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Abstract Pre-Variscan basement elements of Central
Europe appear in polymetamorphic domains juxta-
posed through Variscan and/or Alpine tectonic events.
Consequently, nomenclatures and zonations applied to
Variscan and Alpine structures, respectively, cannot
be valid for pre-Variscan structures. Comparing pre-
Variscan relics hidden in the Variscan basement areas
of Central Europe, the Alps included, large parallels
between the evolution of basement areas of future
Avalonia and its former peri-Gondwanan eastern pro-
longations (e.g. Cadomia, Intra-Alpine Terrane)
become evident. Their plate-tectonic evolution from
the Late Proterozoic to the Late Ordovician is inter-
preted as a continuous Gondwana-directed evolution.
Cadomian basement, late Cadomian granitoids, late
Proterozoic detrital sediments and active margin set-
tings characterize the pre-Cambrian evolution of most
of the Gondwana-derived microcontinental pieces.
Also the Rheic ocean, separating Avalonia from
Gondwana, should have had, at its early stages, a lat-
eral continuation in the former eastern prolongation
of peri-Gondwanan microcontinents (e.g. Cadomia,
Intra-Alpine Terrane). Subduction of oceanic ridge
(Proto-Tethys) triggered the break-off of Avalonia,
whereas in the eastern prolongation, the presence of
the ridge may have triggered the amalgamation of vol-
canic arcs and continental ribbons with Gondwana
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(Ordovician orogenic event). Renewed Gondwana-di-
rected subduction led to the opening of Palaeo-Te-
thys.
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Introduction

Pre-Variscan elements of Central Europe are mostly
exposed as pre-Mesozoic basement areas that under-
went the Variscan thermotectonic events, and occur as
polymetamorphic domains which, after their respective
drift and amalgamation, have been stacked and “shov-
elled” during Variscan (e.g. Bard 1997; Oncken 1997)
and Alpine events one in front of the other to produce
the present-day juxtaposition. During their large-scale
accretion and strike-slip transport, many of these base-
ment areas left behind their lithospheric roots. Con-
sequently, in the European Variscan basement areas
(Fig. 1; e.g. Iberia, Armorica, Moesia, French Massif
Central, Saxothuringian and Moldanubian domains,
External massifs, Penninic domain, parts of the south-
ern Alps and the Austroalpine basement), nappe and
strike-slip structures of different ages repeat elements
which, initially, had a distinct pre-Variscan location,
and a common evolution, comprising different steps
since the Precambrian. The current nomenclatures and
zonations applied to Variscan or Alpine regional
structures cannot characterize the original location of
pre-Variscan crustal elements and, necessarily, a new
nomenclature has to be based on plate tectonic crite-
ria considering the geotectonic evolution of these
elements during the Neoproterozoic and Early Pal-
aeozoic. As we are dealing mostly with litho-
stratigraphies of metamorphic areas, we try to main-
tain a standpoint independent of models of Variscan
evolution of these areas.
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Fig. 1 Distribution of Pre-Mesozoic (Variscan and/or older)
units in Europe (Zwart and Dornsiepen 1978) with indication of
distinct microcontinents (see Fig. 7). AA Austro-Alpine; Ab
Alboran; Am Armorica; Ap Apulia; AQ Aquitaine; AR Armori-
ca; Ch Channel terrane; Ct Cantabria; DH Dinarides-Hellenides;
He Helvetic; iA intra-Alpine; /b Iberia; MD Moldanubian; OM
Ossa-Morena; Or Ortegal; Pe Penninic; sP south Portuguese; Sx
Saxothuringian

Examples of the Early Palaeozoic evolution pre-
served in the Variscan mountain chain of Europe are
numerous (see Dallmeyer et al. 1995; Keppie 1994;
von Raumer and Neubauer 1993a, 1993b; Franke et
al. 2000). Sedimentary and fossil records, as well as
age determinations, show the overall presence of Neo-
proterozoic to Early Palaeozoic basements supposed
to have evolved along the margin of Gondwana, and
sharing specific structural elements and events. For
the time period after the Ordovician, different plate-
tectonic evolutions are proposed, favouring either one
(Robardet et al. 1990) or two major mid-European

E==] Terranes related to the opening Palaeotethys
([ Early Palaeozoic metamorphic terranes
Il Remnants of Early Palaeozoic oceans

[ Early Palaeozoic arc volcanics

oceanic separations (Matte 1986), or the separation of
a basement assemblage (“Hun-superterrane”; Stampfli
1996, 2000). Such divergent reconstructions need to be
tested, and it is the aim of this paper to discuss, from
a “Gondwanan” standpoint, and independently of the
Variscan structures, parallels of pre-Variscan evolution
among the polymetamorphic basement areas men-
tioned previously.

Pre-Ordovician peri-Gondwana evolution

Among the different pre-Variscan relics preserved in
the Variscan basement areas — the pre-Mesozoic
Alpine basement areas included — we can distinguish
distinct geodynamic settings from the Precambrian to
the Ordovician, comprising Precambrian basement
blocks (Cadomian/PanAfrican basement) and their
sedimentary cover, formation of Late Precambrian to
Cambro-Ordovician oceanic crust, volcanic arcs, and
active margin remnants, and zones of amalgamation
(accretion, collision) of Early Palacozoic age.

