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Abstract The finite mass method is a purely Lagrangian
scheme for the spatial discretisation of the macroscopic phe-
nomenological laws that govern the flow of compressible
fluids. In this article we investigate how to take into account
long range gravitational forces in the framework of the fi-
nite mass method. This is achieved by incorporating an ex-
tra discrete potential energy of the gravitational field into
the Lagrangian that underlies the finite mass method. The
discretisation of the potential is done in an Eulerian fashion
and employs an adaptive tensor product mesh fixed in space,
hence the name finite mass mesh method for the new scheme.
The transfer of information between the mass packets of the
finite mass method and the discrete potential equation relies
on numerical quadrature, for which different strategies will
be proposed. The performance of the extended finite mass
method for the simulation of two-dimensional gas pillars un-
der self-gravity will be reported.

1 Introduction

The finite mass method gives a discrete macroscopic de-
scription of the flow of a compressible fluid. It is a purely
Lagrangian approach based on first principles of fluid me-
chanics. The main idea is to discretise the fluid by means of
a finite number of mass packets which are called “particles”.
These particles have finite extension, move independently,
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and can intersect and penetrate each other. Their motion is
determined by internal and external forces, and they obey
the laws of thermodynamics. The finite mass method was in-
troduced by C. Gauger, P. Leinen, and H. Yserentant in [9]
and is an extension of earlier works of Yserentant: whereas
in [21] the particles have a fixed shape and size, they are al-
lowed to change their size in [23]. Finally, in [9] the model is
supplemented such that the particles can even change their
shape by linear deformations. Extensions and special vari-
ants are described in [14, 15].

The main merit of the finite mass method is its fairly
comprehensive rigorous theoretical underpinning. In [21,
22] compactness and convergence results for simpler vari-
ants of the finite mass method are given, and in the case of
flows with given force and velocity fields its convergence is
analysed in [25]. The propagation of sound is studied in [24]
for a simplified particle model.

The finite mass method is a new member of a large class
of Lagrangian schemes in computational fluid dynamics.
Another representative are techniques known as smoothed
particle hydrodynamics [1, 20], which are widely used in
computational astrophysics. Many strategies have been de-
vised to model long range graviational interactions in these
schemes, some based on so-called tree methods [12] some
on the discretisation of elliptic PDEs on Eulerian grids [7].

The latter idea will be pursued in this paper: we will rely
on a finite element discretisation of the potential equation
on a mesh fixed in space. This mesh will undergo dynamic
adaptation to reflect the distribution of mass. Crucial will
be the transfer of information between the particles and the
discrete variational problem on the Eulerian mesh. Besides
theoretical investigations of the fully coupled (semidiscrete)
scheme, this new aspect of information transfer will receive
much attention in this paper.

A brief outline of the paper is as follows: In the next
section we present a short introduction to the finite mass
method, closely following [9]. In the third section we ex-
tend the semi-discrete finite mass method to cover effects
due to the potential field created by the mass of the particles.
Since these effects result in force terms containing integrals
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which cannot be evaluated exactly, their discretisation is de-
scribed in Sect. 4. The fifth section deals with some aspects
of the implementation. In addition to the implementation of
the force terms, adaptive mesh refinement, and the total com-
putational costs are discussed. Finally, in Sect. 6, we report
some illustrative computational experiments of gas columns
under the influence of self-gravitation.

2 The finite mass method

2.1 The description of a particle

The mass packets that describe the distribution of the fluid
matter in the finite mass method are characterised by an in-
ternal mass distribution that is given by a fixed continuously
differentiable shape function ψ : R

d → R
+, d ∈ N, on a

reference particle. This shape function has compact support,
is nonnegative, and satisfies∫

Rd
ψ(y) dy = 1,

∫
Rd

ψ(y)y dy = 0, (1)

which means that the total reference mass is 1, and that the
barycentre of the reference particle is the origin. Further, the
reference particle has identical principal moments of inertia∫

Rd
ψ(y)yk yl dy = Jδkl , (2)

where yk are the components of y ∈ R
d and J ∈ R

+. In the
computational examples of Sect. 6, for the shape function
ψ we use the tensor product of normalised third order B-
splines as in [8, 9].

