2(x, t)u(tx)) dt

= −ω2u(x) + ω2

1∫

0

√
t
N
J0

(
iωr

√
t(1 − t)

) ∂

∂t
u(tx) dt

+ω2

1∫

0

√
t
N−2

2

(
N J0

(
iωr

√
t(1 − t)

)

−iωr√t 1 − t√
1 − t

J1

(
iωr

√
t(1 − t)

)
+
iωrt

√
t√

1 − t
J1

(
iωr

√
t(1 − t)

))
u(tx) dt

= −ω2u(x) + ω2

1∫

0

(
f2(r, t)

∂

∂t
u(tx) +

∂

∂t
f2(r, t)u(tx)

)
dt = 0.

�

Remark 2.8. With a slight modification in the proof, it is possible to show that V1 transforms the solutions
of the homogeneous Helmholtz equation

Δφ+ ω2
0φ = 0

into solutions of

Δφ+ (ω2
0 + ω2)φ = 0

for every ω and that ω0 ∈ C, and that V2 does the converse.
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3. Continuity of the Vekua operators

In the following theorem, we establish the continuity of V1 and V2 in Sobolev norms with continuity
constants as explicit as possible.

Theorem 3.1. Let D be a domain as in the Assumption 2.1; the Vekua operators

V1 : Hj(D) → Hj
ω(D), V2 : Hj

ω(D) → Hj(D),

with Hj(D) and Hj
ω(D) both endowed with the norm ‖·‖j,ω,D defined in (2), are continuous. More pre-

cisely, for all space dimensions N ≥ 2, for all φ and u in Hj(D), j ≥ 0, solutions to (7) and (8),
respectively, the following continuity estimates hold:

‖V1[φ]‖j,ω,D ≤ C1(N) ρ
1−N

2 (1 + j)
3
2N+ 1

2 ej
(
1 + (ωh)2

) ‖φ‖j,ω,D , (14)

‖V2[u]‖j,ω,D ≤ C2(N,ωh, ρ) (1 + j)
3
2N− 1

2 ej ‖u‖j,ω,D , (15)

where the constant C1 > 0 depends only on the space dimension N , and C2 > 0 also depends on the
product ωh and the shape parameter ρ. Moreover, we can establish the following continuity estimates for
V2 with constants depending only on N :

‖V2[u]‖0,D ≤ CN ρ
1−N

2
(
1 + (ωh)4

)
e

1
2 (1−ρ)ωh

(
‖u‖0,D + h |u|1,D

)
(16)

if N = 2, . . . , 5, u ∈ H1(D),

‖V2[u]‖j,ω,D ≤ CN ρ
1−N

2 (1 + j)2N−1 ej
(
1 + (ωh)4

)
e

3
4 (1−ρ)ωh ‖u‖j,ω,D (17)

if N = 2, 3, j ≥ 1, u ∈ Hj(D),

and the following continuity estimates in L∞-norm:

‖V1[φ]‖L∞(D) ≤
(

1 +
((1 − ρ)ωh)2

4

)
‖φ‖L∞(D) (18)

‖V2[u]‖L∞(D) ≤
(

1 +
((1 − ρ)ωh)2

4
e

1
2 (1−ρ)ωh

)
‖u‖L∞(D) (19)

if N ≥ 2, φ, u ∈ L∞(D).

Theorem 3.1 states that the operators V1 and V2 preserve the Sobolev regularity when applied to har-
monic functions and to solutions of the homogeneous Helmholtz equation, respectively (see Theorem 2.5).
For such functions, these operators are continuous from Hj(D) to itself with continuity constants that
depend on the wavenumber ω only through the product ωh. In two and three space dimensions, we
can make explicit the dependence of the bounds on ωh. The only exception is the L2-continuity of V2

(see (16)), where a weighted H1-norm appears on the right-hand side; this is due to the poor explicit
interior estimates available for the solutions of the homogeneous Helmholtz equation.

All the continuity constants are explicit with respect to the order of the Sobolev norm and depend on
D only through its shape parameter ρ and its diameter h, the latter only appearing within the product ωh.

In the literature, there exist many proofs of the continuity of V1 and V2 in L∞-norm (in two space
dimensions); see, for example, [7,15]. To our knowledge, the only continuity result in Sobolev norms is
the one given in [27, Sect. 4.2]: this holds for general PDEs and for norms with non-integer indices, but
is restricted to the two-dimensional case, and the constants in the bounds are not explicit in the various
parameters.

Since the proof of Theorem 3.1 is quite lengthy and requires several preliminary results, we give here
a short outline. In Lemma 3.2, a direct attempt to compute the Sobolev norms of Vξ[φ] shows that two
types of intermediate estimates are required. The first ones consist in bounds of the kernel functions
M1 and M2 in W j,∞-norms; these are proved in Lemma 3.3. The second ones are interior estimates for
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harmonic functions and for Helmholtz solutions: the former are well known and recalled in Lemma 3.8,
while the latter are proved in Lemma 3.11. Since we want explicit dependence of the bounding constants
on the wave number, this step turns out to be the hardest one. Finally, we combine all these ingredients
and prove Theorem 3.1.

From here on, if β is a multi-index in N
N , we will denote by Dβ the corresponding differential operator

with respect to the space variable x ∈ R
N ; see (1).

Lemma 3.2. For ξ = 1, 2, j ≥ 0 and φ ∈ Hj(D), we have

|Vξ[φ]|2j,D ≤ 2 |φ|2j,D + 2(j + 1)3N−2e2j

j∑

k=0

sup
t∈[0,1]

|Mξ(·, t)|2W j−k,∞(D) ·
∑

|β|=k

1∫

0

∫

D

∣∣Dβφ(tx)
∣∣2 dxdt. (20)

Proof. From Definition 2.4, we have

|Vξ[φ]|2j,D ≤ 2 |φ|2j,D + 2
∑

|α|=j

∫

D

∣∣∣∣∣∣

1∫

0

Dα (Mξ(x, t)φ(tx)) dt

∣∣∣∣∣∣

2

dx

≤ 2 |φ|2j,D + 2
∑

|α|=j

∫

D

1∫

0

∣∣∣∣∣∣

∑

β≤α

(
α
β

)
Dα−βMξ(x, t)Dβφ(tx)

∣∣∣∣∣∣

2

dtdx

≤ 2 |φ|2j,D + 2
∫

D

1∫

0

∣∣∣∣∣∣∣∣

j∑

k=0

∑

|β|=k

∣∣Dβφ(tx)
∣∣
∑

|α|=j
α≥β

(
α
β

) ∣∣Dα−βMξ(x, t)
∣∣

∣∣∣∣∣∣∣∣

2

dtdx,

where in the second inequality, we have applied the Jensen inequality and the product (Leibniz) rule for

multi-indices (see [1, Sect. 1.1]); here, the binomial coefficient for multi-indices is
(
α
β

)
=
∏N
i=1

(
αi
βi

)
.

