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Abstract The aldosterone-sensitive distal nephron (ASDN)
includes the late distal convoluted tubule 2, the connecting
tubule (CNT) and the collecting duct. The appropriate
regulation of sodium (Na+) absorption in the ASDN is
essential to precisely match urinary Na+ excretion to dietary
Na+ intake whilst taking extra-renal Na+ losses into
account. There is increasing evidence that Na+ transport in
the CNT is of particular importance for the maintenance of
body Na+ balance and for the long-term control of extra-
cellular fluid volume and arterial blood pressure. Na+

transport in the CNT critically depends on the activity and
abundance of the amiloride-sensitive epithelial sodium
channel (ENaC) in the luminal membrane of the CNT
cells. As a rate-limiting step for transepithelial Na+

transport, ENaC is the main target of hormones (e.g.
aldosterone, angiotensin II, vasopressin and insulin/insulin-
like growth factor 1) to adjust transepithelial Na+ transport in
this tubular segment. In this review, we highlight the
structural and functional properties of the CNT that
contribute to the high Na+ transport capacity of this
segment. Moreover, we discuss some aspects of the
complex pathways and molecular mechanisms involved in
ENaC regulation by hormones, kinases, proteases and
associated proteins that control its function. Whilst cultured

cells and heterologous expression systems have greatly
advanced our knowledge about some of these regulatory
mechanisms, future studies will have to determine the
relative importance of the various pathways in the native
tubule and in particular in the CNT.
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Introduction

Regulation of renal sodium (Na+) excretion is crucial for
the maintenance of extracellular salt and volume homeo-
stasis and thus for blood pressure control. The final
adjustment of renal Na+ excretion is achieved in the
aldosterone-sensitive distal nephron (ASDN) which com-
prises the late distal convoluted tubule 2 (DCT2), the
connecting tubule (CNT) and the collecting duct (CD; see
Fig. 1a). Aldosterone-sensitivity is conferred to the ASDN
by the mineralocorticoid receptor (MR) and the enzyme 11-
beta hydroxysteroid dehydrogenase type 2 (11βHSD2) that
protects the MR from activation by glucocorticoids by
rapidly degrading them to inactive metabolites. Trans-
epithelial sodium transport in the ASDN is mediated by
the epithelial sodium channel (ENaC) and the Na-K-
ATPase in the luminal and basolateral plasma membrane,
respectively (Fig. 1b). The function of both is tightly
controlled by aldosterone and other hormones as well as by
many extra- and intracellular factors.

Although the ASDN re-absorbs less than 10% of the
filtered sodium (Na+) load, the ASDN is finally decisive for
the amount of Na+ that appears in the urine [210, 246]. The
ASDN is also the tubular site for net renal potassium (K+)
excretion, contributes to renal acid secretion and comprises
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sites for regulated transcellular magnesium and calcium re-
absorption in the kidney [37, 68, 134, 246, 268, 352].
Several human tubulopathies, genetic and acquired, have
been attributed to specific dysfunctions of ion transporting
proteins in the ASDN [111, 194, 282]. Transgenic mouse
models, mimicking human diseases, underscore the key
role of the ASDN for ion homeostasis [96, 111, 143, 288].
The detailed physiology and pathophysiology of the DCT,
CNT and CD as well as that of their ion transporting
proteins have been discussed in depths in several recent

reviews (e.g. [20, 26, 27, 47, 87, 97, 108, 111, 134, 162,
170, 187, 208, 220, 246, 254, 257, 282, 283, 285, 286, 291,
313, 318, 338] and several articles in this special issue of
the journal [37, 288, 352]. Here, we will specifically focus
on the mechanisms of Na+ transport and its regulation in
the CNT since evidence is emerging that this nephron
segment is particularly important for the maintenance of
Na+ balance and the long-term control of arterial blood
pressure [220, 246]

Histology and embryology of the CNT

The term “connecting tubule” originates from the fact that
the CNT connects the DCT with the cortical collecting duct
(CCD). The phylogenetic and embryological origin of the
CNT is uncertain. A distinct tubular segment with expres-
sion of CNT-specific marker molecules is detectable
already during the pronephric development in Xenopus
laevis, indicating that the CNT evolved quite early in the
evolution of the mammalian nephron, probably more than
360,000 million years ago [264]. Also during metanephric
development of the rat kidney, a sharp cytogenetic border
between the immature CNT and the taller and darker-
stained ampullary epithelium of the collecting duct is
consistently seen [234]. The sharp boundary diminishes
with progressive differentiation of the CNT, but the
junction between CNT and CD usually persists in the upper
third of the medullary rays at the border between cortical
labyrinth and medullary ray [234] as indicated in Fig. 1a.
Based on these morphological observations and additional
immunohistochemical criteria, investigators concluded that
CNT and CD are distinct entities which originated from the
nephrogenic blastema and the ureteric bud, respectively
[154, 234, 244]. However, others proposed that both CNT
and CD arise from the branching ureteric bud [137].
Schmitt and co-workers raised a third hypothesis suggest-
ing that the CNT develops by mutual induction processes
initiated at the border of adjoining segments [299]. This
would finally lead to a unique hybrid epithelium. Consis-
tent with this idea, the CNT of the adult kidney shares
characteristics of both the upstream nephrogenic DCT and
the downstream ureteric CD. Like the DCT, the CNT
expresses high amounts of calcium transporting proteins in
the apical and basolateral plasma membrane [14, 199]. Like
the CD, the CNT has numerous intercalated cells and
expresses high levels of ENaC and, in some species (e.g.
rat, mouse and humans), also the vasopressin-sensitive water
channel aquaporin-2 (AQP-2) [199].

The morphology and structure of the CNT is complex. Like
in the collecting duct, the epithelium of the CNT is composed
by two distinct cell types, namely segment-specific CNT cells
and intercalated cells [81, 153, 164, 207]. The segment-

Fig. 1 The aldosterone-sensitive distal nephron. a Segmental organi-
sation: The ASDN comprises the end portion of the distal convoluted
tubule (1; i.e. the DCT2), the connecting tubule (CNT; 2) and the
collecting duct (CD) with its cortical (CCD; 3) and medullary (4)
portions. The dark shaded areas in the tubule represent intercalated
cells that are interspersed between the segment-specific cells of the
DCT2, CNT and CD. The different kidney zones are indicated as C
cortex, OS outer stripe of outer medulla, IS inner stripe of outer
medulla, IM inner medulla. Note the different structure of the CNT of
the superficial (unbranched) and the deep nephron (one arcade with
several inflows from other CNTs). b Simplified ASDN cell model
depicting the key characteristics of the ASDN: The epithelial sodium
channel (ENaC), the Na-K-ATPase, the mineralocorticoid receptor
(MR) and the enzyme 11-β-hydroxysteroid dehydrogenase type 2
(11βHSD2) as well as an apical potassium channel. c Distribution of
ENaC, Na-K-ATPase, MR and 11βHSD2 along the different ASDN
segments in rodents. Distribution of the DCT-specific thiazide-
sensitive NCC is also indicated. Changing heights of individual bars
indicate axial differences in protein abundance. a Adapted from [157]
with permission, data in c refer to [14, 160, 199]. For more details see
text
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specific CNT cells are the Na+-re-absorbing cells, whilst the
intercalated cells are involved in the renal control of acid–
base homeostasis (for more details on intercalated cells, see
Wagner et al. [345] in this special issue). The segment-
specific CNT cells reveal an ultrastructure that is intermedi-
ate between that of the typical DCT and CD principal cells
[81, 155, 207]. The CNT cells have less mitochondria and
basolateral plasma membrane infoldings than the DCT cells,
but are considerably taller and have more mitochondria than
the principal cells of the CCD [153, 155, 207]. The
abundance of basolateral plasma membrane infoldings and
mitochondria progressively decreases along the axis of the
CNT to the CD [81, 155] consistent with axial differences
of ion transport rates along the CNT and the CCD (see
below) [155, 199, 207]. The transitions from DCT to CNT
and from CNT to CCD are clearly demarcated only in the
rabbit, whilst they are more gradual in the mouse, rat and
human kidneys (reviewed in [199]). These structural differ-
ences are also reflected in some differences in the serial
arrangement of ion and water transporting proteins between
these species [199]. In particular, mouse, rat and human
kidneys reveal at the transition from DCT to CNT a short
nephron portion, in which the DCT-specific thiazide-
sensitive NaCl co-transporter (NCC) overlaps with ENaC
[14, 197, 299]. As this portion expresses NCC, it is
considered to be part of the DCT. Bachmann and co-
workers designated this late DCT portion DCT2 in distinc-
tion from the early DCT (DCT1) that is NCC-positive but
ENaC negative [14, 299].

The structure of the CNT differs between nephron
populations. Whilst the CNT of a superficial nephron is a
rather simple tube that links one DCT with one CCD, the
CNTs of mid-cortical and deep nephrons are more complex
and merge to form the so-called arcades [153]. These
arcades ascend in the cortical labyrinth along the cortical
radial vessels before they open into the CCD in the
medullary rays. The number of nephrons, which are drained
by one arcade, varies amongst nephrons and amongst
species [199]). A recent three-dimensional reconstruction
of the mouse nephron revealed that in this species, six to
seven nephrons are drained via the CNT to one CCD [367].
Although the individual CNT segments are rather short and
in the rat have a length of about 0.5 mm [82], the
contribution of the CNT to the tubular volume of the renal
cortex should not be under-estimated. In the mouse kidney,
the CNT accounts for more than 8% of the fractional
cortical tubular volume, which is less than the fractional
volume of the DCT (~12%) but clearly exceeds that of the
CCD (~4%) [200]. Thus, in the CNT, the available luminal
surface for sodium absorption is probably much greater than
that available in the entire collecting duct.

