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Abstract Bonded-in steel rods are very efficient in

withstanding high forces applied to timber members.

Investigations of bonded-in rods started in the late

eighties of the last century and several design models

were published since. By comparing these approaches

on base of an extensive literature review a certain de-

gree of discrepancy and partly even contradiction can

be found. The paper describes a test program which

aimed to study the influence of timber density and of

geometric parameters on the pull-out strength of sin-

gle axially loaded steel rods. Following the GSA
R©

-

procedure, which is a well established glued-in rods

joint in Switzerland, rods with metric thread were

bonded in glulam made of Norway spruce lamellas us-

ing an epoxy-type adhesive. The tests showed that the

influence of the timber density can be quantified by a

power function of ρ with an exponent of 0.6. The pa-

rameters length of the glued zone � and diameter of

the hole dH can be summarized in the slenderness ra-

tio λ = �/dH , which itself is related to the mean shear

strength in the anchoring zone by an exponent of ap-

proximately −1/3. In order to prevent the specimens

from premature splitting, distances between the axis of
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the rod and the edge of the specimen of 2.3 times the

diameter of the rod have been used.

Résumé En utilisant des tiges nervurées collées il est
possible d’appliquer des grands charges à des éléments
constructifs en bois. Comme résultat de l’exploration
des barres métalliques encollées, qui était commencée
à la fin des années quatre-vingts du dernier siècle,
plusieurs propos de calcul ont été publié. En comparant
ces propos de calcul trouvés en cours d’une recherche
étendue de la littérature, une certaine divergence et de
temps en temps même contradiction peuvent être con-
statées. L’article-ci décrit une série d’essais en cours
de laquelle on voulait examiner l’influence de la den-
sité du bois et de différents paramètres géométriques
sur la résistance à la traction axiale d’une seule
tige. Les tiges avec filetage métrique ont été collées
dans du bois lamellé-collé d’épicéa avec une résine
époxy selon la procédure GSA

R©
qui représente un

système bien établi en Suisse. Les essais ont montré
que l’influence de la densité du bois peut être quan-
tifiée par une fonction potentielle avec un exposant de
0.6. La longueur de la zone collée � et le diamètre du
trou dH , réunis comme élancement relative λ = �/dH ,
sont en rapport avec la résistance au cisaillement
moyenne de la longueur d’encollage avec un exposant
de −1/3. Afin d’éviter un fendillement prématuré dans
le bois des distances de 2.3 fois le diamètre de la
tige entre son axe et le bord du spécimen ont été
réalisées.
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1. Introduction

Steel rods bonded in glulam elements are very effi-

cient joints that can withstand high axial forces applied

to timber structural members. Research on bonded-in

rods started in the late eighties of the last century. At-

tempts to develop design methods that would optimize

the application of such joints were intensified within

the last 10 years [1–5].

Several design approaches and code models have

been published [6–10]. By comparing these models and

approaches on base of an extended literature review,

some discrepancy and partly even contradictions be-

tween the models, especially regarding the treatment of

isolated parameters, were found. On this background,

a test program was initiated to study the influence of

a selection of these parameters, known or supposed to

be determinant on the pull-out strength of single, axi-

ally loaded steel rods. Test specimens consisted of rods

with a metric screw-thread, bonded with an epoxy-type

adhesive into glulam made of Norway spruce (Fig. 1).

The tests were focused to determine the influence of

timber density ρ, length � and diameter d of the rod (or

the corresponding drill-hole dh respectively) and of the

distances between the axis of the rod and the edge of

the specimen on the pull-out strength of the rod.

Important objectives of the test program were that

it should be based on practically applicable situations

and dimensions and that it should enable a comparison

with similar test series. These objectives could only be

reached by permitting certain compromises regarding

Fig. 1 Geometry of specimens (dimensions see Tables 1 and 2)

the test layout. Although for example in practice the

use of one single rod will not or hardly ever be the

normal case, all tests described here were carried out

on connections with one single rod, because the exam-

ination of such a connection provides a good basis to

study the influence of the parameters mentioned before.