We multiply by the number
(
N + k − 1
N − 1

)
of the multi-indices β of length k in N

N , in order to move the

square inside the sum, and we obtain

|Vξ[φ]|2j,D ≤ 2 |φ|2j,D + 2
∫

D

1∫

0

(j + 1)
j∑

k=0

(
N + k − 1
N − 1

)

·
∑

|β|=k

∣∣Dβφ(tx)
∣∣2

∣∣∣∣∣∣∣∣

∑

|α|=j
α≥β

(
α
β

) ∣∣Dα−βMξ(x, t)
∣∣

∣∣∣∣∣∣∣∣

2

dtdx

≤ 2 |φ|2j,D + 2(j + 1)
(
N + j − 1
N − 1

) j∑

k=0

∑

|β|=k

∫

D

1∫

0

∣∣Dβφ(tx)
∣∣2 dtdx

· sup
t∈[0,1]

|Mξ(·, t)|2W j−k,∞(D) sup
|β|=k

⎡

⎢⎢⎣
∑

|α|=j
α≥β

(
α
β

)
⎤

⎥⎥⎦

2

;



790 A. Moiola, R. Hiptmair and I. Perugia ZAMP

the last factor can be bounded as

sup
|β|=k

∑

|α|=j
α≥β

N∏

i=1

(
αi
βi

)
≤ sup

|β|=k

∑

|α|=j
α≥β

N∏

i=1

αβi

i

βi!
≤

∑

|α|=j
e
∑N

i=1 αi

≤ ej · #{α ∈ N
N , |α| = j} = ej

(
N + k − 1
N − 1

)
.

Finally, we note that, for every j ∈ N, N ≥ 2, we have
(
N + j − 1
N − 1

)
=
N + j − 1
N − 1

N + j − 2
N − 2

· · · 1 + j

1
≤ (1 + j)N−1, (21)

from which the assertion follows. �

Now, we need to bound the terms present in (20). The next lemma provides W j,∞(D)-estimates for
M1 and M2 uniformly in t. The proof relies on some properties of Bessel functions.

Lemma 3.3. The functions M1 and M2 satisfy the following bounds:

‖M1‖L∞(D×[0,1]) ≤ ((1 − ρ) ω h)2

4
, (22)

sup
t∈[0,1]

|M1(·, t)|W 1,∞(D) ≤ (1 − ρ) ω2 h

2
, (23)

sup
t∈[0,1]

|M1(·, t)|W j,∞(D) ≤ ωj

2
(j + (1 − ρ) ω h) ∀j ≥ 2, (24)

‖M2‖L∞(D×[0,1]) ≤ ((1 − ρ) ω h)2

4
e

1
2 (1−ρ)ωh, (25)

sup
t∈[0,1]

|M2(·, t)|W 1,∞(D) ≤ (1 − ρ) ω2 h

2
e

1
2 (1−ρ)ωh, (26)

sup
t∈[0,1]

|M2(·, t)|W j,∞(D) ≤ ωj

2j−1

(
j +

(1 − ρ) ω h
2

)
e

3
4 (1−ρ)ωh ∀j ≥ 2. (27)

Proof. Thanks to Remark 2.2, we have that supx∈D |x| ≤ (1 − ρ) h. Now, the L∞-inequalities (22) and
(25) follow directly from (63).

Since M1 and M2 depend on x only through |x|, we obtain the W 1,∞ bounds (23) and (26):

sup
t∈[0,1]

|M1(·, t)|W 1,∞(D) = sup
t∈[0,1], x∈D

∣∣∣∣
∂

∂|x|M1(x, t)
∣∣∣∣

(65)
≤ sup

t∈[0,1],
|x|∈[0,(1−ρ)h]

∣∣∣∣∣
ω2|x|√tN−2

2
J0(ω|x|√1 − t)

∣∣∣∣∣
(62)
≤ (1 − ρ) ω2 h

2
,

sup
t∈[0,1]

|M2(·, t)|W 1,∞(D)

(65)
≤ sup

t∈[0,1],
|x|∈[0,(1−ρ)h]

∣∣∣∣∣
ω2|x|√tN−2

2
J0(iω|x|

√
t(1 − t))

∣∣∣∣∣

(63)
≤ (1 − ρ) ω2 h

2
e

1
2 (1−ρ)ωh.
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In order to prove (24) and (27), we define the auxiliary complex-valued function f(s) = s J1(s). It is
easy to verify by induction that its derivative of order k is

∂k

∂sk
f(s) = k

∂k−1

∂sk−1
J1(s) + s

∂k

∂sk
J1(s).

We can bound this derivative using (66) and the binomial theorem:
∣∣∣∣
∂k

∂sk
f(s)

∣∣∣∣ =

∣∣∣∣∣k
1

2k−1

k−1∑

m=0

(−1)m
(
k − 1
m

)
J2m−k+2(s) + s

1
2k

k∑

m=0

(−1)m
(
k
m

)
J2m−k+1(s)

∣∣∣∣∣

≤ (k + |s|) max
l=1−k,...,1+k

|Jl(s)|. (28)

The functions M1 and M2 are related to f by

M1(x, t) = −
√
t
N−2

2(1 − t)
f(ω|x|√1 − t),

M2(x, t) = −
√
t
N−4

2(1 − t)
f(iω|x|

√
t(1 − t)),

so we can bound their derivatives of order j ≥ 2:

sup
t∈[0,1]

|M1|W j,∞(D) ≤ sup
t∈[0,1], x∈D

∣∣∣∣
∂j

∂|x|jM1(x, t)
∣∣∣∣

≤ sup
t∈[0,1], x∈D

∣∣∣∣∣

√
t
N−2

2(1 − t)
(
ω
√

1 − t
)j ∂j

∂(ω|x|√1 − t)j
f(ω|x|√1 − t)

∣∣∣∣∣

(28), (62)
≤ ωj

2
(j + (1 − ρ)ωh),

sup
t∈[0,1]

|M2|W j,∞(D) ≤ sup
t∈[0,1], x∈D

∣∣∣∣∣

√
t
N−4

2(1 − t)

(
iω
√
t(1 − t)

)j ∂j

∂(iω|x|√t(1 − t))j
f(iω|x|

√
t(1 − t))

∣∣∣∣∣

(28), (63)
≤ ωj

2j−1

(
j +

(1 − ρ)ωh
2

)
e

3
4 (1−ρ)ωh.

�

Remark 3.4. With less detail, the bounds of Lemma 3.3 for every j ≥ 0 can be summarized as:

sup
t∈[0,1]

|M1(·, t)|W j,∞(D) ≤ ωj
(
j + (ωh)2

)
, (29)

sup
t∈[0,1]

|M2(·, t)|W j,∞(D) ≤ ωj (1 + ωh) e
3
4 (1−ρ)ωh. (30)

We ignore the algebraic dependence on ρ because it will be absorbed in a generic bounding constant.
In a shape regular domain, a precise lower bound for ρ ∈ (0, 1

2 ] can be used to reduce the exponential
dependence on ωh.

Remark 3.5. By performing some small changes in the proof of Lemma 3.3, we can extend Theorem 3.1
to every ω ∈ C, similarly to Theorem 2.5 (see Remark 2.6). In fact, the case ω = 0 is trivial, since V1 and
V2 reduce to the identity, while in general, Theorem 3.1 holds by substituting ω with |ω| in the estimates
and in the definition of the weighted norm (2), and multiplying the right-hand side of (14) by e

3
2 |ω|h (see

Remark 1.2.5 in [21]).
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Lemma 3.6. Let φ ∈ Hk(D), β ∈ N
N be a multi-index of length |β| = k and Dβ be the corresponding

differential operator in the variable x. Then

1∫

0

∫

D

∣∣Dβφ(tx)
∣∣2 dxdt ≤

⎧
⎪⎪⎨

⎪⎪⎩

1
2k −N + 1

∥∥Dβφ
∥∥2

0,D
if 2k −N ≥ 0,

K
∥∥Dβφ

∥∥2

0,D
+
(
ρ
2

)2k+1 |D|
2k+1

∥∥Dβφ
∥∥2

L∞(B ρh
2

)
if 2k −N < 0,

where K = log 2
ρ if 2k −N = −1,K =

(
2
ρ

)N−1

if 2k −N < −1, |D| denotes the measure of D and ρ is
given in Assumption 2.1.