Another morphological peculiarity that distinguishes the
CNT from CD is the close apposition of the CNT to the

afferent arteriole of its own glomerulus [83]. This led to the
speculation that the CNT and the afferent arteriole form
another site for tubuloglomerular feedback, distinct from the
one located at the macula densa region. Consistent with this
idea, Morsing and colleagues showed that the glomerular
filtration rate rises when the tubular fluid flow is interrupted
in the connecting tubule [226]. Recent studies corroborated
these early observations and indicated that the glomerular
feedback mechanism in the CNT depends on the sodium
transport activity of this segment [269] and is coupled to
the release of prostaglandins and epoxyeicosatrienoic
acids [270].

Sodium transport in the CNT

Transepithelial Na+ transport across renal epithelia is a two-
step process that involves Na+ uptake from the tubular
lumen into the epithelial cells and extrusion of Na+ across
the basolateral plasma membrane into the renal interstitium
from where it is taken back into the blood stream by
diffusion into the peritubular capillaries. Along the ASDN,
including the CNT, the luminal Na+ entry step is repre-
sented by ENaC whilst the basolateral extrusion of Na+ is
mediated by the Na-K-ATPase [97, 162]. The activity of
ENaC and the Na-K-ATPase is electrogenic and generates a
transepithelial potential difference that drives K+ secretion
via apical K+ channels (Fig. 1b) such as the renal outer
medulla potassium channel (ROMK) and the flow-
dependent maxi K (BK) channels [121, 130, 246, 352].
Whilst ROMK is exclusively present in the ENaC express-
ing segment-specific cells [221, 247, 361], the BK channel
appears to be expressed in both the segment-specific CNT
cells and the intercalated cells as indicated by immunohis-
tochemical data [120]. However, electrophysiological tech-
niques detected BK channel activity mainly in intercalated
cells [247]. Interestingly, the intercalated cells may not only
secrete but also re-absorb K+. Intercalated cells possess an
H-K-ATPase in their apical plasma membrane [94, 308,
334], which may enable these cells to transport K+ against
steep electrochemical gradients. By re-absorbing K+,
intercalated cells may represent an important cellular
pathway to limit renal K+ losses during ENaC activation.
A close link between ENaC-mediated Na+ transport and
intercalated cell function can be also deduced from the
intriguing observation that the first appearance of interca-
lated cells along the nephron coincides precisely with the
onset of ENaC expression as seen in rat [299], mouse [197]
and rabbit [196] kidneys. Consistent with this idea, recent
studies on mice deficient for pendrin, the apical Cl−/HCO3

−

exchanger of type B intercalated cells, pointed to a
functional crosstalk between pendrin and ENaC along
the ASDN [167]. Na+ re-absorption via ENaC also
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contributes to the osmotic gradient for vasopressin-
dependent transepithelial water transport via the apical
water channel AQP2 [16]. The importance of ENaC for
Na+, K+ and fluid homeostasis is emphasised by the
observation that gain-of-function mutations of ENaC
(Liddle’s syndrome) or loss-of-function mutations of ENaC
(pseudohypoaldosteronism type I, PHA-I) lead to severe
arterial hypertension or renal salt wasting syndromes
associated with hypokalemia and hyperkalemia, respectively
[162, 282]. Likewise, transgenic mouse models deficient
for ENaC sub-units develop a severe PHA-I phenotype and
die shortly after birth because of severe renal salt wasting
with hyperkalemia (β- or γENaC deficient mice) or
because of an inability to clear their lungs from alveolar
fluid (αENaC-deficient mice) [288].

Molecular structure of ENaC

ENaC is a heteromultimeric channel composed of three
homologous subunits (α, β, γ) with a 30% to 40% identity
at the level of their amino acid sequence [50, 271].
Different techniques were used to assess the sub-unit
stoichiometry of the native channel and resulted in models
with either four [8, 62, 77, 100, 177] or eight to nine sub-
units [90, 310]. In contrast, the recently published crystal
structure of the related acid sensing ion channel acid-
sensing ion channel 1 suggests that ENaC is a heterotrimer
[51, 146]. However, this heterotrimeric model awaits
confirmation by a crystal structure of ENaC. Each sub-
unit of ENaC contains two transmembrane domains (M1
and M2), a large extra-cellular loop and short intra-cellular
amino and carboxyl termini. With their M2 domains, all
sub-units are thought to contribute to the channel pore
[162]. Full activity of ENaC requires the co-expression of
all three sub-units. Na+ movement across the channel is
highly sensitive to the diuretic amiloride (Ki~100 nM) and
corresponds to the electrophysiologically measurable
amiloride-sensitive Na+ transport in native epithelia [114,
162]. In addition to the well-characterised αβγ-sub-units, a
fourth ENaC sub-unit, δENaC, has been cloned from a
human kidney cDNA library with transcriptional expression
in a range of tissues with the highest expression levels in
testis, ovary, pancreas and brain. Small amounts of δENaC-
mRNA were also detected in heart, placenta, lung, liver,
kidney, thymus, prostate, colon and lymphocytes but not in
small intestine and spleen [347, 363]. In heterologous
expression systems, δ-ENaC has functional similarities with
αENaC. However, δβγ-ENaC is more than an order of
magnitude less sensitive to amiloride than αβγ-ENaC
[149, 150, 347]. Moreover, δβγ-ENaC but not αβγ-
ENaC has been reported to be activated by extra-cellular
protons [148, 363]. Another difference is the higher single-

channel Na+ conductance of δβγ-ENaC (~12 pS) compared
to αβγ-ENaC (~5 pS) [347]. Interestingly, self-inhibition
by extra-cellular Na+ is less pronounced in δβγ-hENaC
than in αβγ-ENaC [150]. Na+ self-inhibition is a bio-
physical hallmark of ENaC and is a mechanism to prevent
an intracellular Na+ overload in transporting epithelial cells
in the presence of a high extracellular Na+ concentration
[31, 114, 135, 162, 330]. Whilst the inhibitory effect of
extra-cellular Na+ on ENaC is rapid and caused by an acute
decrease in channel open probability (Na+ self inhibition)
[60], the inhibitory effect of an increased intracellular Na+

concentration is a slower process and mainly involves a
decrease in channel surface expression (Na+ feedback
inhibition) [161, 175, 342]. However, recent evidence
suggests that intracellular Na+ also inhibits ENaC through
an inhibitory effect on open probability [7]. It is conceiv-
able that the sensitivity of ENaC to Na+ feedback regulation
may need to be adjusted along the nephron according to the
different luminal Na+ concentrations in different nephron
segments. It is tempting to speculate that this may be
achieved for example by varying the relative expression of
the δ- versus the α-subunit. However, at present, it is still
unclear whether the δ-subunit of ENaC is relevant for
transepithelial Na+ transport in the kidney.

Importance of the CNT for Na+ homeostasis

The “hidden” localisation of the CNT in the cortical
labyrinth and its complex structure make the CNT difficult
to isolate and to study by direct functional methods [220,
246]. Nevertheless, the ion transport, electrophysiological
and morphological studies performed so far indicate that
ENaC activity is high in the CNT and that this segment is of
major relevance for the renal control of Na+ homeostasis.
Classical micro-puncture experiments on the rat “distal
convolution”, which includes anatomically DCT and CNT
portions, revealed that more than 90% of the Na+ delivered
to the distal convolution is re-absorbed in DCT and CNT
[210] and does not even reach the downstream localised
collecting duct. Moreover, micro-perfusion experiments
demonstrated robust amiloride-sensitive Na+ transport in
“late” rat distal tubules (approximately DCT2 and CNT)
[63], but not in collecting ducts [267, 328]. Furthermore,
direct measurements of Na+ fluxes in isolated rabbit renal
tubules revealed three- to fourfold higher net Na+ re-
absorption rates in CNTs than in CCDs [4]. Likewise,
transepithelial voltage differences, which are a useful
indicator for ENaC activity, were reported to be more than
seven times higher in the rabbit CNT than in the rabbit
CCD [145]. Immunohistochemical studies corroborated
these functional data by showing that the apical density of
ENaC progressively decreases along the axis of the ASDN
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as shown exemplary for the rabbit kidney in Fig. 2. In
animals maintained on a standard laboratory diet, apical
localisation of ENaC subunits is seen only in the early
ASDN (i.e. the late DCT and early CNT in rat [292],
mouse [197] and human [30] and the early CNT in rabbits
[196]). In farther downstream portions (i.e. the middle and
late portions of the CNT and the CD), ENaC resides
predominantly at intracellular sites [196, 197, 214, 299].
Only the αENaC subunit was reported to have a more
pronounced apical localisation that extends into the
collecting duct even under standard diet [123]. The
functional significance of this observation is unclear but
is consistent with a non-coordinated regulation of ENaC
subunits observed in cultured X. laevis kidney A6 cells, an
in vitro model system for the ASDN [353]. The restriction
of apical ENaC abundance to early ASDN cells in
immunohistochemical studies may explain why in recent
patch-clamp studies on rat CNT, ENaC whole-cell currents
were undetectable in CNTs of rats maintained on a
standard salt diet, whilst large ENaC whole-cell currents
were observed when animals were infused with aldoste-
rone [106]. In contrast, a recent study in mice revealed
sizeable ENaC whole-cell currents in late CNTs and early
CCDs of animals maintained on a standard diet. These
ENaC currents further increased when animals were
maintained on a low Na+ diet [235].