Then, arbitrary particles are obtained by linear affine
transformations of the reference particle. The motion of a
particle labelled with index i is described by the trajectories
xy(·) ∈ R

d of the points y belonging to the reference particle
as follows:

xy : R
+ → R

d : t �→ qi (t) + Hi (t)y,

where qi (t) ∈ R
d determines the position of the barycen-

tre of the particle and Hi (t) ∈ R
d×d with det Hi (t) > 0

its deformation at time t . This deformation matrix Hi deter-
mines the orientation in space, the shape, and the size of the
particle.

The velocity of the points of a particle is seen to be

t → q ′
i (t) + H ′

i (t)y,

q (t) + H (t)  y

i

i

q (0) + H (0)  y

i

i

Fig. 1 Motion of a particle with index (label) i

by which we obtain the velocity field of a particle with re-
spect to space coordinates as

vi (x, t) = q ′
i (t) + H ′

i (t)Hi (t)
−1(x − qi (t)).

Accordingly, the normed transformed shape function
ψi (x, t) of the reference particle corresponding to the i th
particle is given by (cf. [9, Eq. (2.17)])

ψi (x, t) := ψ(H−1
i (t)(x − qi (t)))

det(Hi (t))
.

With mi ∈ R
+ denoting the mass of the particle, we

obtain its mass density by miψi (x, t).

2.2 Global quantities

From quantities of the individual particles, global quantities
like the total mass density and the velocity field can be de-
rived. For the sake of lucidity, in the following we occasion-
ally omit the dependence on time in the notation (in particu-
lar for qi and Hi ).

The total mass density is given by superposition of the
mass densities of the individual particles

ρ(x, t) :=
N∑

i=1

miψi (x, t), (3)

where N ∈ N denotes the number of particles.
Since the particles can intersect each other and have dif-

ferent velocities, the total velocity field at a point in space
is not given directly. To obtain the velocity field of the flow,
we first look at the total mass flux density, which is given
by superposition of the mass flux densities of the individual
particles

j (x, t) :=
N∑

i=1

miψi (x, t)vi (x, t).

Since the velocity field v of the flow is defined by the relation
j (x, t) = ρ(x, t)v(x, t), it has the form

v(x, t) =
N∑

i=1

χi (x, t)vi (x, t), (4)

with the local mass fraction

χi (x, t) := miψi (x, t)

ρ(x, t)
. (5)

In order to describe the thermodynamic state of a fluid, a
second thermodynamic quantity besides the mass density is
required. The finite mass method uses the entropy density s
which is given by

s(x, t) :=
N∑

i=1

mi Si (t)ψi (x, t),

where Si (t) ∈ R denotes the specific entropy of the i th par-
ticle at time t . If the specific entropies are constant in time,
the particles are thermically isolated from each other.
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By Gibbs fundamental relation, the pressure π and the
temperature θ can be expressed through the internal energy ε
per unit volume, the mass density ρ, and the entropy density
s according to1

π(ρ, s) = ∂ε

∂ρ
ρ + ∂ε

∂s
s − ε, θ(ρ, s) = ∂ε

∂s
.

More details can be found in [21].

2.3 Equations of motion

To derive the equations of motion of the particles by the
Lagrangian approach, the energy of the system of particles
has to be considered. In our case we can distinguish the ki-
netic and the internal energy.

The particle i has the kinetic energy (cf. [9, Eq. (2.31)])

Ekin
i (t) = 1

2

∫
supp(ψi )

miψi (x, t)|vi (x, t)|2 dx

= 1

2
(mi |q ′

i |2 + Jmi |H ′
i |2),

where | · | denotes the Euclidian vector norm and the Frobe-
nius norm of a matrix, respectively. Then, the total kinetic
energy is obtained by superposition of the kinetic energy of
the individual particles

Ekin(t) :=
N∑

i=1

Ekin
i (t).