Proof. In the first case, we can simply compute the integral with respect to t with the change of variables
y = tx:

1∫

0

∫

D

∣∣Dβφ(tx)
∣∣2 dxdt =

1∫

0

∫

tD

t2|β| ∣∣Dβφ(y)
∣∣2 dy
tN

dt

≤ 1
2k −N + 1

∥∥Dβφ
∥∥2

0,D
;

the set tD is included in D because D is star shaped with respect to 0.
In the case 2k −N < 0, the integral in t is not bounded so we need to split it in two parts, treating

the second part as before:
1∫

0

∫

D

∣∣Dβφ(tx)
∣∣2 dxdt =

ρ
2∫

0

∫

D

∣∣Dβφ(tx)
∣∣2 dxdt+

1∫

ρ
2

∫

D

∣∣Dβφ(tx)
∣∣2 dxdt

≤
ρ
2∫

0

t2|β| dt|D|∥∥Dβφ
∥∥2

L∞(B ρh
2

)
+

1∫

ρ
2

t2k−N ∥∥Dβφ
∥∥2

0,tD
dt

=
1

2k + 1

(ρ
2

)2k+1

|D|∥∥Dβφ
∥∥2

L∞(B ρh
2

)
+

1∫

ρ
2

t2k−N ∥∥Dβφ
∥∥2

0,tD
dt,

and the assertion comes from the expression

1∫

ρ
2

t2k−N dt =

⎧
⎪⎪⎨

⎪⎪⎩

log
2
ρ

if 2k −N = −1,

1 − (
ρ
2

)2k−N+1

2k −N + 1
≤
(

2
ρ

)N−1

if 2k −N < −1.

�
Remark 3.7. We can improve the bounds of Lemma 3.6 for every value of the multi-index length k with
the estimate

1∫

0

∫

D

∣∣Dβφ(tx)
∣∣2 dxdt ≤

(
2
ρ

)N−1 ∥∥Dβφ
∥∥2

0,D
+
(ρ

2

)2k+1 |D|
2k + 1

∥∥Dβφ
∥∥2

L∞(B ρh
2

)
. (31)

From Lemma 3.6, it is clear that, in order to prove the continuity of V1 and V2 in the L2-norm and in
high-order Sobolev norms, we need interior estimates that bound the L∞-norm of φ and its derivatives
in a small ball contained in D with its L2-norm and Hj-norms in D. It is easy to find such estimates for
harmonic functions, thanks to the mean value theorem (see, e.g., Theorem 2.1 of [17]).
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Notice that it is not possible to avoid the use of interior estimates for the continuity in Hj(D)
when j ≥ N

2 , as the assertion of Lemma 3.6 might suggest: in fact, Lemma 3.2 requires to estimate∫ 1

0

∫
D

∣∣Dβφ(tx)
∣∣2 dxdt for all the multi-index lengths |β| = k ≤ j, so we inevitably confront the cases

2k −N = −1 and 2k −N < −1.

Lemma 3.8. (Interior estimates for harmonic functions) Let φ be a harmonic function in BR(x), R > 0,
then

|φ(x)|2 ≤ 1
RN |B1| ‖φ‖2

0,BR(x) , (32)

where |B1| = π
N
2

Γ( N
2 +1)

is the volume of the unit ball in R
N . If φ ∈ Hk(D) and β ∈ N

N , |β| ≤ k, then

∥∥Dβφ
∥∥2

L∞(B ρh
2

)
≤ 1

|B1|
(

2
ρh

)N ∥∥Dβφ
∥∥2

0,D
. (33)

Proof. By the mean value property of harmonic functions (see Theorem 2.1 of [17]) and the Jensen
inequality, we get the first estimate:

|φ(x)|2 =

∣∣∣∣∣∣∣

1
|BR(x)|

∫

BR(x)

φ(y) dy

∣∣∣∣∣∣∣

2

≤ 1
|BR|

∫

BR(x)

|φ(y)|2 dy =
1

RN |B1| ‖φ‖2
0,BR(x) .

The second bound follows by applying the first one to the derivatives of φ, which are harmonic in the
ball B ρh

2
(x) ⊂ Bρh ⊂ D. �

Remark 3.9. The interior estimates for harmonic functions are related to Cauchy’s estimates for their
derivatives. Theorem 2.10 in [17] states that, given two domains Ω1 ⊂ Ω2 ⊂ R

N such that d(Ω1, ∂Ω2) = d,
if φ is harmonic in Ω2, then for every multi-index α it holds

‖Dαφ‖L∞(Ω1)
≤
(
N |α|
d

)|α|
‖φ‖L∞(Ω2)

. (34)

In order to find analogous estimates for the Sobolev norms, we can combine (34) and (32) using the
intermediate domain {x ∈ R

N : d(x,Ω1) < d
2} and obtain

‖Dαφ‖0,Ω1
≤ CN,α|Ω1|N/2 d−|α|−N/2 ‖φ‖2

0,Ω2
,

but the order of the power of d is not satisfactory. In order to improve it, we represent the derivatives of
a harmonic function ψ in B1 ⊂ R

N using the Poisson kernel P :

Dαψ(y) =
∫

SN−1

ψ(z) Dα
1 P (y, z) dσ(z) y ∈ B1, ∀ α ∈ N

N ,

where the derivatives of P are taken with respect to the first variable (see (1.22) in [3]). Rewriting this
formula in y = 0 and then translating in a point x, if ψ is harmonic in B1(x), we have

Dαψ(x) =
∫

SN−1

ψ(x+ z) Dα
1 P (0, z) dσ(z) ∀ α ∈ N

N .
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Given two domains Ω̂1 ⊂ Ω̂2 such that d(Ω̂1, ∂Ω̂2) = 1, if φ̂ is harmonic in Ω̂2, it holds

∥∥∥Dαφ̂
∥∥∥

0,Ω̂1

=
∫

Ω̂1

|Dαφ̂(x)|2 dx =
∫

Ω̂1

∣∣∣∣∣∣

∫

SN−1

φ̂(x+ z) Dα
1 P (0, z) dσ(z)

∣∣∣∣∣∣

2

dx

y=x+z

≤ |SN−1|
∫

SN−1

⎛

⎜⎝
∫

Ω̂2

|φ̂(y)|2 dy

⎞

⎟⎠ |Dα
1 P (0, z)|2 dσ(z) ≤ CN,α

∥∥∥φ̂
∥∥∥

0,Ω̂2

,

where we have used the Jensen inequality and the Fubini theorem. By summing over all the multi-indices
of the same length and scaling the domains such that Ω1 ⊂ Ω2 ⊂ R

N and d(Ω1, ∂Ω2) = d, we finally
obtain

|φ|j+k,Ω1
≤ CN,j,k d

−k |φ|j,Ω2
, j, k ∈ N. (35)

We can use the bicontinuity of the Vekua operator to prove an analogous result for the solutions of
the Helmholtz equations; see Lemma 3.2.1 of [21].

The main tool used to prove the interior estimates for harmonic functions is the mean value theorem.
For the solutions of the homogeneous Helmholtz equation, we have an analogous mean value formula [14,
p. 289] but it does not provide good estimates.

Another way to prove interior estimates for the solutions of the homogeneous Helmholtz equation is
to use the Green formula for the Laplacian in a ball, but this gives estimates that either involve the
H1-norm of u on the right-hand side of the bound or give bad orders in the domain diameter R.