Collectively, these data indicate that under standard
dietary conditions, renal ENaC activity is mainly localised
in the early ASDN (i.e. the late DCT and early CNT).
ENaC activity in the more distal portions of the ASDN is
likely to increase when Na+ absorption needs to be
maximised to maintain Na+ balance (e.g. in response to
dietary Na+ restriction or extracellular volume depletion)
[197, 220]. In fact, a variety of functional and morpholog-
ical studies on rat, mouse and rabbits showed that dietary
Na+ restriction or mineralocorticoid infusion extend apical
ENaC activity [67, 106, 112, 245, 267, 328] and apical
ENaC immunostaining [76, 197, 202, 214, 239, 287] from
the early CNT into the downstream localised ASDN
portions including the collecting duct. The variation of
apical ENaC immunostaining in response to altered dietary
Na+ intake is schematically presented in Fig. 3.

In addition to the effects on ENaC, prolonged elevation
of plasma aldosterone does also stimulate the basolateral
Na+ transport machinery (i.e. the mitochondrial volume,
basolateral membrane area and the Na-K-ATPase activity
per unit tubular length; reviewed in [97, 206]). Interesting-
ly, although the relative amount of the increase of
mitochondrial density, basolateral membrane area [156]
and Na-K-ATPase activity [112, 184] is most pronounced
in the collecting duct, the absolute values of these
parameters still remain higher in CNT than in CD [112,

Fig. 2 Axial differences of apical ENaC localisation along the rabbit
ASDN. a Detection of NCC mRNA by in situ hybridisation
characterises the distal convoluted tubule (D). The NCC related signal
ceases precisely at the transition (arrows) from D to the connecting
tubule CN. b Immunohistochemical detection of γENaC begins
precisely at the transition from D to CN and reveals a predominant
apical localisation of ENaC in the early CN. c Immunohistochemical

detection of βENaC shows also a predominant apical localisation of
ENaC in the early CN whilst in farther downstream localised
connecting tubules (CN*), ENaC is mainly located at intracellular
sites. c Likewise, collecting ducts (CD) show a diffuse cytoplasmic
distribution of βENaC. Unstained cells in CN and CD epithelia in c
and d represent intercalated cells. a, b Consecutive sections and were
adapted from [196] with permission
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156, 184], suggesting that even under high aldosterone
conditions, the Na+ transport rates stay higher in the early
ASDN portions. Consistent with these findings, immuno-
histochemical studies on mouse and rat kidneys as well as
patch clamp studies on isolated rat renal tubules revealed a
progressive decline of apical ENaC immunostaining and
activity along the axis of the ASDN (CNT>CCD) even
under conditions of severe Na+ restriction [106, 197, 292].
The reason for this marked axial gradient along the ASDN
is unclear. Axial differences in the expression levels of MR
and 11βHSD2 are probably not involved since they appear
to be similar along CNT and CD [39, 84, 92]. Moreover, in
response to aldosterone, the upregulation of αENaC and of
the aldosterone-dependent kinase Sgk1 (see below) occur
uniformly all along the ASDN [198]. Thus, other factors
appear to be responsible for the differential regulation of
apical ENaC abundance and activity along the ASDN.
Recently, we revealed by immunohistochemical studies that
the ubiquitin-ligase Nedd4–2, which reduces the cell
surface abundance of ENaC in heterologous expression
systems [1, 118], shows an axial gradient along the ASDN,
which is inverse to that of ENaC and therefore may explain
the axial gradient of apical ENaC [195]. The observed axial
gradients of apical ENaC localisation and Nedd4–2
abundance as assessed by immunostainings are schemati-
cally presented in Fig. 3.

Independent of the underlying mechanism, the afore-
mentioned data clearly indicate that the Na+ transport
capacity of the CNT exceeds by far the one of the CD.
Indeed, using whole-cell current data and considering the
anatomical length of the two segments, Frindt and Palmer
estimated that the Na+ transport capacity of the CNT is at
least ten times higher than that of the CD [106]. The
predominant functional importance of the DCT2 and CNT
for ENaC-mediated Na+ absorption is further supported by

the finding that mice with a collecting duct-specific gene
inactivation of the α-subunit of ENaC are able to maintain
Na+ balance, even when challenged by salt restriction [287].
In contrast, mice with targeted deletion of the MR in the CD
and late CNT but intact MR expression and ENaC regulation
in early CNT and DCT2 show impaired Na+ balance.
Although the mice develop normally under standard diet,
they continuously lose body weight and show signs of severe
extra-cellular volume contraction under low Na+ diet [279].
The data suggest that maintained MR-dependent ENaC
regulation in DCT2 and early CNT is sufficient to keep
mice in body Na+ balance under standard conditions but not
when stressed by dietary Na+ restriction [279].

Regulation of ENaC—overview

The differences between CNT and CD with respect to Na+

transport are more quantitative than qualitative [246, 287].
Indeed, the regulatory mechanisms controlling ENaC
activity are probably quite similar along the ASDN. What
differs along the axis of the ASDN is most likely the
relative impact that each of these mechanisms has on ENaC
regulation. ENaC is regulated by a variety of factors
including hormones (e.g. aldosterone, angiotensin II,
vasopressin, insulin, insulin-like growth factor I), extra-
cellular and intra-cellular proteases (e.g. channel-activating
proteases (CAP1-3), tissue kallikrein, furin), intra- and
extracellular ion concentrations, osmolarity, tubular flow
rate, as well as kinases (e.g. Sgk1, protein kinase A (PKA),
extracellular-regulated kinase (ERK)) and interacting pro-
teins (e.g. ubiquitin ligases, deubiquitinylating proteases,
Rab proteins) which have been discussed in detail in
several recent reviews [20, 26, 27, 47, 87, 114, 142, 162,
169, 182, 187, 201, 208, 254, 260, 283, 285, 302, 313, 318,
322, 338]. We have not attempted to provide a comprehen-
sive review of this vast and rapidly expanding field of
research on ENaC regulation. Instead, we have limited our
discussion in the following to some selected aspects of
ENaC regulation thought to be relevant in the kidney and
the CNT in vivo.

Regulation of ENaC by aldosterone

Aldosterone is the main hormonal regulator of ENaC-
dependent Na+ transport in the distal nephron [114, 162,
337]. Aldosterone binds to the intracellular MR, which upon
translocation to the cell nucleus induces or represses the
transcription of genes encoding proteins of the Na+-trans-
porting machinery (e.g. ENaC, Na-K-ATPase) and proteins
that regulate the activity of the Na+-transporting apparatus
[109, 110]. A variety of in vitro and in vivo experiments

Fig. 3 Schematic presentation of axial differences of apical ENaC
localisation and cytoplasmic Nedd4–2 abundances along the ASDN of
mice kept for 2 weeks on a diet with high (5%), standard (0.3%) or
low (0.01%) sodium content. Heights of bars indicate intensities of
apical ENaC and cytoplasmic Nedd4–2 stainings as assessed by
immunofluorescence on cryosections of mouse kidneys. Note the
inverse relationship of apical ENaC and Nedd4–2 abundance along
the ASDN and in response to altered dietary Na intake. Data refer to
[195]
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established that aldosterone specifically increases the syn-
thesis of αENaC in ASDN cells, whereas β- and γENaC are
constitutively expressed (reviewed in [114, 162]). Changes
in plasma aldosterone levels, either induced by dietary Na+

restriction or by exogenous application of the hormone,
induce a redistribution of ENaC subunits from intracellular
compartments to the apical plasma membrane [76, 197, 198,
214]. The activation and apical translocation of ENaC occurs
quite rapidly (within hours) and is probably relevant for the
renal adaptation to day-to-day variations of Na+ intake [104,
105, 198]. The observed apical recruitment of ENaC goes
along with the appearance of low molecular weight forms of
α- and γENaC subunits, which are thought to reflect
increased proteolytic cleavage and activation of the channel
[104, 214]. Recently, Frindt and co-workers performed cell
surface biotinylation experiments on rat kidneys perfused
with biotin in situ. These experiments showed that feeding a
low Na+ diet or the infusion of aldosterone for 1 week
increases the cell surface pool of ENaC subunits by two- to
fivefold. The experiments also indicated that in contrast to
βENaC, most of the α- and γENaC subunits at the cell
surface are proteolytically cleaved [107].

Based on previous studies in Xenopus laevis A6 cells, it
has been proposed that the induction of αENaC might be a
prerequisite for full assembly of ENaC in the ER and its
subsequent delivery to the cell surface [217]. However, in
the kidney in vivo, the induction of αENaC protein by
aldosterone is rather small [214] and, at least in the CCD,
not necessarily followed by an apical re-distribution of all
three ENaC subunits [198]. Moreover, apical targeting of
ENaC apparently occurs even without previous αENaC
induction [238]. Thus, the induction of αENaC alone
cannot account for the apical targeting of ENaC. Other
co-stimulatory factors are needed.