In practice the tested GSA
R©

-system [11] is optimized

in such way that yielding of the steel rod is decisive,

thus resulting in a ductile behaviour of the joint. Con-

trary to practice the aim of the study was to analyse the

influence of timber-related parameters on the pull-out

strength of the rods. Therefore rods of high yield limit

and strength were chosen, in order to provoke shear

failure in the timber.

Although the test results and the conclusions are

specifically valid for the tested system and loading con-

figuration, it is possible to draw some general conclu-

sions about the quantification of the influence of the

parameters focused by the study and to propose an ad-

equate strength model.

2. Review of existing approaches

2.1. Influence of timber density

Since most of the mechanical properties of timber (of

the same species) are known to be more or less directly

related to the density of the timber, it is to be supposed

that the pull-out strength of glued-in steel rods also

depends on the timber density, provided steel yielding

and cohesive or adhesive failure are avoided. For screws

and screw nails set in timber perpendicular to its grain,

the influence of the density on the pull-out strength was

demonstrated for example by [12–15] and was taken

into account by a power function of the density (ρc)

with exponents c up to 2.5 [12].

Compared to screws and screw nails, glued-in rods

introduce the shear forces into the timber in a differ-

ent way. While the “anchored” screws rely on direct

contact between the timber and the flanks of the thread

and therefore on a kind of compression of complex ge-

ometry, the glued-in rods transfer the force only at the

interface between the rod and the adhesive. The load

transfer between the adhesive and the timber is gov-

erned mainly by shear and not by compression due to

indentation. Being aware of this, a dependence of the

pull-out strength of glued-in rods on the timber density

can be expected. However this influence should be less
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significant compared to screws and screw nails because

the shear strength of timber is affected by the density

to a lesser degree than its compression strength.

Researchers have stated different opinions on the in-

fluence of the timber density on the pull-out strength

of glued-in rods. While some of them (for example:

[16, 17]) derived such an influence from their test re-

sults, others asserted the pull-out strength to be inde-

pendent of timber density [18] or to exhibit poor cor-

relation [8, 19, 20]. Design models derived from the

tests take into account the influence of density by power

functions ρc with exponents c in the range of 0 to 1.5

according to the rod-to-grain angle [6, 8–10, 20–24].

All of these design models consider the dependence on

the density, if taken into account at all, to be marked

more for rods set in parallel to the grain, than for those

set perpendicular to the grain.

2.2. Influence of length and diameter of the

anchoring zone

The diameter and the length of the rod or of the hole

respectively (which is a better way of analysing data

derived from tests with clear failure in the timber) were

shown by different studies (for example by [8, 10, 16,

21, 23, 25, 26]) to be the dominant influence on the pull-

out strength of glued-in rods. The glued length � + �v

(� corresponds to the anchoring length, where the load

is actually transmitted from the rod to the timber; the

length �v is a tapered portion of the rod without any

load transfer capacity (Fig. 1)). The anchoring length �

and the diameter dh of the drill-hole can be combined

in a single parameter called slenderness ratio λ = �/dh .

In [8] a very strong effect of absolute size of the rod

and also of the rod’s slenderness is presented for brittle

adhesives.

2.3. Influence of the rod’s distances to the edge of

the specimen

In order to prevent the timber from early splitting due

to tensile stresses perpendicular to the grain, which

is part of the multiaxial stresses within the anchoring

zone, minimal distances between the rod and the edge

of the specimen have to be provided. Early studies on

glued-in rods were performed with edge distances of

4·d [16, 25]. Although sometimes this value was used

again later on [8], most of the latest design approaches

and experimental studies use distances of 2.5·d between

the axis of the rod and specimen’s edge [9, 27, 28].

With regard to an optimal performance of the joint

in terms of resulting tensile stress in the timber net

cross-section the edge distances should be as small as

possible. The GSA
R©
-system tested in the course of this

study, uses edge distance ratios of 2.3·d to 2.4·d. In

[29] it was reported, that edge distance ratios of 1.5·d
resulted in premature splitting of the timber, whilst this

was not the case for edge distance ratios ≥2·d.