The internal energy of the system is given by

E int(t) =
∫

Rd
ε(ρ(x, t), s(x, t)) dx . (6)

The Lagrangian of the system of particles is defined by

L(t) := Ekin(t) − E int(t),

which determines the motion of the particles by the
Lagrange equations (cf. [9, Eq. (2.36)])

d

dt

∂L
∂q ′

i
− ∂L

∂qi
= 0,

d

dt

∂L
∂ H ′

i
− ∂L

∂ Hi
= 0. (7)

Note that the kinetic energy Ekin does not depend on qi and
Hi whereas the internal energy E int does not depend on q ′

i
and H ′

i . Inserting the mass packets, the equations of motion
for an individual particle have the form

mi q ′′
i = −∂ E int

∂qi
= − ∂

∂qi

∫
Rd

ε(ρ, s) dx,

Jmi H ′′
i = −∂ E int

∂ Hi
= − ∂

∂ Hi

∫
Rd

ε(ρ, s) dx .

1 For the fundamentals of mechanics and fluid dynamics we refer to
[11, 17] and [3, 4, 18], respectively.

The terms on the right hand side represent the forces of in-
ternal pressure. With the normalised forces

Fi := − 1

mi

∂ E int

∂qi
= −

∫
Rd

{
∂ε

∂ρ
+ Si

∂ε

∂s

}
∂ψi

∂qi
dx,

Mi := − 1

mi

∂ E int

∂ Hi
= −

∫
Rd

{
∂ε

∂ρ
+ Si

∂ε

∂s

}
∂ψi

∂ Hi
dx,

(8)

where the particle mass cancels, the equations of motion be-
come
q ′′

i = Fi , J H ′′
i = Mi . (9)

The forces (8) can be simplified using (see [9, Sect. 2])
∂ψi

∂qi
= −∇ψi , (10)

∂ψi

∂ Hi
= −[∇ψi ]

[
H−1

i (x − qi )
]T − ψi H−T

i . (11)

Real fluid flow is accompanied by heat generation at
shocks and due to viscosity. As described in [22, Sect. 4]
and [9, Sect. 2] these effects can be taked into account in the
finite mass method, too. Then, the equations of motion (9),
extended by frictional (fr) and viscous (v) forces, have the
form
q ′′

i = Fi + F fr
i + Fv

i , J H ′′
i = Mi + M fr

i + Mv
i . (12)

2.4 Conservation properties

By virtue of the Lagrangian approach the total energy, the
total momentum, and the total angular momentum are con-
stants of motion. The total energy of the system E tot :=
Ekin + E int is composed of the kinetic and the internal en-
ergy. The total momentum is defined as

P(t) :=
∫

Rd
ρ(x, t)v(x, t) dx =

N∑
i=1

mi q
′
i . (13)

In three dimensions the angular momentum is given by

L(t) :=
∫

Rd
ρ(x, t) x × v(x, t) dx . (14)

Its components can be represented by

L j (t) :=
∫

Rd
ρ(x, t) x · W j v(x, t) dx, j = 1, 2, 3, (15)

where the product x · y := xT y, and W j , j = 1, 2, 3, are
fixed skew symmetric matrices depending on the cross prod-
uct. One can show that these matrices W j build a basis of
the space of skew symmetric matrices. Hence, for the con-
servation of the angular momentum it is sufficient to show
d
dt LW (t) = 0 for an arbitrary skew symmetric matrix W
with

LW (t) :=
∫

Rd
ρ(x, t) x · Wv(x, t) dx . (16)

Theorem 1 The total energy E tot, the total momentum P,
and the angular momentum L are constants of motion, i.e.
d

dt
E tot(t) = 0,

d

dt
P(t) = 0,

d

dt
L(t) = 0.