A third way is to use the technique presented in Lemma 4.2.7 of [27] for the two-dimensional case.
This method can be generalized only to three space dimensions and does not provide estimates with only
the L2-norm of u on the right-hand side. On the other hand, it is possible to make the dependence of the
bounding constants on ωR explicit. We will prove these interior estimates in Lemma 3.11.

A more general way is to use Theorem 8.17 of [17]. This holds in every space dimension with the
desired norms and the desired order in R. The only shortcoming of this result is that the bounding
constant still depends on the product ωR but this dependence is not explicit. We report this result in
Theorem 3.10.

Summarizing: we are able to prove interior estimates for homogeneous Helmholtz solutions with sharp
order in R in two fashions. Theorem 3.10 works in any space dimension and with only the L2-norm on
the right-hand side. Lemma 3.11 works only in low space dimensions and with different norms but the
constant in front of the estimates is explicit in ωR. Both techniques, however, allow to prove the final
best approximation results we are looking for with the same order and in the same norms.

Theorem 3.10. (Interior estimates for Helmholtz solutions, version 12) For every N ≥ 2, let u ∈
H1(BR(x0)) be a solution of the homogeneous Helmholtz equation. Then, there exists a constant C > 0
depending only on the product ωR and the dimension N , such that

‖u‖L∞(BR
2

(x0))
≤ C(ωR,N) R− N

2 ‖u‖0,BR(x0)
. (36)

Lemma 3.11. (Interior estimates for Helmholtz solutions, version 2) Let u ∈ H1(BR(x0)) be a solution of
the inhomogeneous Helmholtz equation

−Δu− ω2u = f,

2 This is exactly Theorem 8.17 of [17]; with that notation, for the homogeneous Helmholtz equation we have k(R)=0,

λ = 1, Λ =
√

N , ν = ω and p = 2 (q is not relevant for the homogeneous problem); see also [17], p. 178.
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with f ∈ H1(BR(x0)). Then, there exists a constant C > 0 depending only on the space dimension N
such that

‖u‖L∞(BR
2

(x0))
≤ C R−1

((
1 + ω2R2

) ‖u‖0,BR(x0)
+R ‖∇u‖0,BR(x0)

+R2 ‖f‖0,BR(x0)

)
for N = 2, (37)

‖u‖L∞(BR
2

(x0))
≤ C R− N

2

(
(1 + ω2R2) (‖u‖0,BR(x0)

+R ‖∇u‖0,BR(x0)
)

+R2 ‖f‖0,BR(x0)
+R3 ‖∇f‖0,BR(x0)

)
for N = 3, 4, 5, (38)

‖∇u‖L∞(BR
2

(x0))
≤ C R− N

2

(
ω2R ‖u‖0,BR(x0)

+ (1 + ω2R2) ‖∇u‖0,BR(x0)

+R ‖f‖0,BR(x0)
+R2 ‖∇f‖0,BR(x0)

)
for N = 2, 3. (39)

Remark 3.12. In the homogeneous case, Lemma 3.11 reads as follows. Let u ∈ H1(BR(x0)) be a solution
of the homogeneous Helmholtz equation. Then, there exists a constant C > 0 depending only on the
space dimension N such that for

N = 2, 3, 4, 5 :

‖u‖L∞(BR
2

(x0))
≤ C R− N

2 (1 + ω2R2) (‖u‖0,BR(x0)
+R ‖∇u‖0,BR(x0)

), (40)

N = 2, 3 :

‖∇u‖L∞(BR
2

(x0))
≤ C R− N

2

(
ω2R ‖u‖0,BR(x0)

+ (1 + ω2R2) ‖∇u‖0,BR(x0)

)
. (41)

Proof of Lemma 3.11. It is enough to bound |u(x0)| and |∇u(x0)|, because for all x ∈ BR
2
(x0), we can

repeat the proof using BR
2
(x) instead of BR(x0) with the same constants. We can also fix x0 = 0.

Let ϕ : R
+ → [0, 1] be a smooth cutoff function such that

ϕ(r) =

{
1 |r| ≤ 1

4 ,

0 |r| ≥ 3
4 ,

and ϕR : R
N → [0, 1], ϕR(x) := ϕ

(
|x|
R

)
. Then

∇ϕR(x) = ϕ′
( |x|
R

)
x

R|x| , ΔϕR(x) =
1
R2

ϕ′′
( |x|
R

)
+
N − 1
R|x| ϕ

′
( |x|
R

)
.

We define the average of u and two auxiliary functions on BR:

u :=
1

|BR|
∫

BR

u(y) dy,

g(x) := u(x) ϕR(x), g(x) := (u(x) − u) ϕR(x);

their Laplacians are:

f̃(x) : = f̃1(x) + f̃2(x) + f̃3(x) := −Δg(x)

= −
[

1

R2
ϕ′′

(
|x|
R

)
+

N − 1

R|x| ϕ′
(

|x|
R

)]
u(x) − 2ϕ′

(
|x|
R

) x

R|x| · ∇u(x) + ϕ
(

|x|
R

)
(ω2u(x) + f(x)),

f(x) : = f1(x) + f2(x) + f3(x) := −Δg(x)

= −
[

1

R2
ϕ′′

(
|x|
R

)
+

N − 1

R|x| ϕ′
(

|x|
R

)]
(u(x) − u) − 2ϕ′

(
|x|
R

) x

R|x| · ∇u(x) + ϕ
(

|x|
R

)
(ω2u(x) + f(x)).
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The fundamental solution formula for Poisson equation states that, if −Δa = b in R
N , then

a(x) =
∫

RN

Φ(x− y) b(y) dy, with Φ(x) =

⎧
⎨

⎩

− 1
2π log |x| N = 2,

|x|2−N

N(N−2)|B1| N ≥ 3.
(42)

The identity (42) holds for all b ∈ L2(BR), thanks to Theorem 9.9 of [17]. We notice that

|∇Φ(x)| =
∣∣∣∣−

1
N |B1|

x

|x|N
∣∣∣∣ =

1
N |B1| |x|1−N ∀ N ≥ 2.

We start by bounding |u(0)| for N = 2. In this case, it is easy to see that, for all R > 0, we have
∫

BR

(log |x| − logR)2 dx =
π

2
R2. (43)

We note that from the divergence theorem
∫

BR

f̃(y) dy = −
∫

BR

Δg(y) dy = −
∫

∂BR

∇g(s) · nds = 0,

because g ≡ 0 in R
2 \B 3

4R
and since f̃ = 0 outside B 3

4R
, then f̃ has zero mean value in the whole R

2.

We apply (42) with a = g and b = f̃ ; using the Cauchy–Schwarz inequality, the identity (43) and the
fact that f̃ has zero mean value in R

2, we obtain:

|u(0)| = |g(0)| =

∣∣∣∣∣∣
− 1

2π

∫

R2

(log |y| − logR) f̃(y) dy

∣∣∣∣∣∣
≤ 1

2π

√
π

2
R ‖f̃‖0,B 3

4 R

≤ CN,ϕR

(
1
R2

‖u‖0,BR
+

1
R

‖∇u‖0,BR
+ ω2 ‖u‖0,BR

+ ‖f‖0,BR

)
,

where the constant CN,ϕ depends only on N and ϕ; in the last step, we have used the definition of f̃ and
the fact that ϕ′( |x|

R ) = 0 in BR
4
. The estimate (37) easily follows.