3. Tests

3.1. Material properties

3.1.1. Timber

The specimens were cut from glued-laminated tim-

ber made of Norway spruce lamellas of 40 mm thick-

ness. The lamellas were free from any finger-joints or

significant anatomical defects such as big knots and

deviations of grain angle, in order to avoid negative

influence on the results by these parameters. The glu-

lam members were assembled using a melamine urea

formaldehyde (MUF) adhesive. Two pairs of glulam

beams were produced from lamellas with clearly dis-

tinct distributions of density (Fig. 2 and Table 3), in

order to quantify the influence of the timber density on

the pull-out strength of the rods. Every single specimen

was cut from a beam with a desired density respectively.

Fig. 2 Box-plots of lamellae’s densities ρ0 used for the four
glulam beams which served as base for the production of the
specimens
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3.1.2. Adhesive

The rods were set using a system called GSA
R©

by

n’H (Neue Holzbau AG, Switzerland) [11]. For the

GSA
R©

-system a special epoxy-type adhesive, free

from any solvent and curing at ambient temperature

has been developed by ASTORit AG, Switzerland.

This adhesive performs well, as company internal tests

showed. Shear strengths up to 35 N/mm2 were reached

between two threaded steel surfaces bonded together.

Tests on threaded steel rods bonded in ash established

shear failure in timber at nominal shear strength levels

of 16 to 18 N/mm2.

3.1.3. Steel rods

In practice, joints with glued-in rods should be designed

in such way that steel failure (yielding) occurs (Fig. 3)

and not wood- or adhesive failure in order to achieve a

ductile rather than a brittle rupture. The GSA
R©
-system

considers this fact by reducing the cross-section of the

steel rods within a certain length �v , based on an in-

vestigation by Fabris [30]. Removing the rod’s thread

within the length �v also leads to a shift of the anchoring

zone to the interior of the specimens. Stress concentra-

tions are reduced and splitting due to shear forces and

stresses perpendicular to the grain are less likely to hap-

pen [26, 30, 31]. The drill-hole was filled with glue on

its whole length � + �v . However, it was assumed that

the zone along the length �v can not contribute to the

pull-out resistance due to the lack of mechanical inden-

tation of rod and adhesive. The length �v was taken to

be 5·d.

The steel rods with metric threads M12, M16 and

M20 were zinc coated and corresponded to quality 8.8

Fig. 3 Steel failure (yielding of the rod)

Fig. 4 Shear failure in timber

(nominal yielding point: fy ≈ 640 N/mm2/εy ≈ 3‰ and

nominal ultimate tensile strength: fu ≈ 800 N/mm2).

This high-quality steel was chosen in order to pro-

voke timber shear failure (Fig. 4) rather than steel

failure (Fig. 3). The rods were set in holes with

diameters dh that exceeded the rod diameter by

2 mm.

3.2. Specimens, equipment and procedure

3.2.1. Specimens

The rods set parallel to the grain were tested in a

double-ended (pull-pull) configuration (Fig. 5). In or-

der to give the joints an optimal performance both the

timber and the steel elements should have a similar

stiffness (ATimber · ETimber ≈ ASteel · ESteel), A being

the cross-section and E the modulus of elasticity [26,

30]. The ratio ATimber/ASteel should therefore be equal to

Fig. 5 Tensile test of specimens in pull-pull configuration
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Table 1 Geometric
properties of specimens in
reference to Fig. 1

Series d−dh [mm] a [mm] �v [mm] � [mm] λ = �/dh �tot [mm]

M12 12–14 55 60 105 7.5 580

140 10 650

175 12.5 720

210 15 780

M16 16–18 75 80 140 7.78 700

175 9.72 780

220 12.2 880

270 15 970

M20 20–22 95 100 175 7.96 980

220 10.0 1070

275 12.5 1180

330 15 1240

Table 2 Geometric
properties of specimens for
evaluation of cross-section
in reference to Fig. 1