The Sgk1 kinase (serum- and glucocorticoid-regulated
kinase), a member of the PKB/Akt family of serine/
threonine kinases, has been identified as one of the
aldosterone-induced regulatory proteins that impacts on
ENaC cell surface expression and activity [182, 187, 201,
249]. Sgk1 is rapidly induced by aldosterone in ASDN
model epithelia in vitro as well as in the kidney in vivo [57,
198, 232, 306]. Likewise, prolonged dietary Na+ restriction
increases Sgk1 mRNA expression in the kidney [136]. Co-
expression of ENaC with Sgk1 in heterologous expression
systems profoundly increases ENaC-mediated Na+ currents
probably by an accelerated insertion rate of ENaC into
the plasma membrane [5]. The channel open probability
might be increased as well [344], perhaps by direct
phosphorylation of a specific serine residue in the C
terminus of the channel’s α-subunit [74]. The ubiquitin-
ligase Nedd4–2 has been proposed to mediate at least some
of the effects of Sgk1 on ENaC cell surface abundance. In
heterologous expression systems, Sgk1-dependent phos-

phorylation of Nedd4–2 inhibits Nedd4–2 interaction with a
proline-rich (PY)-motif in the C terminus of ENaC sub-
units and thereby presumably prevents Nedd4–2-induced
ubiquitylation with subsequent endocytosis and degradation
of ENaC subunits [70, 265, 311]. In mouse mpkCCD cells
in vitro as well as in rat CCD in vivo aldosterone rapidly
induces the phosphorylation of Nedd4–2 that precedes the
activation and increased cell surface abundance of ENaC
[101]. However, the observed effects are rather small and
Nedd4–2 is significantly phosphorylated even in the absence
of any aldosterone and aldosterone-induced Sgk1 [101]
suggesting that other (possibly aldosterone-independent)
kinases may contribute to the control of Nedd4–2 phosphor-
ylation and activity. In fact, other kinases such as PKB/Akt
and PKA were reported to phosphorylate Nedd4–2 as well
[186, 312].

In addition to the rapid effects of aldosterone on Nedd4–
2 phosphorylation, aldosterone may have chronic effects on
Nedd4–2 protein levels, which might be relevant for the
long-term adaptation of the ASDN to altered dietary Na+

intake. In the mpkCCD cell line, prolonged aldosterone
treatment was shown to reduce Nedd4–2 protein abun-
dance. The decrease became clearly apparent at day2 of
aldosterone treatment and was most obvious at day 6 [195].
Likewise, in mice, dietary Na+ restriction for 2 weeks
reduced Nedd4–2 protein abundance (as assessed by
immunohistochemical detection) along the ASDN [195].
Taken together, the data suggest a model in which the rapid
effects of aldosterone on ENaC are mediated by altered
Nedd4–2 phosphorylation whilst the more chronic effects
(days) are related to changes in the abundance of Nedd4–2
protein.

Regulation of ENaC by angiotensin II

Extracellular volume depletion activates the renin–angio-
tensin–aldosterone system which in turn increases renal
Na+ and fluid retention to restore extracellular volume
homeostasis and to maintain arterial blood pressure.
Independent from its effect on adrenal aldosterone secre-
tion, angiotensin II (AngII) directly stimulates amiloride-
sensitive Na+ re-absorption in late distal tubules [351] and
in collecting ducts [251]. The effect is most pronounced
when AngII is applied to the luminal side of the tubules and
can be blocked by the AT(1) receptor inhibitors candesartan
or losartan [251]. Consistent with a direct effect of AngII
on ENaC-mediated Na+ re-absorption, AngII binding sites
and AT1 receptors were revealed by biochemical [227] and
immunochemical [129] methods in distal tubules and the
collecting duct. The demonstration of renin expression in
the CNT and the finding that its expression is regulated by
dietary Na+ intake prompted Rohrwasser et al. to propose a
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paracine tubular renin–angiotensin system that may regu-
late ENaC function from the tubular lumen [278]. The rapid
effects of AngII are likely related to the regulation of
already pre-existing channels. However, there is increasing
evidence that AngII may also impact on the synthesis rate
of ENaC channels and that these effects are also indepen-
dent from aldosterone. AT1 receptor knockout mice express
less αENaC despite elevated plasma aldosterone levels
[42]. Likewise, in NaCl-restricted rats, 2 days of AT1
receptor inhibition reduced αENaC mRNA and protein
expression. This effect was independent from an
aldosterone-dependent activation of the mineralocorticoid
receptor. The reduced expression of αENaC was accompa-
nied by a lowered density of ENaC in the apical membrane
of the renal collecting system. Conversely, long-term
systemic infusion of AngII induced αENaC expression in
rat kidney cortex [23]. Moreover, AT1 receptor-dependent
activation of ENaC was linked to the inappropriate renal
Na+ retention in diseases such as type 2 diabetes and
obesity [205]. Taken together, the studies suggest that extra-
cellular volume contraction, as it occurs during dietary Na+

restriction, stimulates ENaC by both increased plasma
aldosterone levels and enhanced AngII levels in plasma
and urine.

Regulation of ENaC by vasopressin

Anti-diuretic hormone (ADH, vasopressin) enhances Na+

absorption in Xenopus laevis kidney A6 cells [335] and in
isolated rat cortical collecting ducts [298]. The effect of
vasopressin is synergistic to that of aldosterone but occurs
much more rapid [298, 335]. Vasopressin acts by binding to
V2 receptors with subsequent activation of the adenylate
cyclase. Its effect on Na+ transport is mimicked by
membrane permeable cAMP analogues, phosphodiesterase
inhibition with 3-isobutyl-l-methylxanthine or adenylate
cyclase activation with forskolin. In the kidney, V2 receptors
and vasopressin-induced cAMP generation [223] were found
in both the collecting duct and the CNT of rat [96, 228],
mouse [228] and human [228], suggesting that in these
species, ENaC regulation by vasopressin may occur in both
segments of the ASDN. Chronic stimulation of the V2
receptor was reported to reduce Na+ excretion in healthy
humans further indicating that the cAMP pathway of ENaC
regulation is relevant for Na+ homeostasis in humans [16].

Functional studies on Xenopus laevis kidney A6 cells
demonstrated that the acute activation of Na+ channels by
vasopressin depends on intact microtubules [336] and Golgi
apparatus [168] suggesting that the vasopressin-induced
activation of ENaC is caused by enhanced trafficking of
channels from an intra-cellular pool to the apical plasma
membrane. Using a combination of short circuit current

(ISC) measurements and antibody detection of epitope
tagged ENaC, Morris and co-workers provided quantitative
evidence that in MDCK cells stably expressing ENaC the
increase in ISC produced by cAMP can be accounted for
entirely by a proportional increase in the surface density of
ENaC [225]. Cell surface biotinylation experiments in
mpkCCD cells with endogenous ENaC expression further
confirmed the model that the acute ENaC stimulation by
cAMP is mediated by exocytic insertion from a recycling
channel pool [44]. However, in spite of all these convincing
in vitro data, direct evidence that vasopressin increases the
cell surface abundance of ENaC in the ASDN in vivo is
still lacking.

The rapid effects of vasopressin on ENaC need to be
distinguished from the more chronic long-term effects of the
hormone that involve transcriptional effects on ENaC and
ENaC regulatory proteins. Long-term treatment with vaso-
pressin or its synthetic analogue 1-desamino-8-D-arginine
vasopressin (DDAVP) markedly increases the expression of
β- and γENaC sub-units in a rat cortical CCD cell line [79]
and in rat kidneys [86, 236]. This effect was accompanied by
a significant increase of Na+ transport in the cultured CCD
cells [79] as well as in the isolated perfused collecting ducts
[79]. However, under this long-term stimulation, the induced
Na+ transport activity was probably not related to an
enhanced trafficking of channel molecules to the cell surface.
Immunohistochemistry revealed that the induction of β- and
γENaC led to an intracellular accumulation of the channel
subunits in CNT and CD of the DDAVP-treated rats, but did
not go along with any detectable change in the cell surface
abundance of α-, β- or γENaC [292].

Using serial analysis of gene expression, Firsov and
colleagues aimed at identifying mRNAs that are rapidly up-
or downregulated by vasopressin and could mediate transcrip-
tional effects on ENaC activity. In mpkCCD collecting duct
cells, treated for 4 h with vasopressin, 48 genes were induced
whilst 11 genes were repressed [277]. Subsequent functional
analysis indicated that two of the upregulated transcripts
(vasopressin-induced transcript 32 and the regulator of G
protein signalling 2) are actually involved in negative
feedback regulation of V2 receptor signalling that possibly
limits ENaC activation under chronic vasopressin stimulation
[237, 371]. Another induced transcript, the ubiquitin-specific
protease 10 (Usp10), was recently shown to increase the cell
surface expression of ENaC, when co-expressed with the
channel in HEK-293 cells [41] (see below).