Fig. 2 Plate tectonic re-interpretation of pre-Variscan units in
the Alps. Compared with Frisch and Neubauer (1989, terminol-
ogy in italic with quotation marks), all Early Palaeozoic terranes
of the Alps are re-interpreted in terms of their peri-Gondwanian
origin. Pieces comparable to those of the “Noric composite Ter-
rane” are interpreted to be related to the opening of Palaeote-
thys. The arc volcanic “Celtic Terrane” and its counterparts in
the Western Alps represent units with Early Palacozoic meta-
morphism. Terranes related to the opening of Early Palaecozoic
oceanic domains (“Speik Terrane”) represent either contempora-
neous or successor stages of Rheic ocean and/or its equivalents.
Arc volcanics (“Habach Terrane”) represent Early Palaeozoic
active margin settings. Other signatures in the domain of the
Eastern Alps, not mentioned in the explanations, refer to Varis-
can elements and structures (see Frisch and Neubauer, 1989).
Inset General situation of the Alpine pre-Mesozoic basement
terranes (black) within their present-day Variscan framework.
MC French Central Massif; BM Bohemian Massif
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Fig. 3 Comparative time-table
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Although less evident, a comparable evolution is hid-
den among the basement areas in the Alps. Re-inter-
preting the terrane model of Frisch and Neubauer
(1989) from the Eastern Alps and the corresponding
lithological units (Neubauer et al. 1999) in the frame
of polymetamorphic basement areas in the entire Alps
(Fig. 2), we can distinguish (a) a lower Palaeozoic sed-
imentary cover sequence, interlayered by volcanic
rocks, in this paper interpreted as units related to the
opening Palaeco-Tethys (see below); and (b) units, hid-
den in the polymetamorphic domains, containing
older, mostly Cadomian/pan-African metamorphic
basement units with relics of Cambrian-Neoprotero-
zoic magmatic arcs and/or Cambrian ophiolites, with
an (not in all places) Early Palaecozoic cover sequence,
either intruded by Ordovician granitoids or containing
Ordovician volcanites.

Consequently, the Intra-Alpine basement areas
(Helvetic, Penninic, Austroalpine, Southalpine) fit
well with the pre-Variscan evolution observed in their
present-day Variscan framework (Fig.3) and, when
thinking in terms of a peri-Gondwanan location, they
are thought to have occupied a former eastern lateral
continuation of the present-day Variscan framework
(see Fig. 7; von Raumer 1998). The different pre-Silu-

3

basic volcanites

rian stages of evolution mentioned previously are
compared using observations from the Alps as well as
from Variscan basement areas in Europe.

Cadomian basement

The peri-Gondwanan microcontinents and their Cado-
mian elements represent successor stages of a disinte-
grating Neoproterozoic supercontinent. Independent
of configuration (Rodinia: Hoffmann 1991, Dalziel
1992, Unrug 1997; Palaeopangaea: Piper 2000), con-
tinental dispersal led to the Cambrian formation of
Gondwana (e.g. Powell et al. 1993). Rapid drift of
large continents is assumed for the Neoproterozoic
(Gurnis and Torsvik 1994), and an active continental
margin setting is accepted for the Cadomian belt
(Brown 1995; Torsvik et al. 1994), where subduction
may have been related to the opening of Iapetus
(Grunow et al. 1996).

Zwart and Dornsiepen (1978), Cogné and Wright
(1980), and Ziegler (1984) derived pre-Variscan units
from the former Proterozoic Europe-African Block,
and such basement relics are assumed to be part of
Avalonia (e.g. Rast and Skehan 1983; Skehan and
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Rast 1983). It is not the scope of this paper to recall
the complex evolution of these oldest elements which
either appear as low-grade or as polymetamorphic
domains (pan-African/Cadomian orogeny), and for
which the relationship between Cadomian basement
areas and Neoproterozoic to Early Palaeozoic sed-
imentary cover have been the subject of extensive
research. The general picture of small continental
blocks bordering the Gondwana margin (Nance and
Murphy 1994) explains best the many relationships
which existed between all these pieces. Large-scale
magmatic activity is documented by syn- and postoro-
genic granitoids or acidic volcanites in the wider
framework of Gondwanan evolution (see below). Also
in the Alpine domain, a distinction can be made
between a Proterozoic and Archean inheritance, Late
Precambrian mafic and ultramafic rocks, and relics of
Precambrian—Cambrian sediments (Schaltegger and
Gebauer 1999). Widely distributed across the different
Alpine realms, these sediments contain detrital zircons
suggesting derivation from Cadomian—pan-African
and older basement units. Comparable results were
obtained from detrital micas (Dallmeyer and Neu-
bauer 1994; Dallmeyer et al. 1996a, 1996b; Handler et
al. 1997; Panwitz et al. 2000). Pre-Cambrian basement
is discussed for a few regions in the Western and Cen-
tral Alps (Gebauer 1993), including the Gotthard area
of the External domain (Gebauer et al. 1988), the
Berisal Complex (Stille and Tatsumoto 1985; Zingg
1989) and Siviez-Mischabel unit (Thélin et al. 1993) of
the Penninic domain, probably the “ancient basement”
in the internal zones of the Western Alps (Desmons
et al. 1999), the Silvretta area of the Austroalpine
basement (Schaltegger et al. 1997), and in the Eastern
Alps (Neubauer 1991; von Quadt 1992; Thoni 1999).
Sm-Nd data (e.g. Liebetrau and Nigler 1994; Bohm
1996; Poller et al. 1997) from Cambro-Ordovician or
Variscan granitoids closely match values observed in
the Bohemian Massif (Hegner and Kroner 2000), in
NW Iberia (Ferndndez Suarez et al. 1998) and from
West Avalonia (Nance and Murphy 1996). Findings of
Cadomian ages in the Pontides (Ustaomer 1999)
would allow extension of this domain eastward maybe
up to the Caucasus.