Proving all the other bounds (on |u(0)| for N ≥ 2 and on |∇u(0)| for N ≥ 2) is more involved. We fix
p, p′ > 1 such that 1

p + 1
p′ = 1. For α > 0, we calculate

‖|y|α‖Lp′ (BR) =

⎛

⎝
∫

SN−1

R∫

0

rαp
′
rN−1 dr dS

⎞

⎠

1
p′

=
( |SN−1|
αp′ +N

) 1
p′

Rα+ N
p′ = CN,p′,αR

α+N− N
p , (44)

that holds if αp′ +N �= 0, which is equivalent to (α+N)p �= N for every N ≥ 2. We compute also

‖Φ‖Lp(B 3
4 R

\B 1
4 R

) = CN,p

⎛

⎜⎝|SN−1|
3
4R∫

1
4R

r(2−N)p rN−1 dr

⎞

⎟⎠

1
p

= CN,p |SN−1| 1
p

((
3
4
R

)(2−N)p+N

−
(

1
4
R

)(2−N)p+N
) 1

p

= CN,p R
2−N+ N

p (45)
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for every p �= N
N−2 , N ≥ 3, and the analog

‖∇Φ‖Lp(B 3
4 R

\B 1
4 R

) = CN,p

⎛

⎜⎝|SN−1|
3
4R∫

1
4R

r(1−N)p rN−1 dr

⎞

⎟⎠

1
p

= CN,p R
1−N+ N

p , (46)

that holds for every p �= N
N−1 , N ≥ 2.

Then, for all ψ ∈ H1
0 (BR), using scaling arguments, the continuity of the Sobolev embeddings

H1
0 (B1) ↪→ Lp(B1) which hold provided that 2 ≤ p ≤ 2N

N−2 , if N ≥ 3, and 2 ≤ p < ∞, if N = 2
(see [1, Theorem 5.4,I,A-B]), and the Poincaré inequality, we obtain

‖ψ‖Lp(BR) = R
N
p ‖ψ̂‖Lp(B1) ≤ CN,p R

N
p ‖ψ̂‖1,B1

≤ CN,p R
N
p ‖∇ψ̂‖0,B1 ≤ CN,p R

N
p +1− N

2 ‖∇ψ‖0,BR
. (47)

Now, we can estimate u in the case N ≥ 3. From the Hölder inequality for the pair of spaces Lp
′
,

Lp, p > 2 (thus, p′ < 2), and the fact that f̃1 ≡ f̃2 ≡ 0 in B 1
4R

(see the definition of f̃), we can write

|u(0)| = |g(0)| =

∣∣∣∣∣∣

∫

RN

Φ(x)f̃(x) dx

∣∣∣∣∣∣

≤ ‖Φ‖Lp(B 3
4 R

\B 1
4 R

) ‖f̃1 + f̃2‖Lp′ (B 3
4 R

\B 1
4 R

) + ‖Φ‖Lp′ (BR) ‖f̃3‖Lp(BR).

Using (45) to bound the Lp-norm of Φ, the continuity of the embedding of Lp
′
(B 3

4R
\B 1

4R
) into L2(B 3

4R
\

B 1
4R

) (recall that 1 < p′ < 2) with constant |B 3
4R

\B 1
4R

| 1
p′ − 1

2 for the norm of f̃1 + f̃2, the definition (42)

of Φ and (44) with α = 2−N , which requires p > N
2 , to bound the Lp

′
-norm of Φ, and finally, (47) which

requires 2 ≤ p ≤ 2N
N−2 , to bound the norm of f̃3 (recall that f̃3 ∈ H1

0 (BR)), we have

|u(0)| ≤ CN,pR
2−N+ N

p |B 3
4R

| 1
p′ − 1

2

∥∥∥f̃1 + f̃2

∥∥∥
0,B 3

4 R
\B 1

4 R

+CN,pR2− N
p R

N
p +1− N

2

∥∥∥∇f̃3
∥∥∥

0,BR

.

Finally, using the definitions of the f̃i’s, |∇ϕR| ≤ 1
RCϕ and 1

p + 1
p′ = 1 we obtain

|u(0)| ≤ CN,p,ϕR
2−N+ N

p R
N
p′ − N

2

(
1
R2

‖u‖0,BR
+

1
R

‖∇u‖0,BR

)

+CN,p,ϕR3− N
2

(
ω2 ‖∇u‖0,BR

+ ‖∇f‖0,BR
+

1
R
ω2 ‖u‖0,BR

+
1
R

‖f‖0,BR

)

≤ CN,p,ϕ R
− N

2

(
(1 + ω2R2) ‖u‖0,BR

+R (1 + ω2R2) ‖∇u‖0,BR
+R2 ‖f‖0,BR

+R3 ‖∇f‖0,BR

)
.

The previous argument for bounding |u(0)| requires that there exists p such that N
2 < p ≤ 2N

N−2 , which is
possible only if N < 6; this is the reason of the upper bound on the space dimension in the statement.

In order to conclude this proof, we have to estimate |∇u(0)|. We use the same technique as before, after
differentiating the relation (42) with a = g and b = f . For every N ≥ 2, thanks to (46), the embedding
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of Lp
′
(B 3

4R
\B 1

4R
) into L2(B 3

4R
\B 1

4R
), (44) with α = 1 −N and (47), which require N < p ≤ 2N

N−2 , we
have

|∇u(0)| = |∇g(0)| =

∣∣∣∣∣∣

∫

RN

∇Φ(x)f(x) dx

∣∣∣∣∣∣

≤ ‖∇Φ‖Lp(B 3
4 R

\B 1
4 R

) ‖f1 + f2‖Lp′ (B 3
4 R

\B 1
4 R

) + ‖∇Φ‖Lp′ (BR) ‖f3‖Lp(BR)

≤ CN,pR
1−N+ N

p |B 3
4R

| 1
p′ − 1

2 ‖f1 + f2‖0,B 3
4 R

\B 1
4 R

+ CN,pR
1− N

p R
N
p +1− N

2 ‖∇f̃3‖0,BR
.

By using the Poincaré–Wirtinger inequality, whose constant scales with R, to bound ‖u− u‖0,BR
, we

obtain

|∇u(0)| ≤ CN,p,ϕ R
−1− N

2

(
R−2 ‖u− u‖0,BR

+R−1 ‖∇u‖0,BR

)

+CN,p,ϕ R2− N
2

(
R−1

∥∥ω2u+ f
∥∥

0,BR
+
∥∥∇(ω2u+ f)

∥∥
0,BR

)

≤ CN,p,ϕ R
− N

2

(
ω2R ‖u‖0,BR

+ (1 + ω2R2) ‖∇u‖0,BR
+R ‖f‖0,BR

+R2 ‖∇f‖0,BR

)
.

The requirement that there exists p such that N < p ≤ 2N
N−2 can be satisfied only if N < 4. �

Lemma 3.11 is the only result in this section which we are not able to generalize to all the space
dimensions N ≥ 2. This is because in its proof we make use of a pair of conjugate exponents p and p′

such that the fundamental solution Φ of the Laplace equation (together with its gradient) belongs to
Lp

′
(BR), and at the same time, H1(BR) is continuously embedded in Lp(BR). This requirement yields

the upper bounds on the space dimension we have required in the statement of Lemma 3.11.
Combining the results of the previous lemmas, we can now prove Theorem 3.1.