For the proof we refer to [9, Sect. 3].
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3 Gravitational fields

Gravitational forces are conservative forces, i.e. they can be
represented by means of the gradient of a potential. In three
dimensions the gravitational potential φ is determined by the
Poisson equation,


φ(x, t) = ρ(x, t), x ∈ R
3, t ≥ 0, (17)

which has to be supplemented by suitable decay condi-
tions depending on the spatial dimension d [19, Ch. 8], e.g.,
lim|x |→∞ φ(x, t) = 0 for d = 3. We remark that for simplic-
ity the gravitational constant is set to 1. Then, the potential
can be represented as the Newton potential φ (s. [5, Chap.
2, Sects. 2 and 3, in particular Proposition 3]) given by with
the fundamental solution �(x) = g(|x |). Remember that for
d = 3 we have �(x) = − 1

4π
1
|x | . We point out that here and

below the integration kernels �(x − y) are weakly singular
and all integral exists in the Lebesgue sense over R

d . Thus,
swapping integration and differentiation can always be jus-
tified.

φ(x, t) =
∫

R3
�(x − y)ρ(y, t) dy, x ∈ R

3, t ≥ 0 (18)

In the following we want to extend the Lagrangian ap-
proach of Sect. 2.3 by gravitation. Thus, we have to con-
sider the additional energy given by the gravitational field.
The potential energy is defined by

Epot(t) := 1

2

∫
Rd

φ(x, t)ρ(x, t) dx

= 1

2

∫
Rd

|∇φ(x, t)|2 dx,

and using (18) and (3), it has the representation

Epot(t) = 1

2

N∑
i, j=1

mi m j

×
∫

Rd

∫
Rd

�(x − y)ψ j (y, t)ψi (x, t) dy dx .

It enters the Lagrangian as another additive contribution:

L := Ekin − E int − Epot.

Then, the Lagrange Eq. (7) read

d

dt

∂ Ekin

∂q ′
i

= −∂ E int

∂qi
− ∂ Epot

∂qi
,

d

dt

∂ Ekin

∂ H ′
i

= −∂ E int

∂ Hi
− ∂ Epot

∂ Hi
.

Note that the potential energy only depends on qi and Hi .
Then, the normalised forces acting on the particle i are given
by the derivatives of the potential energy

Fgr
i := − 1

mi

∂ Epot

∂qi
= −1

2mi

∂

∂qi

N∑
k, j=1

mkm j

×
∫

Rd

∫
Rd

�(x − y)ψ j (y, t)ψk(x, t)dydx .

Since � is symmetric and ψ j only depends on qi for j = i ,
the gravitational force is given by

Fgr
i = −

∫
Rd

φ(x, t)
∂ψi

∂qi
(x, t) dx . (19)

Analogously, we obtain for the deformation matrices

Mgr
i := − 1

mi

∂ Epot

∂ Hi
= −

∫
Rd

φ(x, t)
∂ψi

∂ Hi
(x, t) dx . (20)

By these considerations the equations of motion for a
particle can be extended to

q ′′
i = Fi + F fr

i + Fv
i + Fgr

i ,

J H ′′
i = Mi + M fr

i + Mv
i + Mgr

i .
(21)

In Sect. 2.4 we have seen that the finite mass method
conserves the total energy, the total momentum, and the to-
tal angular momentum. Now, we show that in the case of
additional gravitational forces these quantities also remain
constants of motion.

Theorem 2 The total energy

E tot(t) := Ekin(t) + E int(t) + Epot(t) (22)

the total momentum (13), and the total angular momentum
(14) are constants of motion.

Proof To begin with, the conservation of the total energy is
an immediate consequence of the Lagrangian approach.

Second, inserting the equations of motion (21) into
d
dt P(t) we obtain

d

dt
P(t) =

N∑
i=1

mi Fi +
N∑

i=1

mi F fr
i +

N∑
i=1

mi Fv
i +

N∑
i=1

mi Fgr
i

=: P ′
1 + P ′

2 + P ′
3 + P ′

4.