Series d − dh (mm) � (mm) �v (mm) �tot (mm) a (mm) e = 0.5·a/d

M16 16–18 175 80 780 56 1.75

65 2.03

75 2.34

85 2.66

100 3.13

120 3.75

the ratio ESteel/ETimber which is approximately 16 to 20

for Norway spruce. From the practical point of view,

high ratios of ATimber / ASteel are unattractive because

of a poor performance of the joint itself, regarding the

resulting tensile stress in the glulam element. However,

in order to prevent early splitting of timber due to stress

concentrations, the cross-sections of the specimens had

to be designed in such way that edge distance ratios

from 2.3·d to 2.4·d resulted and this represented ratios

of ATimber/ASteel from 37 to 39. Geometry and dimen-

sions of the specimens are shown in Table 1 and in Fig.

1. In general there were four specimens per each com-

bination of rod diameter, timber density and anchoring

length resulting in a total number of 96 specimens with

192 glued-in rods.

In order to study the influence of the distance be-

tween the rod and the edge of the specimen, a supple-

mentary series of 24 specimens (48 rods) with edge

distance ratios between 1.75·d and 3.75·d was addi-

tionally tested (Table 2).

3.2.2. Equipment and procedure

All tests were carried out on a universal tension testing

machine (Fig. 5) with a maximal error of the force

Table 3 Sample statistics of lamellae’s densities

Density ρ0 (kg/m3)

Parameter Low 1 High 1 Low 2 High 2

Sample size n 12 12 12 12

Mean value 371 493 378 498

Maximum 388 508 390 515

Minimum 353 481 365 492

Standard deviation 13.2 10.8 8.38 7.67

Coeff. of variation 3.6% 2.2% 2.2% 1.5%

ρk
a 349 475 364 485

a5th percentile assuming normal distribution and n = ∞

measurement <1%. The rate of loading was taken in

accordance with EN 26891 [32].

4. Results and discussion

4.1. General

An overview of the test results is given in Fig. 6. Even

though it was only verified by spot checks, there was

strong evidence that the pull-out of the rods occurred

due to shear failure of the wood around the anchoring

zone of the rods (Fig. 4). Visible splitting and cracking
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Fig. 6 Overview of ultimate loads Fu. (Maximum, Mean,
Minimum). Number of specimens n = 4 for all series except
for <M16-270 L&H> and <M20-330 L> with n = 3. Values
for series <M12-210> include steel failures or wood-tension
failures

Fig. 7 Tensile failure in timber

at the ends of the specimens occurred at about 65% of

all tests. However, there were no significant differences

between the failure loads of specimens with and with-

out external signs of cracking/splitting. Cracking there-

fore did not influence the pull-out strengths and was

regarded as being a consequence of the internal shear

failure of the wood. The rupture of three out of the

four specimens <M12-210 High density> occurred

due to steel failure and within the series <M12-210
Low density> two out of the four specimens showed

tension failure in timber on a very low strength level

(Fig. 7). Since the failure mode of these specimens was

different to that aimed at in the strength model, both

series were excluded from further analysis. (Timber

tensile failure in practice has to be avoided by ade-

quate quality control of the glulam members used for

structural purposes.)

The recorded ultimate loads of series M20 (low den-

sity) and M16 (both low and high density) with the

longest anchoring lengths had significantly higher co-

efficients of variation compared to all other series. In

all three series mentioned this was due to one single

low value. Investigations on this showed significantly

tilted positions of the respective rods which caused ec-

centric loading. It was decided to take no account of

these single values at the following analysis.

In general Fig. 6 gives a good impression on the

influence of timber density, rod diameter and rod length

on the pull-out-strength of the rods. The influence of

these individual parameters is looked at in greater detail

in the following.