Regulation of ENaC by insulin/IGF-1

Insulin stimulates renal Na+ retention and K+ excretion in
man and in laboratory animals [71]. A large proportion of
the response can be reversed by the ENaC blocker benzamil
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[314, 325]. Insulin and insulin-like growth factor-1 receptors
(both can bind insulin and insulin-like growth factor I (IGF-1),
thoughwith different affinities) have been demonstrated along
the mammalian renal tubular system including the cortical
collecting system [71, 124] indicating that both hormones
may regulate ENaC in renal epithelia. In fact, in amphibian
model systems (i.e. toad urinary bladder, Xenopus laevis A6
cells), insulin and IGF-1 profoundly activate amiloride-
sensitive Na+ transport by activation of basolateral and/or
luminal receptors [32–34, 216, 307, 369]. Both hormones do
also activate ENaC in mammalian CCD cell lines [116, 317],
but the responsiveness of the mammalian CCD cells appear
to be higher for IGF-1 than for insulin [116].

Experiments in Xenopus laevis A6 cells, mouse CCD
cells and isolated collecting ducts indicated that insulin and/
or IGF-1 stimulate ENaC activity by increasing the cell
surface density of ENaC [18, 34, 35] and/or by increasing
the open probability of Na+ channels already present in the
apical plasma membrane [213, 317]. Part of these effects
might be related to direct phosphorylation of channel
subunits [307, 369]. Although insulin and IGF-1 signalling
has been studied in various target tissues [85, 88], only little
is known about the insulin-signalling pathway in the ASDN
in vivo. Data from in vitro assays, amphibian and
mammalian renal cell-lines indicated that insulin and IGF-
1 stimulate Na+ transport via a signalling cascade that
involves sequential phosphorylation and activation of
phosphoinositide 3-kinase (PI3K), 3-phosphoinositide-
dependent protein kinase (PDK1) and finally, Sgk1 [182,
187, 201, 249]. IGF-1 was also reported to stimulate Sgk1
expression at the mRNA and protein level [116]. This
suggests Sgk1 as a central point of convergence for both the
aldosterone (induction of Sgk1) and the insulin/IGF-1
(induction and activation of Sgk1) signalling pathways
[182, 187, 201, 249]. Support for this hypothesis comes
from experiments in A6 cells in which pharmacological
inhibition of PI3K blunts hormone-induced Sgk1 phosphor-
ylation and insulin- as well as aldosterone-stimulated Na+

transport [348]. The rather mild renal salt wasting phenotype
of Sgk1 deficient-mice [358], however, points to a certain
degree of redundancy in the Sgk1-dependent signalling
pathway. In this context, the putative roles of closely related
PKB/Akt kinases warrant further attention [201]. These
insulin-dependent kinases phosphorylate similar phosphor-
ylation sites as Sgk1 [172]. Recent data in Fisher rat thyroid
cells with heterologous expression of ENaC indicated that
PKB isoforms could also mediate the effects of insulin on
ENaC [186]. However, data from the Xenopus laevis oocyte
expression system and Xenopus laevis kidney A6 cells did
not support this concept [11]. Perhaps, cell type specific
differences may explain the discrepant results. Therefore,
additional experiments in mammalian renal epithelia are
needed to further address this issue.

Regulation of ENaC by insulin and IGF-1 may have
important clinical relevance. For example, it has been
proposed that the chronic hyperinsulinaemia in type-2
diabetes inappropriately stimulates ENaC-dependent renal
Na+ re-absorption and hence may contribute to the frequent
association of diabetes and hypertension in metabolic
syndrome [18]. Consistent with this hypothesis, enhanced
renal expression of Sgk1 and other ENaC-activating
kinases have been found in kidneys of diabetic mice [178]
and humans [181]. Moreover, Sgk1-deficent mice appear to
be protected from the development of salt-sensitive hyper-
tension in two models of hyperinsulinaemia [138, 139].
However, the potential role of hyperinsulinaemic activation
of ENaC should not be over-estimated. Although changes
in ENaC protein expression have been reported in kidneys
of diabetic rodents [28, 29, 87, 205, 272–275], the
functional significance of these findings is uncertain and a
direct demonstration of insulin-induced ENaC hyperactivity
in CNT and CD of diabetic kidneys is lacking so far. In fact,
the observation that chronic hyperinsulinaemia in patients
with insulinoma is not associated with a detectable
elevation of blood pressure [293, 339] argues against a
direct role of hyperinsulinaemia in hypertension. The
observation that the insulin receptor is actually down-
regulated in kidneys of hyperinsulinaemic rats [324] and
that kidney-specific deletion of the insulin receptor
increases renal Na+ retention and blood pressure [326]
stress that the pathogenesis of arterial hypertension in type-
2 diabetes is complex.

IGF-1 has also been linked to renal Na+ retention. IGF-1
production is under strict control of growth hormone (GH).
GH infusion to healthy humans increases renal IGF-1
production and stimulates renal Na+ and fluid transport
[125, 133, 222] which has been used to explain that patients
with acromegaly (GH over-production) frequently develop
arterial hypertension [36]. Recently, Kamenicky and co-
workers studied acromegalic GC rats to analyse the
molecular mechanism responsible for renal Na+ retention
in these rats. Despite suppressed plasma aldosterone levels,
the GC rats revealed an increased amiloride-sensitive
natriuresis, an enhanced Na-K-ATPase activity in collecting
ducts and an altered proteolytic cleavage of ENaC sub-
units, suggesting that enhanced ENaC-mediated Na+ trans-
port in the ASDN contributes to the pathogenesis of Na+

retention in acromegaly [158]. Interestingly, genetic analy-
sis suggested also a strong linkage between the IGF-1 gene
locus and systolic blood pressure [231]. The observation
that patients with nephrotic syndrome do also have
excessive amounts of IGF-1 in their urine led to the
speculation that urinary IGF-1 may activate ENaC-
dependent Na+ transport in the kidney and hence explain
the Na+ and fluid retention in the disease [350]. In fact,
increased Na+ re-absorption in the renal collecting system is
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a hallmark of nephrotic syndrome [72, 165, 166] and
appears to be initiated independent of increased plasma
aldosterone [69, 201].

Regulation of ENaC by proteases

Recent evidence indicates that proteolytic processing of
ENaC along its biosynthetic pathway and at the cell surface
is an important mechanism that contributes to ENaC
activation in a complex manner. Several excellent reviews
exist on this rapidly expanding field of research [169, 254,
281, 283]. Within the scope of the present review, we can
only highlight some aspects of this interesting feature of
ENaC regulation.

The observation that the protease inhibitor aprotinin
induced a decrease in short-circuit current in the toad
bladder [243] was probably the first indication for an
activating effect of proteases on ENaC. Subsequently,
CAPs have been identified using the Xenopus laevis oocyte
expression system and were shown to activate ENaC when
co-expressed with the channel [331, 332, 344]. Electro-
physiological studies in the Xenopus laevis oocyte expres-
sion system clearly demonstrated a large and rapid
stimulatory effect of extracellularly applied trypsin and
chymotrypsin on ENaC activity [59]. Membrane-bound
and/or secreted proteases such as CAPs are likely to exist in
ENaC expressing epithelia and are thought to act on the
extra-cellular domain of the channel. One possible candi-
date for an endogenous ENaC-activating protease is
prostasin, the mammalian homologue of Xenopus CAP1
[343]. Prostasin is an attractive candidate since it is
expressed in the kidney and in cultured collecting duct
cells [2, 241] and its expression seems to be regulated by
aldosterone [233], the main hormonal regulator of ENaC.
However, prostasin has a pH optimum of about 9 and is
practically inactive at physiological urine pH [365].
Moreover, although the serine protease inhibitor aprotinin
abolishes prostasin-induced activation of ENaC [2], muta-
tions within the catalytic triad of prostasin (mCAP1) do not
prevent its stimulatory effect on ENaC currents in co-
expression experiments [9, 43]. In contrast, mutating the
catalytic triad of the related proteases mCAP2 and mCAP3
abolishes their stimulatory effect on ENaC [9]. These
findings suggest that prostasin may act indirectly by
altering the activity of downstream proteases. Thus, more
than one protease is probably involved in ENaC regulation.
Another candidate is tissue kallikrein which recently has
been reported to be involved in ENaC processing in the
kidney [252]. Tissue kallikrein is synthesised in large
amounts in the CNT [17, 98, 262] and released into the
urine [190, 212] from where it could act on ENaC either
directly or indirectly by activating other proteases [252].

Remarkably, kallikrein synthesis in the CNT and its
subsequent release into the urine are stimulated by
aldosterone [211], dietary Na+ restriction [242, 300] and
in particular dietary K+ loading [122, 341] indicating that
kallikrein could be involved in ENaC regulation under
these conditions. Interestingly, kallikrein failed to activate
ENaC heterologously expressed in Xenopus laevis oocytes
[59]. Moreover, renal ENaC cleavage is preserved in
kallikrein-deficient mice, and these animals do not develop
a salt-losing phenotype even when stressed by dietary Na+

restriction [252]. However, these findings do not rule out a
functional role of kallikrein in ENaC regulation, but support
the concept that ENaC activation by proteases is a highly
redundant process. Indeed, in analogy to known kinase/
phosphatase networks, the channel-activating proteases
may be part of a complex and highly regulated protease
cascade with tissue-specific properties [281, 283]. The
recent discovery of endogenous CAP inhibitors adds to the
complexity of this regulatory pathway [346].