Proof of Theorem 3.1. We start by proving the continuity bound (14) for V1. For every j ∈ N, N ≥ 2, φ ∈
Hj(D), inserting (29) and (31) into (20) with ξ = 1, we have

|V1[φ]|j,D ≤
[
2 |φ|2j,D + 2(1 + j)3N−2e2j

j∑

k=0

ω2(j−k) (j − k + (ωh)2
)2

·
⎛

⎝
(

2
ρ

)N−1

|φ|2k,D +
(ρ

2

)2k+1 |D|
2k + 1

∑

|β|=k

∥∥Dβφ
∥∥2

L∞(B ρh
2

)

⎞

⎠

⎤

⎦

1
2

.

Then, using the interior estimates (33), we get

|V1[φ]|j,D ≤ CN (1 + j)
3
2N−1+1 ej

(
1 + (ωh)2

)
[

j∑

k=0

ω2(j−k)
(
ρ1−N + ρ2k+1 |D|

(ρh)N

)
|φ|2k,D

] 1
2

≤ CN ρ
1−N

2 (1 + j)
3
2N ej

(
1 + (ωh)2

) ‖φ‖j,ω,D ,

by the definition of weighted Sobolev norms (2), and because |D| ≤ hN and ρ < 1. The constant CN
depends only on the dimension N of the space. Passing from the seminorms to the complete Sobolev
norms gives an extra coefficient (1 + j)1/2 and the bound (14) follows.
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In order to prove the continuity bound (15) for V2, we proceed similarly. For every j ∈ N, N ≥ 2, u ∈
Hj
ω(D), inserting (30) and (31) into (20) with ξ = 2, we have

|V2[u]|j,D ≤
[
2 |u|2j,D + 2(1 + j)3N−2e2j

j∑

k=0

ω2(j−k)(1 + ωh)2e
3
2 (1−ρ)ωh

·
⎛

⎝
(

2
ρ

)N−1

|u|2k,D +
(ρ

2

)2k+1 |D|
2k + 1

∑

|β|=k

∥∥Dβu
∥∥2

L∞(B ρh
2

)

⎞

⎠

⎤

⎦

1
2

(36)
≤ C(N,ωh, ωρh) (1 + j)

3
2N−1 ej

[
j∑

k=0

ω2(j−k)
(
ρ1−N + ρ2k+1 |D|

(ρh)N

)
|u|2k,D

] 1
2

≤ C(N,ωh, ρ) (1 + j)
3
2N−1 ej ‖u‖j,ω,D .

Again, passing from the seminorms to the complete Sobolev norms gives an extra coefficient (1 + j)1/2

and the bound (15) follows.
Now, we proceed by proving the bounds (16), (17) and (19) for V2 with constants depending only

on N .
For the continuity bound (16) for the V2 operator from H1(D) to L2(D), we repeat the same reasoning

as above. If u ∈ H1
ω(D), N = 2, . . . , 5, using the definition of V2, (25), (31) and (40), we have

‖V2[u]‖0,D ≤
⎡

⎣2 ‖u‖2
0,D + 2 ‖M2‖2

L∞(D×[0,1])

1∫

0

∫

D

|u(tx)|2 dxdt

⎤

⎦

1
2

≤
[
2 ‖u‖2

0,D + 2
(

(ωh)2

4
e

1
2 (1−ρ)ωh

)2
[(

2
ρ

)N−1

‖u‖2
0,D

+
ρ

2
|D|

(
CN (ρh)− N

2
(
1 + (ωρh)2

) (‖u‖0,D + ρh ‖∇u‖0,D

))2
]] 1

2

≤ CN ρ
1−N

2
(
1 + (ωh)4

)
e

1
2 (1−ρ)ωh

(
‖u‖0,D + ρh ‖∇u‖0,D

)
,

which immediately gives (16).
Let us now prove (17). To this end, given a multi-index β ∈ N

N , we need to bound
∥∥Dβu

∥∥
L∞(B ρh

2
)
.

If |β| = 0, for N = 2, 3, 4, 5, we simply use (40) and get
∥∥Dβu

∥∥
L∞(B ρh

2
)
= ‖u‖L∞(B ρh

2
)

≤ CN (ρh)− N
2 (1 + ω2ρ2h2)

(
‖u‖0,D + ρh ‖∇u‖0,D

)
. (48)

If |β| = j ≥ 1, we note that there exists another multi-index α ∈ N
N of length |α| = j − 1 such that, for

N = 2, 3 and u ∈ Hj
ω(D), it holds

∥∥Dβu
∥∥
L∞(B ρh

2
)
≤ ‖∇Dαu‖L∞(B ρh

2
)

≤ CN (ρh)− N
2

(
ω2ρh ‖Dαu‖0,D +

(
1 + (ωρh)2

) ‖∇Dαu‖0,D

)
, (49)
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thanks to (41). Notice that the restriction to N = 2, 3 in this proof is due to the use of (41). Again,
inserting (30) and (31) into (20) with ξ = 2 gives

|V2[u]|j,D ≤ CN

[
|u|2j,D + (1 + j)3N−2 e2j

j∑

k=0

ω2(j−k)(1 + ωh)2e
3
2 (1−ρ)ωh

·
⎛

⎝ρ1−N |u|2k,D + ρ2k+1|D|
∑

|β|=k

∥∥Dβu
∥∥2

L∞(B ρh
2

)

⎞

⎠

⎤

⎦

1
2

≤ CN (1 + j)
3
2N−1 ej (1 + ωh) e

3
4 (1−ρ)ωh

·
⎡

⎣
j∑

k=0

ω2(j−k)

⎛

⎝ρ1−N |u|2k,D + ρ2k+1|D|
∑

|β|=k

∥∥Dβu
∥∥2

L∞(B ρh
2

)

⎞

⎠

⎤

⎦

1
2

,

and thus, as a consequence of (48) and (49), we obtain

|V2[u]|j,D ≤ CN (1 + j)
3
2N−1 ej (1 + ωh) e

3
4 (1−ρ)ωh

·
[
ω2jρ1−N

(
‖u‖2

0,D +
|D|
hN

(1 + ω2ρ2h2)2
(
‖u‖0,D + ρh ‖∇u‖0,D

)2
)

+
j∑

k=1

ω2(j−k)ρ1−N
(

|u|2k,D + ρ2k

(
N + k − 1
N − 1

) |D|
hN

·
(
ω2ρh |u|k−1,D + (1 + ω2ρ2h2) |u|k,D

)2
)] 1

2

≤ CN (1 + j)
3
2N−1 ρ

1−N
2 ej (1 + ωh) e

3
4 (1−ρ)ωh

·
[
ω2j(1 + ω2h2)2

(
‖u‖0,D + h ‖∇u‖0,D

)2

+
j∑

k=1

ω2(j−k)(1 + k)N−1
(
ω2h |u|k−1,D + (1 + ω2h2) |u|k,D

)2
] 1

2

≤ CN (1 + j)2N− 3
2 ρ

1−N
2 ej (1 + ωh) e

3
4 (1−ρ)ωh

·
[
(
1 + (ωh)2

)2
ω2j ‖u‖2

0,D +
(
(ωh)2 + (ωh)6

)
ω2(j−1) |u|21,D

+(ωh)2
j∑

k=1

ω2(j−k+1) |u|2k−1,D +
(
1 + (ωh)2

)2 j∑

k=1

ω2(j−k) |u|2k,D
] 1

2

≤ CN (1 + j)2N− 3
2 ρ

1−N
2 ej

(
1 + (ωh)4

)
e

3
4 (1−ρ)ωh ‖u‖j,ω,D ,

where the binomial coefficient comes from the number of the multi-indices |β| = k and is bounded by
(21). As before, passing from the seminorms to the complete Sobolev norms gives an extra coefficient
(1 + j)1/2 and the bound (17) follows.