Early Palaeozoic sedimentary troughs—oceanic settings

Subsidence analysis shows the large-scale opening of
early Palaeozoic sedimentary basins for Laurentia and
western Gondwana (Williams 1997), and contempora-
neous events are registered in the Armorican Massif
(Paris and Robardet 1990; Robardet et al. 1994), and
in the Ossa Morena domain (Lifian and Quesada
1990). In an Early Cambrian reconstruction (McKer-
row et al. 1992), Archaeocyathan assemblages indicate
a climate-sensitive palacogeographic location within
30° of the equator. Regular fracture patterns deter-
mine the direction of intra-continental sedimentary

troughs (Courjault-Radé et al. 1992), and delimit large
areas with deposits of continental-margin environment
in the Gondwana platform during the Cambrian. In
fact, the most important lithology, locally highly meta-
morphosed association of metagreywackes, metape-
lites, a few quartzites, carbonates, and metavolcanic
interlayers, is well known in the Central Iberian
domain, and in the Montagne Noire area, but also
from several Alpine domains (e.g. External Massifs,
Southern Alps, von Raumer 1998; ancient basement
areas of the Penninic domain, Desmons et al. 1999),
or the Pyrenees (Laumonier 1998), and has astonish-
ing parallels with fossil-bearing, Neoproterozoic to
Cambrian lithostratigraphies from the Saxothuringian
domain (e.g. Buschmann et al. 1995), with several
localities around the Mediterranean Sea (Sdzuy et al.
1999), or well-preserved examples observed in the
Anti-Atlas mountain chain of Morocco; however, in
addition to the aforementioned parallels also discre-
pancies exist. Comparable lithologies may remain
undiscovered in the polymetamorphic areas of the
Variscan mountain chain, as the high plasticity of mar-
bles during metamorphic overprint may reduce consid-
erably original limestone occurrences, which may diss-
appear completely during metamorphic evolution. On
the other hand, a specific palaeogeographic configura-
tion may influence carbonate distribution. They may
have been deposited on the Gondwana platform, they
may have been resedimented as reduced detrital car-
bonate layers near a rift shoulder (e.g. Freyer and
Suhr 1987), and may have been replaced by contem-
poraneous clastic sequences in the domain of Cam-
brian rift zones. Extensive Ordovician areas of similar
sedimentary facies at the Gondwana shelf (Noblet and
Lefort 1990; Robardet 1996) may explain comparable
facies evolution in the Saxothuringian areas (Linne-
mann and Buschmann 1995), in the Armorican massif
(Paris et al. 1999), and regions included in the poly-
metamorphic domains (e.g. Mingram 1996, 1998). Fos-
sil findings confirm the presence of lower Palacozoic
metasediments even in Variscan high grade metamor-
phic rocks (e.g. Schwarzwald, Hanel et al. 1999) and
in low-grade Alpine metamorphic series from the
Southern Alps (Ordovician, Gansser and Pantic 1988)
and Eastern Alps (Arenig, Grauwackenzone; Reitz
and Holl 1991).

It is tempting to correlate the Cambrian period of
rifting (see above) and the distribution of relics of
oceanic domains. From the Late Precambrian to the
Ordovician different generations of oceanic domains
were involved in the plate-tectonic evolution. Late
Precambrian oceanic crust and Cambrian volcanic arcs
(Haydoutov 1989; von Quadt 1992; Schaltegger et al.
1997; Schaltegger and Gebauer 1999; Chen et al. 2000;
Crowley et al. 2000; Fernandez Sudrez et al. 2000)
confirm the relationship of several domains with the
Neoproterozoic orogenic belt and the existence of dif-
ferent tectonic regimes along the Gondwana margin.
Traces of what is assumed to represent the former



time equivalents of the Rheic ocean are found in the
Cambrian mafic-ultramafic complexes such as the
Chamrousse ophiolite of the Alps (Ménot 1987) and
the Vesser zone of the Saxothuringian domain (H.
Kemnitz et al., submitted), and can be followed
through different metamorphic complexes in the
Bohemian massif (Finger et al. 1998; Mingram et al.
1998; Stipska et al. 1998; Winchester et al. 1998;
Kroner et al. 2000). Relics may occur in the French
Central Massif (Pin 1991), and exist in the Iberian
basement areas (Fernandez-Sudrez et al. 1998; Ordo-
fiez Casado 1998; Abati et al. 1999; Andonaegui et al.
1999), and in the northern part of Sardinia (Carmig-
nani et al. 1994). However, it cannot be excluded that
relics of Cambro-Ordovician oceanic crust may rep-
resent one or more parallel “Rheic” rifts separated by
ribbons of “Cadomian” or “Avalonian-type” basement
areas (microcontinents) and, additionally, metabasites
partly may represent either the Ordovician-Silurian
successors of the Rheic ocean or time equivalents of
the Proto-Tethys.

Comparing the peri-Gondwanan evolution

From the Neoproterozoic to the Ordovician detach-
ment of Avalonia from Gondwana, striking parallels
of plate-tectonic evolution become visible (Fig.3)
between Avalonia, Armorica and the peri-Gondwanan
microcontinents located farther to the east, confirming
in some way the lateral alignment of the microcon-
tinents at the Gondwana margin. The rifting period
accompanying the opening of Iapetus certainly left
structures on either side of the future Iapetus ocean.
Such intraplate rift systems may have guided the
emplacement of Precambrian/Cambrian volcanites and
intrusions, and also initial formation of oceanic crust
in basement areas located at the eastern prolongation
of future Avalonia. A general situation of Neoprotero-
zoic active margin at the Gondwana border (see
above) is documented (e.g. Iberia: Fernandez-Suarez
et al. 1999; Bohemian Massif: Zulauf et al. 1999,
Kroner et al. 2000; Saxothuringian domain: Linne-
mann et al. 2000; in the Alps: Neubauer 1991; von
Quadt 1992; Schaltegger et al. 1997), and the picture
of widespread late Proterozoic sediments and volcanic
rocks, and the formation of Cambrian sedimentary
troughs and initial rift zones, become apparent for the
Gondwana margin. The continuation of rifting,
initially in a back-arc situation, triggered upwelling of
asthenosphere, with contemporaneous Cambrian gab-
bros, granitoids and metamorphic conditions of lower
crust (Abati et al. 1999) which announce the future
opening of Rheic ocean. Comparable observations
come from the Gotthard (Biino 1994) and Silvretta
areas (Schaltegger et al. 1997). Pieces of oceanic crust,
such as the Chamrousse area (Western Alps) or the
Vesser zone (Saxothuringian zone), could represent
the eastern continuation of the Rheic ocean (or pieces
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of oceanic crust contemporaneous to the Rheic
ocean), and corresponding highly transformed relics of
the same could be hidden among the many pieces of
“amphibolites” found in the polymetamorphic areas of
the Variscan mountain chain, indicating the former
suture of an eastern continuation of an early Rheic
ocean. Also the eclogitized remnants of Early Pal-
aeozoic oceanic crust (Pulo do Lobo, Cabo Ortegal;
Ordoiiez Casado 1998) have to be incorporated in the
general pattern of the Rheic ocean. Interestingly,
Kleinschrodt and Gayk (1999) underlined the striking
parallels of structural evolution and exhumation ages
of the eclogite complexes of the Miinchberg Massif
and from Cabo Ortegal, former protoliths of the
Rheic ocean.