ENaC function appears to be regulated also by intra-
cellular proteases. Proteolytic cleavage by furin [323] or
other Golgi-associated convertases are thought to be
important for ENaC maturation in the biosynthetic pathway
before the channel reaches the plasma membrane [128].
Western blot analysis of a range of ENaC expressing cells
and tissues has revealed the presence of distinct ENaC
cleavage products in particular of the α- and γ-subunit
[283]. The channel is thought to be in its mature and active
form in its cleaved state, but there is evidence for the
presence of both cleaved and non-cleaved channels in the
plasma membrane [141].

At present, the precise molecular mechanism of proteo-
lytic channel activation remains unclear. Cleavage occurs at
specific sites within the extra-cellular loops of the α- and γ-
sub-units but not the β-subunit [3, 75, 142, 254, 283].
Cleavage at these sites probably results in the release of
inhibitory peptides from the extra-cellular loops of α- and
γENaC [43, 53, 55]. Cleavage sites for furin [140],
prostasin [43], plasmin [248] and elastase [3] have been
identified and were studied in heterologous expression
systems. Mutational analysis indicated that similar stimula-
tory effects can be achieved by cleaving the channel at
different but closely adjacent sites within a functionally
important region. In particular, cleavage of the γ-subunit
appears to play a pivotal role in proteolytic ENaC activation
[3, 54, 75, 127]. At least two functionally distinct ENaC
populations are present in the plasma membrane: active
channels with a somewhat variable but rather high open
probability (PO) of about 0.5 [114] and near-silent channels
with an exceedingly low PO of less than 0.05 [99, 162,
280]. Proteolytic cleavage may cause a conformational
change of the channel favouring its open state. In fact,
extracellularly applied trypsin appears to have a dual
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function on ENaC open probability. It activates near-silent
channels [48, 49, 75] and stimulates the gating of channels
that are already active in the membrane [75]. Relieving Na+

self-inhibition may also add to the stimulatory effect of
proteases on ENaC [31, 60, 301]. In addition, indirect
mechanisms involving the downstream activation of G-
proteins have been reported to contribute to ENaC
activation by trypsin [19].

Most of our knowledge about ENaC activation by extra-
cellular proteases stems from studies in model system like
Xenopus laevis oocytes and cultured cells including renal
epithelial cell lines. Nevertheless, the consistent observation
of low molecular weight forms of γENaC and αENaC in
the kidneys of rodents with elevated plasma aldosterone
levels (e.g. [89, 104, 170, 214] indicated that proteolytic
cleavage of ENaC occurs in native tissue. Importantly, the
appearance of cleaved products correlated with increasing
ENaC currents [89, 107]. Moreover, functional evidence for
ENaC activation by extracellular proteases in renal tubules
is emerging. In trypsin-treated isolated perfused rabbit,
CCDs net Na+ absorption significantly exceeded that
measured in control tubules by about 70% [224]. Moreover,
application of kallikrein elicits an amiloride-sensitive
increase in the intracellular Na+ concentration in principal
cells of isolated and micro-perfused mouse CCDs [252].
Finally, whole-cell patch clamp recordings demonstrated
that application of trypsin can stimulate the amiloride-
sensitive current in principal cells of micro-dissected split
open rat [107] and mouse [235] distal tubules. Collectively,
these studies provide proof of principle that extra-cellular
serine proteases can stimulate ENaC activity in native renal
tissue. Functionally, the process of ENaC activation by
extracellular proteases may provide a mechanism for the
fast adaptation of ENaC function to altered functional
requirements. Thus, a rapid activation of the so-called near-
silent channels [49] already present in the luminal membrane
may precede other regulatorymechanism like the biosynthesis
and insertion of additional pre-existing or newly synthesised
channels in the apical plasma membrane. The predominant
apical localisation of ENaC in the (early) CNT makes the
CNT particular susceptible for this type of regulation.

In addition to their physiological function, proteases may
also be involved in the pathogenesis of renal Na+ retention
in renal diseases. Patients with crescentic glomerulonephri-
tis have significantly higher urinary concentrations of
neutrophil elastase, than healthy controls [240]. Likewise,
plasminogen appears in the urine of patients with nephrotic
syndrome [182, 333]. After conversion to plasmin by
tubular urokinase-type plasminogen activator [253], the
generated plasmin may contribute to ENaC activation [248,
320]. Indeed, the urine from puromycin aminonucleoside
(PAN)-nephrotic rats has recently been shown to contain
plasmin and to activate ENaC [320]. In contrast, urine from

control rats or heat-inactivated urine from PAN-nephrotic
rats had no stimulatory effect [320]. Whether the increased
proteolytic cleavage of ENaC contributes to renal Na+

retention in nephrotic syndrome warrants future analysis.
The concentration of proteases may also be increased in the
urine of diabetic patients [321] which is supported by a
recent report that plasmin is increased in the urine of obese,
diabetic and hypertensive ZSF1 rats [248]. Thus, it is
tempting to speculate that an inappropriate ENaC activation
by elevated levels of urinary proteases may contribute to
arterial hypertension associated with diabetes mellitus and
metabolic syndrome. Moreover, renal disease may not only
affect the activity of proteases but may also shift the balance
between endogenous proteases and protease inhibitors. In
this context, it is of interest that serpinh1, a serine protease
inhibitor, has recently been identified in an integrated
genomic–transcriptomic approach as a hypertension-related
gene [362]. Thus, the pathophysiological aspects of
proteolytic ENaC regulation await further investigation
and the identification of relevant proteases and protease
inhibitors along the nephron and in urine samples in
various disease states. In the future, specific protease
inhibitors may become valuable therapeutic tools to
prevent excessive ENaC activation under certain patho-
physiological conditions. Moreover, the relative importance
of intra- versus extracellular proteolytic processing of
ENaC remains to be determined and may vary in different
tissues and nephron segments under different (patho-)
physiological conditions.

Regulation of ENaC by kinases

ENaC phosphorylation by kinases has long been thought to
contribute to ENaC regulation [114]. In cultured renal
epithelial cells, aldosterone and insulin have been shown to
increase the phosphorylation of the COOH terminal ends of
the α-, β- and γ-subunits of ENaC [307, 369]. Moreover,
the COOH termini of ENaC subunits were found to be
phosphorylated by cytosolic fractions derived from rat
colon [58]. This phosphorylation is thought to involve at
least three different types of kinases, including the ERK
and the casein kinase 2 (CK-2) [303, 304].

Since these initial observations, several kinases have
been identified to control ENaC function either by direct
phosphorylation of ENaC subunits or by phosphorylation
of proteins interacting and regulating ENaC. Perhaps the
best studied kinase in this context is the aldosterone-
induced kinase Sgk1 (see above) which stimulates cell
surface activity and density of ENaC via phosphorylation of
αENaC (increasing Po) [74] and Nedd4–2 (increasing N)
[187, 201, 249], respectively. Moreover, Sgk1 may stimu-
late ENaC function via direct inhibition of the Dot1a–Af9
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repressor complex that controls the transcription of αENaC
and possibly other aldosterone-induced genes [368]. The in
vivo significance of Sgk1 for ENaC regulation has been
confirmed in several studies on two different Sgk1-deficient
mouse models which both exhibit a salt-losing phenotype
[95, 358]. However, only one of the studies attributed the salt
losing phenotype to a reduced ENaC activity in the CCD
[358], whilst the other study did not find any effect on the
overall channel activity although the proteolytic cleavage of
γENaC was diminished [95]. In addition to Sgk1, two Sgk1
paralogues (Sgk2 and Sgk3) have been identified [172].
These kinases have the same consensus motif (RXRXX(S/T))
for phosphorylation as Sgk1 [172] and both profoundly
stimulate amiloride-sensitive Na+ currents when co-expressed
with ENaC in heterologous expression systems [103].
However, Sgk2 and Sgk3 are not regulated by corticosteroids
[172] and Sgk3-deficient mice do not have renal salt wasting
indicating that at least Sgk3 is not involved in ENaC
regulation in the kidney [119, 218].

Other kinases thought to interfere with the Nedd4–2/ENaC
pathway via direct phosphorylation of ENaC sub-units are
ERK [303], CK-2 [304] and the G-protein-coupled receptor
kinase GRK2 [78]. Phosphorylation of the COOH-termini of
β- and γENaC by ERK and CK-2 appears to reduce ENaC
cell surface density and activity by increasing the affinity of
Nedd4–2 to ENaC [303, 304]. Notably, the activation of
ERK can be blocked by the glucocorticoid-induced leucine
zipper protein (GILZ) [26, 315, 316]. GILZ is rapidly
induced by aldosterone in CCD cells in vitro [277]
suggesting that aldosterone may regulate the Nedd4–2/ENaC
interaction at two different levels: (a) by phosphorylation of
Nedd4–2 (via Sgk1) and (b) by inhibition of ERK-dependent
ENaC phosphorylation and subsequent Nedd4–2 binding
(via GILZ). In contrast to the action of ERK and CK-2, the
phosphorylation of the COOH-terminal tail of βENaC by
GRK2 appears to enhance the channel activity by disruption
of the Nedd4–2/ENaC interaction [78]. The observed
stimulatory action of GRK2 on ENaC was proposed to
explain the reported association of GRK2 over-activity with
hypertension [78]. The cAMP-activated PKA is another
kinase that may directly phosphorylate ENaC [307]. Al-
though definitive proof for this has not yet emerged, Yang
and co-workers recently showed that two putative ERK
consensus motifs in the C termini of rat β- and γENaC are
critically involved in the regulatory pathway, by which
cAMP activates the channel [364]. PKA was also suggested
to increase both the phosphorylation of Sgk1 [250] and
Nedd4–2 [312] further supporting the idea that the aldoste-
rone and vasopressin signalling pathway converge in ENaC
regulation. Moreover, vasopressin and cAMP may affect
ENaC via the recently identified exchange protein directly
activated by cAMP (Epac) pathway [38]. Epac1 and Epac2
are highly abundant in the ASDN [191].