Finally, we prove the continuity of V1 and V2 in the L∞-norm stated in (18), (19). Thanks to the
definition of V1 and V2, and the bounds (22) and (25), we have
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‖V1[φ]‖L∞(D) ≤
(
1 + ‖M1‖L∞(D×[0,1])

)
‖φ‖L∞(D)

≤
(

1 +
((1 − ρ)ωh)2

4

)
‖φ‖L∞(D) ,

‖V2[u]‖L∞(D) ≤
(

1 +
((1 − ρ)ωh)2

4
e

1
2 (1−ρ)ωh

)
‖u‖L∞(D) ,

that holds for every φ, u ∈ L∞(D) and for every N ≥ 2. This proves (18) and (19), the proof of Theorem
3.1 is complete. �

4. Generalized harmonic polynomials

Vekua’s theory can be used to derive approximation estimates for the solutions of the homogeneous
Helmholtz equation by using finite dimensional spaces of particular functions, the generalized harmonic
polynomials, for instance.

Definition 4.1. A function u ∈ C(D) is called a generalized harmonic polynomial of degree L if its inverse
Vekua transform V2[u] is a harmonic polynomial of degree L.

Thanks to the results of the previous sections, the generalized harmonic polynomials are solutions of
the homogeneous Helmholtz equation with wavenumber ω and belong to Hk(D) for every k ∈ N, so they
are also in C∞(D).

Let u be a solution to the homogeneous Helmholtz equation in D, and let PL be an approxi-
mation of the harmonic function V2[u] in the space of harmonic polynomials of degree at most L
in a suitable Sobolev norm, for which an estimate of the approximation error is available. Then,
using the continuity of V1 and V2 given by (14) and (17), respectively, one can derive an approxima-
tion estimate for u − V1[PL] (V1[PL] is a generalized harmonic polynomial) in a suitable ω-weighted
Sobolev norm (see Chapt. 2 of [21]). This also implies that, if D is such that the harmonic poly-
nomials are dense in Hk(D) for some k, then the generalized harmonic polynomials are dense in
Hk
ω(D).
In the next section, we show that the generalized harmonic polynomials in 2D and 3D are circular

and spherical waves, respectively.

4.1. Generalized harmonic polynomials in 2D and 3D

In order to explicitly write the generalized harmonic polynomials, we prove the following lemma.

Lemma 4.2. If φ ∈ C(D) is an l-homogeneous function with l ∈ R, l > −N
2 , i.e., there exists g ∈ L2(SN−1)

such that

φ(x) = g

(
x

|x|
)

|x|l ∀ x ∈ D,

then its Vekua transform is

V1[φ](x) = Γ
(
l +

N

2

) (
2
ω

)l+ N
2 −1

g

(
x

|x|
)

|x|1− N
2 Jl+ N

2 −1(ω|x|) ∀ x ∈ D. (50)
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Proof. Using the Beta integral
∫ 1

0
ta(1 − t)b dt = Γ(a+1) Γ(b+1)

Γ(a+b+2) , a, b > −1, we can directly compute the
Vekua transform from the definition of V1:

V1[φ](x) = g

(
x

|x|
)

|x|l +
1∫

0

g

(
x

|x|
)

(|x|t)l M1(x, t) dt

= g

(
x

|x|
)

|x|l
⎛

⎝1 +

1∫

0

tlM1(x, t) dt

⎞

⎠

= g

(
x

|x|
)

|x|l
⎛

⎜⎝1 −
1∫

0

tl+
N
2 −1

∑

j≥0

(−1)j
(
ω|x|
2

)2j+2

(1 − t)j

j! (j + 1)!
dt

⎞

⎟⎠

= g

(
x

|x|
)

|x|l
⎛

⎜⎝1 −
∑

j≥0

(−1)j
(
ω|x|
2

)2j+2

j! (j + 1)!
Γ
(
l + N

2

)
Γ(j + 1)

Γ
(
l + N

2 + j + 1
)

⎞

⎟⎠

k=j+1
= g

(
x

|x|
)

|x|l
⎛

⎜⎝1 +
∑

k≥1

(−1)k
(
ω|x|
2

)2k

k! Γ
(
l + N

2 + k
) Γ

(
l +

N

2

)
⎞

⎟⎠

= g

(
x

|x|
)

|x|l
∑

k≥0

(−1)k
(
ω|x|
2

)2k

k! Γ
(
l + N

2 + k
) Γ

(
l +

N

2

)

= Γ
(
l +

N

2

)
g

(
x

|x|
)

|x|1− N
2

(
2
ω

)l+ N
2 −1 ∑

k≥0

(−1)k
(
ω|x|
2

)2k+l+ N
2 −1

k! Γ
(
l + N

2 + k
)

= Γ
(
l +

N

2

) (
2
ω

)l+ N
2 −1

g

(
x

|x|
)

|x|1− N
2 Jl+ N

2 −1(ω|x|).

The condition l > −N
2 is necessary to ensure a finite value of the integral

∫ 1

0
tl+

N
2 −1(1 − t)j dt. �

As a consequence, the general (non-homogeneous) harmonic polynomial of degree L and its Vekua
transform can be written, in terms of spherical harmonics Yl,m (see [2,33]) and hyperspherical Bessel
functions jNl (see the Appendix), by

P (x) =
L∑

l=0

n(N,l)∑

m=1

al,m |x|l Yl,m
(
x

|x|
)
, (51)

V1[P ](x) = |x|1− N
2

L∑

l=0

n(N,l)∑

m=1

al,m Γ
(
l+N

2

)( 2
ω

)l+ N
2 −1

Yl,m

(
x

|x|
)
Jl+ N

2 −1(ω|x|)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
N
2 −1

L∑
l=0

n(N,l)∑
m=1

al,m Γ
(
l + N

2

) (
2
ω

)l
Yl,m

(
x

|x|
)
jNl (ω|x|), N even,

2
N−1

2√
π

L∑
l=0

n(N,l)∑
m=1

al,m Γ
(
l + N

2

) (
2
ω

)l
Yl,m

(
x

|x|
)
jNl (ω|x|), N odd.

(52)
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If N = 2, identifying R
2 = C and using the complex variable z = reiψ, using directly (50), we have

P (z) =
L∑

l=−L
al r

|l| eilψ, (53)

V1[P ](z) =
L∑

l=−L
al |l|!

(
2
ω

)|l|
eilψ J|l|(ωr). (54)

If N = 3, we use the definition of spherical Bessel function (67) to get

P (x) =
L∑

l=0

l∑

m=−l
al,m |x|l Yl,m

(
x

|x|
)
, (55)

V1[P ](x) =
2√
π

L∑

l=0

l∑

m=−l
al,m Γ

(
l +

3
2

) (
2
ω

)l
Yl,m

(
x

|x|
)
jl(ω|x|)

=
L∑

l=0

l∑

m=−l
al,m

(2l + 1)!
l!

(
1
2ω

)l
Yl,m

(
x

|x|
)
jl(ω|x|), (56)

where {Yl,m}m=−l,...,l are a basis of spherical harmonics of order l, and we have used Γ(l+ 3
2 ) =

√
π (2l+1)!
22l+1 l!

,
which follows from Γ(s+ 1) = sΓ(s) and Γ(1

2 ) =
√
π. This means that the generalized harmonic polyno-

mials in 2D and 3D are the well-known circular and spherical waves, respectively.