Also Ordovician events known from the Avalonian
plate have their contemporaneous events in the adja-
cent microcontinental plates. During the Ordovician
break-up of Avalonia (485 Ma, Van Staal et al. 1998;
East Avalonia, 480-465 Ma, Prigmore et al. 1997), the
birth of the Rheic ocean, contemporaneous rift-related
magmatism is observed in NW Spain (Fig. 4; Santos
Zalduegui et al. 1995; Ordofiez Casado 1998; Fernan-
dez-Suarez et al. 1999; Montero et al. 2000; Valverde-
Vaquero and Dunning 2000), in the French Central
Massif (Pin and Marini 1993) and in the subterranes
of the Saxothuringian domain (Linnemann et al.
1998a). Additional criteria for appreciating the general
plate-tectonic situation are furnished by the wide-
spread granitoid rocks of Early Palaeozoic age, by the
evidence of an Ordovician orogenic event, and by the
discussion of the possible continuation of Avalonian
pieces preserved as relics in the former eastern contin-
uation of Avalonia.

Parallels of granitoid evolution

During the plate-tectonic evolution of Avalonia (e.g.
rifting related to the opening of Iapetus), accompanied
by several magmatic cycles (e.g. early Cadomian,
580-570 Ma; Neoproterozoic, 550-540 Ma; Cambro-
Ordovician, 500-480 Ma), and its break-off from
Gondwana (formation of Rheic ocean, Cambro-Ordo-
vician, 500-480 Ma), contemporaneous tectonic events
and corresponding pulses of granitoids or their surface
equivalents can be observed (Fig.3) in most of the
adjacent peri-Gondwanan continental blocks. Most
Ordovician granitoids and acidic volcanic rocks from
the Alps and areas outside the Alps (Fig. 4, 5), Avalo-
nian outcrop areas (Tremblay et al. 1994; Keppie et
al. 1997), the Himalayan domain (Girard and Bussy
1999), the Argentine Precordillera (Huff et al. 1998),
and even from many Late Cadomian granitoids, inde-
pendent of locality and age, show strong anomalies of
Ba, Nb, Sr and Ti in mantle-normalized multi-element
variation diagrams (von Raumer et al. 1999), and Late
Proterozoic to Early Palaeozoic detrital sediments
(e.g. Bollin 1994; Mingram 1996; Ugidos et al. 1997)
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Fig. 4 Ages of Cambro-
Ordovician granitoids and
metamorphism
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Fig. 5 Distribution of Ordovician granitoids in the Alpine
domain — a tentative Silurian projection. Granitoids represent
different stages of evolution of polymetamorphic domains at an
active margin, and in relation with an Ordovician amalgamation,
whereas late Ordovician volcanites represent the nearby situ-
ation of the opening Palaecotethys. Helvetic domain: Aar Aar
massif; Ad Adula; AR Aiguilles Rouges massif; Arg different
pieces of the Argentera massif, Bell Belledonne-Grandes
Rousses; Go Gotthard massif; L Lebendun; MB Mont-Blanc;
ML Monte Leone; Si Simano; Tau Tauern window units; Ve
Verampio basement; Ver Carboniferous in the Verrucano unit.
Penninic units: Ac Acceglio unit; Lig different pieces in the Lig-
urian Alps (new Ordovician age data, oral comm. M. Molina,
Genova); SB St. Bernhard nappe; Su Suretta; Ta Tambo; Va
Vanoise unit; ZH Zone Houillere. Austroalpine units: Am
Ambin; Ca Campo; Gl Gleinalm; DM different pieces in the
Dora Maira unit; EB Err-Bernina units; Gle Gleinalm; GP Gran
Paradiso; Gr Grobgneis unit; GrP Graz Palaeozoic; Iv Ivrea-
Zone; Ko Koriden; MR Monte Rosa; Mu Murau nappe; Oe
Oetztal; Sa Saualm; Sil Silvretta nappe; St Stangalm; Sch Schlad-
minger Tauern; Ve Veitsch units; We Wechsel unit. Southalpine
units: Bo Bozen; DB Dt. Blanche; Iv Ivrea zone; No Notsch;
KW Karawanken; Ka Karnische Alpen; Se Sesia-zone

show similar normalized patterns indicating chemical
homogeneity over wide areas. Such large-scale paral-
lels, which may have resulted from comparable source
areas of granitoids or sediments, show that normalized
multi-element variation diagrams do not discriminate
the plate-tectonic situation of the many granitoids.
Comparing trace elements, Linnemann et al. (2000)
show that Cadomian detrital sediments of the Saxo-
thuringian zone indicate the situation of a continental
island arc, whereas Ordovician sediments carry the
fingerprints of a passive margin. In geochemical plots
(Maniar and Piccoli 1989), the Cambro-Ordovician
granitoids follow, in some ways, distinct steps of a
plate-tectonic evolution (Fig. 6). Local occurrences of
Cambrian plagiogranites (Alps: Ménot et al. 1988,
Miiller et al. 1996; NW Iberia, Espasante) document
evolution of oceanic crust, and Cambrian granitoids of
more alkaline and metaluminous compositions (Alps:

* Early Ordovician eclogites

Early Ordovician metamorphism or migmatites

‘ 'GrP
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+ Early Ordovician granitoids

Vv

Late Ordovician acidic volcanics

Guillot et al. 1991, Bussy et al. 1996; Ossa Morena:
Montero et al. 2000; Pyrenees: Navidad and Carreras
1995) may have formed in a thickened crust (see also
NW Iberia; Santos Zalduegui et al. 1995). Equally, in
the Cambro-Ordovician granitoid associations (e.g.
Oetztal, Schindlmayr 1999; Silvretta, Liebetrau 1996;
External massifs, Wirsing 1997), the relatively early
calc-alkaline metaluminous trends can be related to a
Cambro-Ordovician active margin setting (Schaltegger
et al. 1997; Schermaier et al. 1998), whereas the cor-
responding relatively younger granitoids (+450 Ma)
have more or less calc-alkaline peraluminous composi-
tions, carrying the characteristics of a late- to post-
orogenic evolution. When plotted on a Rb/Y+Nb
diagram (Pearce et al. 1984), older granitoids of Ordo-
vician age in the Alps plot in the fields of VAG or
intra-plate situation.

Post-Cambrian evolution of microcontinents

The presence of Cambro-Ordovician active margin
setting, Ordovician rifting and the evolution of Cam-
bro-Ordovician granitoids raises the question of the
existence of an orogenic event characterizing part of
the Gondwana margin. The presence of so many
Ordovician granites and their pre-Variscan organiza-
tion (Fig. 5) and geochemical evolution leads, nec-
essarily, to the question of their plate-tectonic situ-
ation (Schmidt 1977; Ebner et al. 1987; Biino 1995;
Oberli et al. 1994; Abrecht et al. 1995; Handy et al.
1999; O’Brien et al. 1997). Ordovician ages of gran-
itoids (Fig. 4, with references), of eclogites (Nussbaum
et al. 1998, not precise age; Gebauer et al. 1988;
O’Brien and Kroner 1999) as well as anatexis and
metamorphism (Schaltegger 1992, 1993; Klotzli-Chova-
netz et al. 1997; Ordovician subduction, Biino 1994;
O’Brien et al. 1997; Zurbriggen et al. 1997; Weger et
al. 1999; staurolite formation, Romer and Franz 1998)
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Fig. 6A, B Distribution of Early Palaecozoic granitoids at the
peri-Gondwanan margin (nomenclature and reconstructions: see
Fig. 7). A Early Ordovician reconstruction (Fig. 7A) with loca-
tion of granitroids emplaced before the opening of the Rheic
ocean. B A Silurian projection Fig. 7B) with granitoids and met-
amorphism related to the Ordovician orogenic event and to the
opening of Palaeotethys

argue for the orogenic evolution from an active mar-
gin setting to a collision during a short time period
(e.g. Gotthard massif, 5-20 Ma, Oberli et al. 1994:
467- to 475-Ma intrusion of metagabbros/440-Ma met-
amorphism of Streifengneis granitoids). Carmignani et
al. (1994) discuss an evolution from Cambrian rift to
an Ordovician Andean type margin for Sardinia. The
coincidental evolution of certain types of granitoids
through time mentioned previously confirms a plate-
tectonic evolution including collisional and post-colli-
sional events. We interpret the tectonic assemblage of
Cadomian relics, Neoproterozoic arc setting, and/or
Late Proterozoic to Early Palaecozoic sediments and
oceanic crust, and Ordovician orogenic structures as
indicating an Ordovician suture zone, where these ele-
ments were amalgamated to Gondwana during the
Ordovician (Figs. 7, 8).

Ordovician palaeo-oceanographic reconstructions
combine palaeocurrent data (Christiansen and Stouge
1999), palacomagnetic criteria (MacNiocaill et al.
1997; Torsvik and Smethurst 1996) and faunal distri-
butions (Harper et al. 1996; Paris 1993; Paris et al.
1999; Mélou et al. 1999) defining the Iapetus and
Rheic oceans domains. The wide domain of Iapetus is
characterized, since the Early Ordovician, by faunal
provinces of brachiopods, where the peri-Gondwanan
Avalonian border has cold-water Celtic faunas
(Harper et al. 1996; Cocks 2000), and volcanic arc
activity (MacNiocaill et al. 1997). Characteristics of
Chitinozoan faunas give an idea about the early evolu-
tion of the Rheic ocean (Paris 1993; Paris et al. 1999)
and, during the same time period, detrital sediments
record maximum of subsidence and rift basin for-
mation, accompanied by rift volcanism, in lateral con-
tinuity (e.g. Saxothuringian domain; Linnemann 1999).
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Sedimentary basins, constituting the lower Palaeozoic
cover series in the Eastern Alps, contain acidic volcan-
ics among lower Palaeozoic sediments (Loeschke and
Heinisch 1993) with a well-documented sedimentary
evolution (Schonlaub 1997a, 1997b; Schonlaub and
Heinisch 1993; Schonlaub and Histon 2000), represent-
ing a rifting environment since the Late Ordovician
(Neubauer and von Raumer 1993; Neubauer and Sassi
1993; Sassi et al. 1994). Since the Late Ordovician,
many areas are covered by the detrital sediments of
Ordovician glaciation (e.g. Hamoumi 1999; Linne-
mann et al. 1999). It is only after the onset of the
Avalonian drift that Armorica and the more easterly
situated Intra-Alpine blocks followed a more indepen-
dent plate-tectonic evolution.