Several other kinases have been suggested to regulate
ENaC function independent from direct ENaC phosphory-
lation. One of these kinases is the with-no-lysine (K)-kinase
WNK1. WNK1 is highly expressed in the kidney and is
implicated in the pathogenesis of Gordon’s syndrome, a
severe form of arterial hypertension with hyperkalemia,
which is thought to be related to a hyperactivity of the
thiazide-sensitive NCC in the DCT [152]. Recent studies
suggested that WNK1 may also activate Sgk1 by a
phosphatidylinositol 3-kinase-dependent non-catalytic
mechanism, which finally increases ENaC activity and
possibly contributes to the hypertensive phenotype [359,
360]. In addition, IκB kinase-β [185], the phosphatidyli-
nositol 3-kinase [317] and protein kinase Cδ [219] were
recently shown to activate ENaC. However, kinases may
not only increase but also inhibit ENaC function. Recent
evidence suggests that the metabolic sensor AMP-activated
kinase may limit ENaC activity under metabolic stress
when the intra-cellular ATP/AMP ratio is shifted to AMP
[25, 52, 357] and may prevent cellular Na+ loading when
ATP supply to the Na-K-ATPase is limited. Pharmacolog-
ical 5′AMP-activated protein kinase (AMPK) activation or
over-expression of an activating AMPK mutant in a mouse
collecting duct cell line inhibited amiloride-sensitive short
circuit currents [52]. Additional experiments in heterolo-
gous expression systems indicated that the AMPK activa-
tion promotes Nedd4–2-dependent ENaC retrieval from the
plasma membrane by mechanisms that are independent
from Sgk1, PKA or ERK activation and may be caused by
ENaC phosphorylation [25].

Thus, a variety of kinases involved in regulation of
ENaC have been identified mainly in in vitro systems. The
significance of these kinases for regulation of the channel in
the kidney in vivo warrants further investigation and it
remains to be established whether axial heterogeneity of
their expression and activity may contribute to a differential
regulation of ENaC along the nephron. To understand this,
it will be important to determine the kinases and phospha-
tases involved in ENaC regulation in the different nephron
segments. It would not be surprising to find CNT specific
mechanisms for ENaC regulation by phosphorylation and
dephosphorylation processes which may explain the differ-
ent regulation of ENaC activity in this nephron segment
compared to the collecting duct.

Regulation of ENaC function and trafficking
by associated proteins

It is an emerging paradigm that membrane transport
proteins do not function in isolation but interact with
associated regulatory proteins which modulate channel
function and trafficking (Fig. 4). Sphingolipid- and
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cholesterol-rich micro-domains, so called lipid rafts [309],
may serve as assembly platforms to facilitate the trafficking
of ENaC and its functional association with regulatory
proteins, e.g. with Nedd4 (see below) which may also be
localised in lipid rafts [255]. Indeed, there is some evidence
that in A6 renal epithelial cells ENaC is present in lipid
rafts [131, 132] and that ENaC function is modified by its
lipid environment [13, 349] and by removing cholesterol
from the plasma membrane [15, 354]. However, at present,
the localisation of ENaC within lipid rafts and the role of
the lipid environment for ENaC function and regulation are
still a matter of debate [126]. In this context, it is interesting
to note that phosphatidylinositides have been reported to
play an important role in the regulation of ENaC (for recent
review, see [260]). Both phosphatidylinositol 4,5-bisphos-
phate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate
(PIP3) are thought to be permissive for ENaC activity, and
increased levels of PIP2 or PIP3 in the membrane are
associated with an increase in ENaC activity [180, 256,

258, 329, 366]. Recently, it has been reported that resting
levels of PIP2 and PIP3 in the apical membrane of
collecting duct cells affect basal ENaC activity [261, 317].
Thus, a wide range of signalling pathways influencing PIP2
or PIP3 levels may contribute to ENaC regulation. Attempts
to identify putative PIP2 and PIP3 binding sites within the
β- and γ-subunit of ENaC have yielded interesting but
controversial results [180, 256, 258]. Moreover, it is not yet
clear whether PIP2 and PIP3 enhance the open probability
of ENaC by directly binding to the channel or by binding to
closely associated proteins [260].

There is good evidence that in the kidney, in vivo long-
term regulation of ENaC activity is mainly achieved by
changes in the cell surface abundance of the channel [47,
280, 313]. The number of ENaC channels in the luminal
membrane is the net result of synthesis and exocytotic
delivery to the cell surface and of the endocytotic retrieval
of channels from the luminal membrane. Endocytosed
proteins either recycle back via recycling endosomes or
will become degraded via lysosomal or proteasomal path-
ways. The cellular and molecular mechanisms that control
these key steps of ENaC trafficking begin to be elucidated.
One of the best studied ENaC regulatory proteins is the
ubiquitin-protein ligase Nedd4–2. The C-termini of all three
ENaC subunits (αβγ) contain a proline-rich PPXY (PY)
motif, which is believed to be important for the interaction
with Nedd4–2, promoting the ubiquitylation, endocytosis
and proteasomal degradation of the channel [318]. Studies
in Xenopus laevis oocytes and polarised MDCK renal
epithelial cells have demonstrated that Liddle’s syndrome
mutations and/or deletions of the PY motif in β- or γENaC
reduce the endocytic retrieval of ENaC from the membrane
[1, 118, 204] probably by interfering with Nedd4–2-
dependent ubiquitylation and subsequent clathrin-dependent
endocytosis [204]. This results in an increase in the number
of ENaC channels in the membrane. In addition, Liddle’s
syndrome mutations have been shown to increase channel
open probability [7, 99], to enhance proteolytic channel
cleavage [171] and to reduce Na+ feedback inhibition of
ENaC expressed in Xenopus laevis oocytes [161]. Thus, the
functional consequences of an altered interaction between
Nedd4–2 and ENaC in Liddle’s syndrome are not limited to
an inhibition of Nedd4–2-mediated channel retrieval from
the apical plasma membrane. This indicates that this
interaction is highly relevant for many aspects of ENaC
regulation. Therefore, it is not surprising that other regula-
tory mechanisms affect ENaC activity by modifying the
ability of Nedd4–2 to functionally interact with ENaC. As
described above, phosphorylation of Nedd4–2 by Sgk1 [70,
311] or PKA [25, 312] blocks its ability to ubiquitylate
ENaC and increases apical membrane channel density by
reducing its endocytosis. Members of 14-3-3 protein family
are thought to participate in this regulatory process through