4.2. Influence of timber density

Within every series with identical geometrical proper-

ties, the mean value of the pull-out strengths Fu ,mean

of the specimens with a high wood density was signif-

icantly higher than that of the specimens with a low

wood density. The mean ratio of high density wood

(H) to low density wood (L) was found to be ρH /ρL =
1.33. The ratio of the respective mean ultimate loads

Fu,H /Fu,L varied from 1.11 to 1.28 with a mean value of

1.18. As only high and low density samples were tested,

no statement to the progression of density ratio ρH /ρL

against load ratio Fu,H /Fu,L could be made on base of

the test results. In literature often a power function is

given to describe their dependency. On this base a mean

value of the exponent cmean = 0.60 for (Fu,H /Fu,L ) =
(ρH /ρL )c could be calculated. This value matches re-

sults of other studies very well, indicating c = 0.55 for

epoxy-type adhesives [33] and at the same time rejects

proposals of higher c-values.

4.3. Influence of anchoring length and

of drill-hole diameter

As already mentioned initially, the tests were planned

to follow a certain range of geometrical proportions in

terms of drill-hole diameter dh and anchoring length �,

or in combination also represented by the slenderness

ratio λ = �/dh . Besides analysing the test results with

regard to λ, the influences of the individual parameters

� and dh were studied, in order to get an idea about

their significance. The nominal shear strength fv,0,mean

was calculated assuming a constant distribution of the

shear stresses over the anchoring length �. However,
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Fig. 8 Nominal shear strength versus anchoring length. The
dotted line represents the kind of progression if a dependence
fv,0,mean against (�2/�1)−1/3 is assumed (�2 > �1)

it is known from respective finite element simulations

that in case of rods glued-in parallel to the grain, the

stress distribution is uneven with peaks at both ends of

the anchoring zone [20, 34, 35].

With increasing anchoring lengths the ultimate loads

also increased (Fig. 6) but the nominal shear strengths

decreased (Fig. 8). A reason for the decreasing shear

strengths is seen in the mentioned distribution of the

shear stresses along the rods length. For the description

of the dependency of shear strengths against anchoring

length an approach based on �−1/3 is suggested.

Regarding the influence of the slenderness ratio λ =
�/dh on the nominal shear strength fv,0,mean, a power

function λ−1/3 fits the test results well (Fig. 9).

The analysis of the influence of the drill-hole diame-

ter on nominal shear strength was based on the compar-

ison of series with similar anchoring lengths but differ-

ent hole- and rod diameters. In Fig. 6 it clearly appears

that ultimate loads increased with increasing diame-

ters. However, the influence of the drill-hole diameter

on the nominal shear strength could not be clearly ver-

ified (Fig. 10). For most of the series nominal shear

strength increased with increasing diameter dh but for

a glued length of � = 220 mm it decreased with an in-

creasing diameter from M16 to M20.

Based on an approach λ−1/3, the influence of the

hole-diameter dh on the pull-out strength of rods set

parallel to the grain needs to be dh
1/3 if a constant

Fig. 9 Nominal shear strength versus slenderness ratio λ = �/dh

Fig. 10 Mean value of density-adjusted nominal shear strength
versus drill-hole diameter dh for three different anchoring lengths

length is assumed. This could not be proved in detail

on base of the test results.

In general it can be stated, that if the single param-

eters anchoring length � and diameter of the drill-hole

dh are taken as a base for the determination of the pull-

out strength fv,0,mean of rods set parallel to the grain,

both parameters would have to be put in consideration

and both with different exponents. An approach based

on the slenderness λ therefore seems to be the better

solution.