Terrane detachment from Gondwana

Detachment from Gondwana started during the Mid-
Ordovician (ATA; Tait et al. 1998), Caradoc/Ashgill
(Saxothuringian domain, 445 Ma; Fig. 3; Linnemann
et al. 1998b), and the latest Ordovician (Alpine
domain, Ashgill/Llandovery, 435 Ma; Fig. 3; Stampfli
1996) when the Palaco-Tethys rift opened. Sedimento-
logical and faunistic criteria, and palaecomagnetic data,
gave rise for models of detachment of Gondwana-de-
rived continental blocks during the Ordovician and
Silurian, favouring either the separation of a basement
assemblage (Stampfli 1996) or a major mid-European
oceanic separation (Robardet et al. 1990).

Stampfli (1996) introduced the Hun-Terrane model,
a ribbon-like assemblage of continental blocks, not
necessarily above sea level, or volcanic islands, includ-
ing Armorica, the Intra-Alpine basement and micro-
continents situated in the eastern prolongation. The
observation of subsidence patterns in former peri-
Gondwanan domains induced Stampfli (2000), and
Stampfli and Mosar (1996), to reconstruct the con-
tours of Palaeco-Tethys during the Early Silurian for
the Intra-Alpine domains and the corresponding east-
ern prolongations. Prior to their Silurian separation
from Gondwana, these Variscan terranes were located



Fig. 7 A Location of pre-Var-
iscan basement units at the
Gondwanan margin during the
Early Ordovician (490 Ma),
modified from Stampfli (2000),
showing the early stages of the
Rheic ocean spreading. B A
Silurian projection (420 Ma),
modified from Stampfli (2000),
showing the early stages of
opening of PalaeoTethys. Bal-
tica: Is Istanbul; Mo Moesia;
Zg Zonguldak. Avalonia: MM
Meseta-Meguma. Cadomia:
AA Austro-Alpine; Cm Cado-
mia s.str.; He Helvetic; Lg
Ligerian; MD Moldanubian;
OM Ossa-Morena; Pe Pennin-
ic; SM Serbo-Macedonian; Sx
Saxothuringian. Serindia: KT
Karakum-Turan; 7n north
Tarim. Gondwana: Ab Albo-
ran; Ad Adria; Al Alborz; Am
Armorica; Ap Apulia; Aq
Aquitaine; Ct Cantabria; DH
Dinarides-Hellenides; iA intra-
Alpine; Ib Iberia; Ki Kirshe-
hir; LT Lut-Tabas; Mn Men-
deres; Pr Pamir; SS
Sanadaj-Sirjan; Ta Taurus; Ts
south-Tarim

along the margin of Gondwana and represent the
future northern margin of Palaeo-Tethys. Con-
sequently, a tentative Silurian palaeo-tectonic configu-
ration has been derived by back-modelling the present
day distribution of Variscan elements in Europe
(Fig. 7), including also the basement areas of Armo-
rica assumed to contain relics of a former rifting
period since the Ordovician.

The corresponding palaeo-reconstuctions are based
on palaeomagnetic pole data and have been developed
with the GMAP software package (Torsvik and
Smethurst 1994; Torsvik and Smethurst 1999) using an
orthographic (orthogonal) projection. The Early Ordo-
vician (490 Ma) projection is centred on present-day
latitude 60°N, longitude 80°E, the Late Silurian
(420 Ma) projection is centered on present-day lati-
tude 10°N, longitude 25°E. The palacomagnetic pole
data used for Baltica are from Torsvik et al. (1994)
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for the Hun terranes elements and Siberia from Van
der Voo (1993), and references therein. The position
of Gondwana is constrainded by the Australia data
from Klootwijk (1996) and by Pangea tight-fit recon-
struction. The Baltica poles are the absolute reference
poles for all the reconstructions.

As a result of Ordovician to Early Devonian rifting
events, the components of the Hun terrane were step-
wise detached from Gondwana accompanying the
opening of Palaeo-Tethys. Such reconstructions are
not too different from palacomagnetic reconstructions
for the Armorican Terrane Assemblage (ATA; Tait et
al. 1998), where distinct groups of microcontinents
started to separate from Gondwana. The principle of
a Hun-Terrane, which is grouping of certain microcon-
tinental pieces, may thus be modified acknowledging a
still more detailed individual separation from Gond-
wana. If we admit an opening of Palaco-Tethys in a
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Fig. 8 Cross sections model to
illustrate the possible plate
tectonic evolution between
Baltica and Gondwana during

Baltica

ProtoTethys

Avalonia
Cadomia Gondwana

Rheic

the Early Palaeozoic. The
Hun-superterrane resulted
from the Ordovician colli-
sional assemblage of elements
possibly detached from Balti-
ca-Siberia and areas compris-

490 Ma

ing Cadomian basement
(former eastern prolongation
of Avalonia), Early Palaecozoic
oceanic crust (Rheic), volcanic
arcs and accretionary wedges,

480-470 Ma

470 Ma

with the Gondwana mar-
gin.The opening of the Pal-
aeotethys separated the com-
posite Hun superterrane from
Gondwana. This opening took
place in a context of back-arc

orogenic event

spreading of Palaeotethys and
slab roll-back of the Maure-
tanian-Rheic ocean and was
accompanied by the formation

of volcanics Laurussia

450 Ma

granitoids

Hun
Terrane

back-arc setting, the geometry of the detached upper
plate is bound to be modified by differential slab roll-
back behaviour of the lower plate as is observed
presently along the Mariana trench, for example. It is
clear that the opening of Palaeo-Tethys is diachronous
(Stampfli 2000); however, subsidence curves alone
cannot determine the onset of sea-floor spreading
when very little Palaeotethyan sea-floor remnants are
known. We propose a detachment of Gondwanan ele-
ments in three major steps: firstly, the Avalonia
blocks; then, the mainly European Hun Terranes; and
finally the Far-East Hun terranes. We assume that the
latter could not be detached before the Silurian accre-
tion to Gondwana of some exotic (Baltica—Siberia)
elements grouped here as Serindia. There, the situ-
ation is quite different, amalgamation of terranes hap-
pened only in Silurian or Early Devonian times and
larger continental fragments are involved such as the
Pamir-south Tarim-Tsaidam block collision with the
north Tarim-north China block (Yin and Nie 1996) or
the north Qinling north China blocks collision (Meng
and Zhang 1999). These drifting exotic blocks (Serin-
dia terrane) followed the slab roll-back of the Proto-
Tethys accompanied by the Asiatic ocean spreading in
a back-arc position. An older western portion of the
Asiatic ocean was involved in intra-oceanic subduction
accompanied by the opening of the Khanti-Mansi
back-arc ocean and development of the Kipchak arc
(Sengor and Natal’in 1996). A southward connection
between the Asiatic ocean mid-oceanic ridge and a
remnant Proto-Tethys mid-oceanic ridge is suggested
here. This Silurian collisional event affected also the