Fig. 4 Molecular mechanisms of ENaC regulation. For simplicity,
only one channel subunit is shown. Putative phosphorylation and
proteolytic cleavage sites in the three channel subunits (αβγ) are
indicated with amino acid positions corresponding to the rat sequence.
Proteolytic processing occurs at two putative furin cleavage sites in
αENaC and at one furin site and one prostasin site (γK181) in
γENaC. In the γ-subunit of human and mouse ENaC, additional
elastase and plasmin cleavage sites have recently been identified and
are localised distal to the prostasin cleavage site (not shown).
Proteolytic cleavage is thought to result in the release of inhibitory
peptide domains. The C-terminal PY motif (PPXY) is mutated in
patients with Liddle’s syndrome, a severe form of salt-sensitive arterial
hypertension. The mutation prevents the binding of Nedd4–2 to the
PY motif and subsequent channel ubiquitylation, retrieval and
proteasomal degradation. Channel phosphorylation at positions
βT613 and γT623 is thought to reduce the ability of the channel to
interact with Nedd4–2 thereby reducing Nedd4–2-mediated channel
retrieval. The phosphorylation site αS621 has been shown to be
critical for rapid ENaC activation by recombinant SGK1 in outside-
out patches. The differential role of the various phosphorylation sites
remains to be determined. Additional regulatory proteins are likely to
be associated with ENaC and may be co-assembled in so called lipid
rafts. However, the association of ENaC with lipid rafts is still a matter
of debate
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direct interaction with the phosphorylated form of Nedd4–2.
By maintaining Nedd4–2 in an inactive phosphorylated
state, 14-3-3 proteins appear to modulate the cell-surface
density of ENaC cooperatively with Sgk1 kinase [24, 144,
229]. Aldosterone selectively increases the expression of
particular 14-3-3 isoforms [192], and association of these
isoforms as heterodimers with phospho-Nedd4–2 appears to
be required for Na+ transport stimulation [192]. N4WBP5A
is another potential ENaC regulatory protein that stimulates
ENaC currents and surface expression probably by binding
to the WW domains of Nedd4–2 thereby preventing their
interaction with the PY motifs of ENaC [175]. Deubiquity-
lating enzymes (DUBs) represent an additional regulatory
mechanism to counteract Nedd4–2-mediated ENaC inhibi-
tion [338]. Indeed, it has been shown that an aldosterone
induced ubiquitin-specific protease, Usp2-45, deubiquity-
lates ENaC and stimulates ENaC-mediated Na+ transport in
cultured mpkCCD cells and in Xenopus laevis oocytes [91].
A recent report demonstrated that Usp2-45 deubiquitylation
of ENaC not only prevents ENaC retrieval from the plasma
membrane but also promotes proteolytic channel activation
[289]. Interestingly, a vasopressin-inducible ubiquitin-
specific protease 10 was reported to increase ENaC cell
surface expression not by deubiquitylation of ENaC but by
deubiquitylating and stabilising sorting nexin 3, a protein
thought to promote ENaC trafficking to the plasma
membrane [41]. Recently, Butterworth and co-workers used
a chemical probe approach to identify deubiquitinylating
enzymes active in the cortical collecting duct cell line
mpkCCD [46]. One of the isolated DUBs was identified as
the ubiquitin C-terminal hydrolase (UCH) isoform L3
(UCH-L3) that turned out to be a predominant DUB in
endosomal compartments of the CCD cells. Pharmacological
inhibition and siRNA-mediated knockdown of UCH-L3
increased ENaC ubiquitylation and reduced the activity
and cell surface density of the channel at the plasma
membrane [46]. Whether UCH-L3 is constitutively active or
whether its function is regulated remains to be elucidated.
That ubiquitylation of ENaC is relevant for its function in
vivo was evidenced by the recent development of a Nedd4–
2-deficient mouse model. Consistent with the proposed role
of Nedd4–2, Nedd4–2-deficient mice show a salt-sensitive
arterial hypertension that can be effectively treated with
amiloride [305]. Likewise, genetic analysis provided some
evidence that Nedd4–2 variants and polymorphisms are
associated with salt sensitivity of blood pressure variations
in humans [10, 66, 93]. Moreover, one naturally occurring
human Nedd4–2 polymorphism was characterised in the
oocyte expression system and found to have reduced ENaC
inhibitory effects probably due to enhanced phosphorylation
[102].

The Nedd4–2/ubiquitylation pathway is an important but
not the only mechanism by which ENaC activity is

regulated. That other mechanisms interfere with the
regulation of ENaC is already indicated by the observation
that the hormonal stimulation of ENaC remains preserved
when the interaction between ENaC and Nedd4–2 is
compromised. In mpkCCD cells, channels with mutated
PY motifs in both β- and γENaC subunits still respond to
aldosterone and vasopressin [12]. Likewise, in a transgenic
mouse model with Liddle’s syndrome, the responsiveness
of ENaC to aldosterone is not only preserved but even
enhanced in the renal collecting duct [67] and in the colon
[22]. These latter findings are consistent with the early
observation that the mineralocorticoid response was
fully conserved in one of the patients with hereditary
pseudohypoaldosteronism originally described by Dr.
Liddle [193]. In the last few years, several other ENaC-
associated proteins regulating the function of the channel
have been described [117, 284, 286]. Data derived from
heterologous expression systems suggest that the
aldosterone-induced protein NDRG2 [355], the GILZ [26,
315, 316], K-Ras2 [215], the SNARE protein syntaxin 1a
[61, 132, 263, 295], the SNARE-binding protein complexin
[45] and the heat shock-induced proteins Hsc70 and Hsp70
[115, 340] contribute to the control of ENaC trafficking and
activity. Experiments on the colonic epithelial HT-29 cell
line indicated that the Ras-related Rab GTPases interfere
with ENaC trafficking as well. Immunoprecipitations
showed that ENaC interacts with Rab3 and Rab27a [294].
Over-expression of these Rabs reduced ENaC activity by
reducing the cell surface expression of the channel [294].
Introduction of isoform-specific small inhibitory RNA
reversed the inhibitory effect of the over-expressed Rab
proteins [294, 296, 297]. Moreover, recent experiments in
CHO cells transfected with ENaC and Rab proteins
indicated that Rab11a co-localises with ENaC at intra-
cellular sites and participates to the exchange of ENaC sub-
units from an intracellular storage pool to the plasma
membrane [159]. However, the precise regulatory mecha-
nism and physiological role of these proteins in the context
of ENaC regulation remain to be established (Fig. 4).

There are numerous reports about a functional interaction of
ENaC and the cystic fibrosis transmembrane conductance
regulator (CFTR) chloride channel [21, 179]. In the lungs of
cystic fibrosis (CF) patients, the failure of defective CFTR to
inhibit ENaC is thought to cause hyperabsorption of Na+ and
fluid possibly contributing to the formation of dry sticky
mucus, a hallmark of pulmonary CF pathophysiology [40,
80]. The finding that airway-specific over-expression of
ENaC produces cystic fibrosis-like lung disease in mice
[209] and that the symptoms can be prevented by amiloride
therapy [370] supports the concept that increased ENaC
activity may contribute to CF pathophysiology. Recombinant
expression studies [179, 319] have shown ENaC to be
inhibited by cAMP-dependent activation of CFTR, and
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similar observations have been made in various epithelial
tissues including mouse renal CCD cells [189]. In the ASDN,
CFTR-mediated release of ATP [290] may lead to paracrine
inhibition of ENaC via the stimulation of purinergic receptors
[65, 188, 259]. The recent finding that mice lacking P2Y2
receptors have salt-sensitive hypertension suggests that tonic
purinergic inhibition of renal ENaC may be physiologically
relevant [276]. However, the molecular mechanism and
physiological relevance of a regulatory relationship between
ENaC and CFTR remain a subject of considerable contro-
versy and may vary in different tissues [173, 176, 179, 230,
266]. The complexity of the ENaC–CFTR relationship is
further demonstrated by studies that suggest that ENaC may
have a stimulatory effect on CFTR activity [56, 147, 151]
possibly by stabilising ENaC at the apical cell surface [203].
Furthermore, in Xenopus laevis oocytes, ENaC upregulates
the renal potassium channel Kir1.1 (ROMK) in a CFTR-
dependent manner [174]. CFTR is abundantly expressed in
the kidney [64] and renal collecting duct cells [73, 189, 327].
Nevertheless, findings from cultured cells and heterologous
expression systems have to be interpreted with caution and
need to be confirmed in native renal tissue. In salt-restricted
mice [163], the natriuresis induced by amiloride was shown
to be significantly greater in CF mice than in wild-type
controls, consistent with an increased renal ENaC activity in
CF animals. However, renal abnormalities reported in CF
patients are subtle [356] and a physiological role of CFTR in
renal ENaC regulation remains to be demonstrated.

Conclusion and perspectives

As outlined in this review, the CNT is a major site for the
fine tuning of renal Na+ excretion and hence for the
maintenance of Na+ balance and the long-term control of
arterial blood pressure. The rate-limiting step for Na+

absorption in the CNT is ENaC. The importance of the
CNT for ENaC-mediated Na+ absorption has previously
been under-estimated possibly because the CNT is relative-
ly short and poorly accessible for in vitro studies. Indeed,
most of the studies on ENaC and its regulation in native
renal tissue have been performed in the collecting duct
rather than in the CNT. However, the CNTs collectively
comprise approximately 8% of tubular mass in the renal
cortex and account for up to 10% of the overall renal Na+

absorption. The physiological relevance of ENaC-mediated
Na+ transport in the CNT is evidenced by the observation
that the collecting duct-specific deletion of αENaC in mice
is fully compensated by the residual activity of ENaC in the
CNT (and in the DCT2). ENaC activity has an axial
gradient along the nephron with the highest activity in the
CNT and with a gradual decline along the collecting duct.
Indeed, in animals maintained on a standard diet, the only

nephron segment with constitutive ENaC activity is
probably the CNT and in some species the DCT2. Thus,
under normal physiological conditions, the CNT is likely to
be the primary site of aldosterone-mediated regulation of
ENaC activity to respond to small changes in dietary Na+

intake with corresponding changes in renal Na+ excretion.
Hence, the CNT probably is the major site of action for
diuretics such as amiloride or aldosterone antagonists. So
far, little is known about the mechanisms that establish the
gradient of ENaC expression along the nephron and that
specifically regulate ENaC activity in the CNT. However, it
may well be relevant to understand these mechanisms since
they may be involved in ENaC dysregulation under
pathophysiological conditions and may contribute to states
of renal Na+ retention and the development of arterial
hypertension. In this context, it will be an important
challenge for future studies to characterise nephron-
specific mechanisms of ENaC regulation. The axial
gradient of Nedd4–2 expression along the CNT and CD
may be one of the reasons for the different cell surface
activity of ENaC along the ASDN. Other channel-
associated proteins, the subunit composition of the
channel, the expression profile of kinases and phosphatases,
the lipid environment or the activation of ENaC by nephron
specific proteases may contribute to a differential regulation
of ENaC along the nephron. A better understanding of
these factors may lead to the identification of new
therapeutic targets and new perspectives for the diagnosis
and treatment of renal Na+ retention and salt-sensitive
arterial hypertension.
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