4.4. Influence of timber cross-section

In Fig. 11 it can clearly be seen, that for edge distance

ratios smaller than 2.3·d the pull-out strength values
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Table 4 Resulting tensile stress in wood
(Mean value of sample means of ultimate
loads Fu for all series with λ from 7.5 to
12.5 and for both high and low density sam-
ples)

Rods M12 M16 M20

Mean Fu,mean (kN) 43.8 77.2 110

σt,0 (N/mm2) 14.5 13.7 12.2

Table 5 Resulting tensile stress in
wood (Max values of ultimate loads Fu

for high density samples)

Rods M12 M16 M20

MaxFu (kN) 65.7a 121 164

σt,0 (N/mm2) 21.7a 21.5 18.2

aSteel failure (yielding of the rod)

Fig. 11 Influence of the rod’s distance to the edge of the speci-
men

decreased significantly, which is in accordance with re-

quests of most actual design approaches. Edge distance

ratios smaller than 2.3·d therefore should be avoided in

order to prevent premature splitting of the timber re-

sulting in low pull-out strength values.

With regard to an optimal load transfer capacity of

the joint the timber cross-section should be as small as

possible. A comparison of the resulting tensile stresses

in the timber members shows, that for a given edge dis-

tance ratio of 2.3·d the load transfer capacity from steel

to timber was better for the smaller diameters (Table 4).

With regard to an optimal load transfer capacity pref-

erence therefore should be given to rods with smaller

diameter. For high density glulam and slenderness ra-

tio λ = 15 maximum tensile stresses over 20 N/mm2

Fig. 12 Design model in comparison to density-adjusted (ρ =
480 kg/m3) mean values of test results

were reached with respect to the timber cross-section

(Table 5).

4.5. Pull-out strength model

The test results permit to propose a strength model

for the calculation of the pull-out strength on a mean

level. For wood density a reference value of ρmean =
480 kg/m3 being near to the mean density of the high

density samples serves as base. On the geometrical side

λ = 10 which represents a value in the middle range

of the tested geometries was chosen as reference base.

With the mean values of the test results adjusted to the

mentioned λ and ρ, a corresponding shear strength of

7.8 N/mm2 results. Thus, the nominal shear strength of

single, axially loaded rods set parallel to grain results

in:

fv,0,mean = 7.8 N/mm2 ·
(

λ

10

)−1/3

·
( ρ

480

)0.6

The pull-out strength thus can be calculated with

Fax,mean = fv,0,mean · π · dh · �

fv,0,mean [N/mm2], ρ [kg/m3], λ = �/dh [–], � [mm], dh

[mm], Fax,mean [N].

Figure 12 shows the fit of this equation with the

density adjusted test results.

The use of the strength equation is restricted to:� single rods glued-in parallel to the grain and loaded

axially in tension
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7.5 ≤ λ ≤ 15� rod diameters d of 12 to 20 mm� length �v = 5 · d� edge distances ≥2.3·d� glulam made of Norway spruce or other coniferous

timber with similar properties and characteristic val-

ues of density in the range of 350 to 500 kg/m3.

The proposed strength model only covers the ex-

pected mean pull-out loads due to shear failure in the

wood around the glued zone. In addition a control of

the stresses in the steel bar and in the timber member

(net cross-section) is necessary. In practice however the

above pull-out strength formula only allows to calculate

the maximum capacity of the joint for given geometri-

cal parameters and for a certain timber density. Actually

the joint should rather be designed in such a way that

(ductile) steel failure occurs and (brittle) timber failure

is prevented. Failure of the bond line or internal adhe-

sive failure is to be prevented in any case in order to

get ductile steel failure and optimal performance of the

glued-in rod joint.

5. Conclusions

Based on the test results it can be stated, that for the

used GSA
R©
-system:� the pull-out strength of rods bonded parallel to the

grain in glulam made of Norway spruce depends on

the density of the timber around the anchoring zone.

The influence of the density is clearly marked and can

be covered by a power function ρc with an exponent

of c = 0.6.� the influence of the anchoring length � on ultimate

load values is marked and can be taken into account

by an adjustment to the formulas based on �−1/3.� an influence of the diameter dh of the drill-hole on

the pull-out strength could not be clearly evaluated.� a dependence of ultimate loads on the slenderness ra-

tio λ = �/dh , which can be quantified by λ−1/3 could

be shown.� with regard to optimal load transfer capacity from

steel to timber, rods with smaller diameter should be

given preference.
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