PalaeoTethys

435 Ma

volcanics

South China block and part of the Indochina block
(or the north Qinling north China blocks collision;
Meng and Zhang 1999; Findlay 1997) and possibly has
been recognized westward up to eastern Turkey (Gon-
clioglu and Kozur 1999).

Scenario of peri-Gondwanan evolution: a conclusion

When summing up the observations mentioned pre-
viously, we arrive, independently of Variscan tectonic
complications, at the conclusion that most of pre-Var-
iscan relics of the Variscan mountain chain had their
origin at the Gondwana margin. Two evolution trends
are noted:

1. Stampfli (2000) favoured the derivation of Cado-
mian basement blocks from Baltica triggered by a
Baltica-directed subduction and island arc for-
mation during the Early Ordovician which, during
the Mid Ordovician, collided with the Gondwana
margin (orogenic event). Inversion of subduction
towards Gondwana produced the break-off of the
Hun-superterrane and formation of Palaeo-Tethys
as a back-arc ocean.

2. In our present model an opposite evolution is pro-
posed for the Cadomian terrane. Assuming that
already since the latest Precambrian subduction
was generally directed towards Gondwana (Cado-
mian orogeny, Avalonian southern prong), we
assume that most of the Cadomian basement blocks
(exception Belka et al. 1998, 1999; Unrug et al.
1999) presently hidden in the Variscan mountain



chain should have derived from the Gondwana

margin (“European margin”; Courjault-Radé et al.

1992). In this general picture, the Serindia terrane

is still considered as derived from Baltica—Siberia.

Since the latest Cambrian (500 Ma) at several loca-
tions (see above) magmatic and metamorphic events
are dated, presumably the consequence of general
crustal extension and contemporaneous influence of
rising asthenosphere. Such activity is accompanied, at
several distant places, by formation of oceanic crust
interpreted to represent the opening of the Rheic
ocean. The alignment of the very different localities at
the Gondwana margin suggests a contemporaneous
opening over a large distance, from Ossa Morena, and
Iberia to the Miinchberg Massif. The question arises
as to whether such oceanic trenches represent one
uninterrupted long suture line, or if there existed par-
allel lines of opening (e.g. Rheic, Galicia-Massif Cen-
tral; Matte 1986), compared with the parallel lines of
Early Cambrian grabens intersecting the Gondwanan
block. The large differences of oceanic crust at the dif-
ferent localities may indicate that oceanic crust did
not result from cylindrical subduction and simulta-
neous slab roll-back, but from very oblique conver-
gence, where either pull-aparts may have facilitated
the appearance of true oceanic crust, accompanied lat-
erally by only incomplete oceanic series, or simply vol-
canites and/or detrital sediments. Such strike-slip mod-
els have been proposed by Murphy and Nance (1989),
Linnemann et al. (1998b) and Zulauf et al. (1999).

The striking parallels of evolution from the Late
Neoproterozoic to the earliest Ordovician are best
explained when using a ribbon-like lining-up model of
pre-Variscan blocks along the Gondwana margin.
Most of the continental pieces contain the relics of a
Neoproterozoic active-margin setting and continental
rift since the Late Cadomian, and early stages of
Rheic ocean. Intrusion of granitoids and volcanites
follow the regional tectonic pattern. We thus claim a
common early evolution of Avalonia and its eastern
continuation (e.g. Cadomia sensu lato, Intra-Alpine
Terrane) at the Gondwana margin, and major differ-
ences of evolution between Avalonia and the remain-
ing eastern microcontinents only after the successful
break-off of Avalonia during the Early Ordovician
(Figs. 3, 7, 8).

The independent drift story of the microcontinents
situated in the eastern prolongation of Avalonia
depended on the time of subduction of a remnant Pro-
to-Tethys/Rheic mid-oceanic ridge; the Ilatter was
linked with the Asiatic ocean mid-oceanic and trans-
form zone in between. The subsequent subduction/col-
lision of the ridge/transform zone triggered the amal-
gamation of arc and continental ribbon with
Gondwana leading to the Ordovician orogenic evolu-
tion. This collisional event produced a complex ter-
rane configuration, the “Noric composite Terrane”
(Eastern Alps; Frisch and Neubauer 1989) or “Hun
superterrane” (Stampfli 1996). It comprises older
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(former Gondwanan) basement blocks, accretionary
wedges, volcanic arcs, and pieces of an aborted east-
ern Rheic ocean, and may have, locally, the aspect of
an archipelago, but it also can be composed by large
continental blocks. It is evident that there has been
tectonic interaction between the different elements,
thus complicating the orogenic assemblage, and our
proposed distribution of terranes (Fig. 7) is only tenta-
tive. As traces of the Ordovician orogenic event are
seen mainly in the Intra-Alpine domain, with some
parallels in the Bohemian massif (Cambrian and
Ordovician zircon ages of eclogites; O’Brien and
Kroner 1999), the question arises as to whether the
Armorican Terrane Assemblage (Tait et al. 1998) and
more western situated microcontinents were really
independent from the more eastern ones, and that the
assemblage of Bohemian massif and the Intra-Alpine
terranes had a distinct drift history, interrupted by this
short event, or if the Devonian lower crustal events
observed in the more western parts have completely
erased the memory of such events. The evidence of
Early Ordovician volcanites and/or granites, some-
times of alkaline tendencies, in the more western
blocks just indicates the rifting related to the break-off
of Avalonia.