4.2. Generalized harmonic polynomials as Herglotz functions

In this section, we define an important family of solutions of the homogeneous Helmholtz equation,
the Herglotz functions (see [13, Definition 3.14]), and prove that the generalized harmonic polynomials
belong to this class. This result can be used to prove approximation properties of homogeneous Helmholtz
solutions by plane waves, as in [27, Proposition 8.4.14].

Definition 4.3. Given a function g ∈ L2(SN−1), we define the Herglotz function wg with Herglotz kernel
g and wavenumber ω as the function in C∞(RN ) defined by

wg(x) =
∫

SN−1

g(d) eiωx·d dσ(d) x ∈ R
N . (57)

The Herglotz functions are entire solutions of the homogeneous Helmholtz equation; it is known that
they are dense in Hk

ω(D) with respect to the Hk(D)-norm or the C∞(D) topology, whenever D is a
Ck−1,1 domain; the proof is given in Theorem 2 of [38]. As already mentioned, if D is such that the har-
monic polynomials are dense in Hk(D), then the generalized harmonic polynomials, which are Herglotz
functions, are dense in Hk

ω(D). This means that, for k ≥ 2, we generalize the result of [38] to weaker
assumptions on the domain D (see Sect. 1.3.1 and Theorem 2.2.1 of [21] for details).

Lemma 4.4. Let P be a harmonic polynomial of degree L ∈ N in R
2 or R

N , N ≥ 3, defined as in (53) or in
(51), respectively. Then, the corresponding generalized harmonic polynomial V1[P ] is a Herglotz function
wg with Herglotz kernel

g(θ) =
L∑

l=−L
al

|l|!
2π

(
2
iω

)|l|
eilθ N = 2,

g(d) =
L∑

l=0

n(N,l)∑

m=1

al,m
Γ
(
l + N

2

)

2 π
N
2

(
2
iω

)l
Yl,m(d) N ≥ 3.
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Proof. We write the Jacobi–Anger expansions combined with the addition theorem for (orthonormal)
spherical harmonics, in two and N dimensions, see [2,13,33]:

eit cos θ =
∑

l∈Z

ilJl(t) eilθ ∀ θ, t ∈ R, (58)

eirξ·η = (N − 2)!! |SN−1|
∑

l≥0

il jNl (r)
n(N,l)∑

m=1

Yl,m(ξ)Yl,m(η) (59)

∀ ξ, η ∈ SN−1, r ≥ 0, N ≥ 3.

These series converge absolutely and uniformly on compact subsets of R
N . Now, we only have to use

these formulas to verify that the Herglotz functions with the kernels written above correspond to (54)
and (52), respectively.

In two space dimensions with the polar coordinates z = r eiψ, we have

wg(z) =

2π∫

0

L∑

l=−L
al

|l|!
2π

(
2
iω

)|l|
eilθ eiωr(cosψ,sinψ)·(cos θ,sin θ) dθ

=
L∑

l=−L
al

|l|!
2π

(
2
iω

)|l| 2π∫

0

eilθ eiωr cos(ψ−θ) dθ

(58)
=

L∑

l=−L
al

|l|!
2π

(
2
iω

)|l| 2π∫

0

eilθ
∑

l′∈Z

il
′
Jl′(ωr) eil

′(ψ−θ) dθ

=
L∑

l=−L

∑

l′∈Z

al
|l|!
2π

(
2
iω

)|l|
il

′
Jl′(ωr) eilψ

2π∫

0

ei(l−l
′)θ dθ

(61)
=

L∑

l=−L
al |l|!

(
2
ω

)|l|
J|l|(ωr) eilψ

(54)
= V1[P ](z),

where in the second last step, we have used the identity
∫ 2π

0
ei(l−l

′)θ dθ = 2π δl,l′ . In the previous chain of
equalities, we could exchange the order of summation and integration because the series in l′ converges
uniformly and absolutely in [0, 2π], thanks to (63).

In higher space dimensions, we use the orthonormality of the spherical harmonics
∫
SN−1 Yl,mYl′,m′

= δl,l′δm,m′ :

wg(x) =
∫

SN−1

L∑

l=0

n(N,l)∑

m=1

al,m
Γ
(
l + N

2

)

2π
N
2

(
2
iω

)l
Yl,m(d) eiωx·d dσ(d)

(59)
=

∫

SN−1

L∑

l=0

n(N,l)∑

m=1

al,m
Γ
(
l + N

2

)

2π
N
2

(
2
iω

)l
Yl,m(d)

·
∑

l′≥0

n(N,l′)∑

m′=1

(N − 2)!! |SN−1| il′ jNl′ (ω|x|) Yl′,m′

(
x

|x|
)
Yl′,m′(d) dσ(d)
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=
(N − 2)!!
Γ
(
N
2

)
L∑

l=0

n(N,l)∑

m=1

al,m Γ
(
l +

N

2

) (
2
ω

)l
Yl,m

(
x

|x|
)
jNl (ω|x|)

(52), (68)
= V1[P ](x),

where in the second last step, we have used the formula |SN−1| = 2π
N
2 /Γ

(
N
2

)
. �

Lemma 4.4 also gives an easy formula to compute the Vekua transform of any Herglotz function wg,
given the expansion of its kernel g in harmonics.

Appendix A: Bessel functions

We denote the usual Bessel functions of the first kind by Jν(z) and the spherical Bessel functions of the
first kind by jν(z). The first ones are defined, for every ν, z ∈ C, as

Jν(z) =
∞∑

t=0

(−1)t

t! Γ(t+ ν + 1)

(z
2

)2t+ν

, (60)

where Γ is the gamma function. When ν /∈ Z and z belongs to the segment [−∞, 0], Jν(z) is not single
valued. When ν ∈ Z, Jν is an entire function.

We list some properties of these functions (references can be found in [26,37]):

J−k(z) = (−1)kJk(z) ∀ k ∈ Z, (61)
Im (Jk(t)) = 0, Re (Jk(it)) = 0 ∀ k ∈ Z, t ∈ R,

|Jk(t)| ≤ 1 ∀ k ∈ Z, t ∈ R, (62)

|Jν(z)| ≤ e| Im z|

Γ(ν + 1)

( |z|
2

)ν
∀ ν > −1

2
, z ∈ C, (63)

J0(0) = 1, Jk(0) = 0 ∀ k ∈ Z \ {0},
∂

∂z
Jν(z) =

1
2

(Jν−1(z) − Jν+1(z)) , (64)

∂

∂z

(
zkJk(z)

)
= zkJk−1(z),

∂

∂z
J0(z) = −J1(z),

∂

∂z
(zJ1(z)) = zJ0(z), (65)

∂l

∂zl
Jk(z) =

1
2l

l∑

m=0

(−1)m
(
l
m

)
J2m−l+k(z). (66)

The last equality can be easily proved by induction from (64).
The spherical Bessel functions are defined as

jν(z) =
√

π

2z
Jν+ 1

2
(z). (67)

These functions are a particular case of the so-called hyperspherical Bessel functions (see [2] p. 52):

jNk (z) =
∞∑

t=0

(−1)t z2t+k

(2t)!! (N + 2t+ 2k − 2)!!

=

{
z1− N

2 Jk+ N
2 −1(z), N even,

√
π
2 z

1− N
2 Jk+ N

2 −1(z), N odd,

Jk(z) = j2k(z), jk(z) = j3k(z).
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The above equality is proved using (60) and

(2m)!! = 2mm!, (2m+ 1)!! =
Γ
(
m+ 3

2

)
2m+1

√
π

, m ∈ N. (68)
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