The constituents of the future Hun-composite ter-
rane are interpreted to represent an eastern prolonga-
tion of Avalonia (Figs. 3, 7), and the suture zone hid-
den in the superterrane are interpreted to represent
the eastern prolongation of an early stage of the Rheic
ocean (see also Finger et al. 1998), before the Ordovi-
cian amalgamation (Figs. 7, 8). This amalgamation
would have been the result of a diachronous consump-
tion of the mid-ocean ridge of Proto-Tethys which
triggered the intrusion of late Cadomian granitoids
and consequently the early separation (480 Ma) of
Avalonia from its neighbouring blocks following the
onset of generalized slab roll-back of the remaining
ocean. The opening of the eastern branch of the Rheic
was stopped by the contemporaneous spreading of the
Asiatic ocean (Zonenshain et al. 1985) and partial col-
lision with a major transformation zone at the south-
ern end of the exotic Karakum-Tarim-north China
terrane. It is only since the break-off of Avalonia that
the plate-tectonic evolution of the more eastern-situ-
ated microcontinents (e.g. Cadomia, Intra Alpine Ter-
rane) became different, and the following events could
have been the consequence of accretion and shifting
of subduction zones to external domains, as discussed
for the contemporaneous evolution at the Pacific
Gondwana margin (Rapela et al. 1992; Tessensohn
1999).

The time period after the Ordovician amalgamation
is characterized by the sucessive stages of subduction,
and the contemporaneous formation of accretionary
wedges and arc-volcanics at the Silurian active margin
of Gondwana. This is supported by Silurian eclogite
ages from the Tauern area (von Quadt et al. 1997)
and comparable ages from the Argentera External
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Massif (Paquette et al. 1989), and the Massif Central
domain (e.g. Ducrot et al. 1983; high-pressure event:
Pin and Lancelot 1982). Relics of Silurian volcanic
arcs have been recognized in the domain of the North
German Crystalline Rise, interpreted as an active mar-
gin setting in the South of the Rhenohercynian
domain (Altenberger and Besch 1993; Reischmann
and Anthes 1996a, 1996b; Zeh et al. 1997), and in our
model the active margin is located on the northern
border of the Hun-superterrane (Figs. 7, 8). The
diachronous Palaeo-Tethys opening in Silurian-Early
Devonian times is viewed as a back-arc opening along
the Gondwana margin (Stampfli et al. 1991; Stampfli
2000). Faunistic assemblages (Schonlaub 1997a, 1997b;
Schonlaub 1993; Schonlaub and Histon 2000) and pal-
aeomagnetic data (Bachtadse et al. 1995; Schitz et al.
1997; Tait et al. 1998; Torsvik et al. 1994; Torsvik and
Eide 1998) support the migration of the Hun superter-
rane towards Laurussia. It is interesting that Noblet
and Lefort (1990) admit in their lower Ordovician
stratigraphy a “future opening of the Tethys I ocean”,
and that in the Silurian palaeogeographic reconstruc-
tion (Paris and Robardet (1990) admit an opening
oceanic domain as a branch of the Rheic ocean for
the more eastern-situated domains of the large Gond-
wana shelf.

Difficulties arise when comparing drift models of
continental pieces since the Silurian. Matte (1986) and
Robardet (1996) propose the migration of Gondwana
towards Laurussia, whereas Tait et al. (1998), based
on palaecomagnetic data, discuss the migration of indi-
vidual microcontinents or groups of continents, coin-
ciding with predictions based on faunistic criteria
(Schonlaub 1993), and such models could be corre-
lated with a modified model of the Hun-superterrane
and its migration (forthcoming discussion given by
G.M. Stampfli et al., submitted).

Considering the parallels of pre-Variscan evolution
of the different microcontinents preserved in the Var-
iscan domain (Fig. 3), it is tempting to propose a
nomenclature for the classical tectono-stratigraphic
realms, taking into account the former geological evo-
lution at the Gondwana margin. The assemblage of
Cadomian basement, Neoproterozoic to Cambrian
active margin setting, and Ordovician accretionary
stages represent the leading edge of the Hun-superter-
rane and includes a Middle Ordovician suture of
aborted Rheic ocean. Large areas of the Moldanubian,
of the French Central Massif and from NW Iberia can
be grouped under this assemblage. The units, charac-
terized by the opening of the Paleo-Tethys which sep-
arated the Hun super-terrane from Gondwana in Late
Silurian times, belong to the classical Saxothuringian
domain and the southern part of Armorica sl. As a
consequence of the Variscan evolution since the Silu-
rian (G.M. Stampfli et al., submitted), the classical
Rhenohercynian zone together with the Lizard
domain, and the South Portuguese and Moravo-Sile-
sian zones, opened as a Devonian oceanic domain

within the Laurussia margin, due to Gondwana-di-
rected slab pull. The contemporaneous leading edge
of the Hun-superterrane is represented by the Siluri-
an-Devonian active margin (part of the mid-German
Crystalline Rise).

Although the proposed models do not contradict
palaeoreconstructions in terms of palacomagnetic
information and faunal distributions mentioned pre-
viously, an interdisciplinary discussion is still needed
to better understand plate-tectonic evolution during
Early Paleozoic times. Important information on key
areas are still lacking, and we view this paper as stim-
ulation for further discussion and research, which has
started already through the stimulating contribution
from the reviewers. Little is known about the larger
distribution of the Ordovician orogenic event, and
precise age determinations of magmatic rocks or
refined provenance studies of sedimentary rocks, even
of high-grade metamorphic rocks, are greatly needed.
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