In [9, Sect. 3, Theorem 2] it is proved that P ′
1, P ′

2, and P ′
3

vanish. Thus, it remains to show that also P ′
4 = 0. Using

(10), we have

P ′
4 = −

N∑
i=1

mi

∫
Rd

φ(x)
∂ψi

∂qi
(x) dx

=
N∑

i=1

mi

∫
Rd

φ(x)∇ψi (x) dx =
∫

Rd
φ(x)∇ρ(x) dx .

Now, we insert the potential given in (18). Since ρ has com-
pact support, integration by parts yields∫

Rd
φ(x)∇xρ(x) dx

=
∫

Rd

∫
Rd

�(x − y)ρ(y) dy ∇xρ(x) dx

= −
∫

Rd

∫
Rd

∇x�(x − y)ρ(y) dy ρ(x) dx .
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Using ∇x�(x − y) = −∇y�(x − y), we find that P ′
4 = 0:

∫
Rd

φ(x)∇xρ(x) dx = −
∫

Rd
φ(y)∇yρ(y) dy.

Finally, we prove the conservation of the total angular
momentum. We have to show that the time derivative of the
quantity defined in (16) vanishes for arbitrary skew symmet-
ric matrices W . With (1), (2), and (4), we obtain

d

dt
LW (t) = d

dt

∫
Rd

ρ(x, t)x · Wv(x, t) dx

=
N∑

i=1

d

dt

(
mi qi · Wq ′

i + Jmi Hi · W H ′
i

)

=
N∑

i=1

(
mi qi · Wq ′′

i + Jmi Hi · W H ′′
i

)
.

For the last equality we have used that a · W a = 0 for all
vectors a ∈ R

d and A · W A = 0 for all square matrices
A ∈ R

d×d .2 Now, inserting the equations of motion (21)
yields

d

dt
LW (t) =

N∑
i=1

mi (qi · W Fi + Hi · W Mi )

+
N∑

i=1

mi
(
qi · W F fr

i + Hi · W M fr
i

)

+
N∑

i=1

mi
(
qi · W Fv

i + Hi · W Mv
i

)

+
N∑

i=1

mi
(
qi · W Fgr

i + Hi · W Mgr
i

)

=: L ′
1 + L ′

2 + L ′
3 + L ′

4.

It is shown in [9, Sect. 3, Theorem 3] that the first three
terms vanish separately. Hence, we only have to consider
L ′

4. For the following computations, we recall (10) and (11).
Moreover, we use that

A · BabT = Ab · Ba, A · (BC) = (ACT ) · B (23)

holds for all square matrices A, B, and C , and all vectors a
and b. With these relations we obtain

qi · W
∂ψi

∂qi
+ Hi · W

∂ψi

∂ Hi
= W x · ∇ψi .

Now, inserting the gravitational forces (19) and (20) in
L ′

4 yields

2 We write A · B = tr(AT B) = ∑
i, j ai j bi j for square matrices A

and B.

L ′
4 = −

N∑
i=1

mi ×
∫

Rd
φ(x)

(
qi · W

∂ψi

∂qi
(x) + Hi · W

∂ψi

∂ Hi
(x)

)
dx

= −
N∑

i=1

mi

∫
Rd

φ(x)(W x · ∇ψi )dx

= −
∫

Rd
φ(x)(W x · ∇ρ(x)) dx .

Using the first equation of (23) with B = Id, L ′
4 becomes

L ′
4 = −

∫
Rd

φ(x)(W · ∇ρ(x)xT ) dx

= −W ·
∫

Rd
φ(x)

(∇ρ(x)xT )
dx =: −W · K .

As it is shown below, the matrix K is symmetric and thus,
L ′

4 = 0, because W is skew symmetric. To prove the symme-
try of K we consider its entries ki j , i 	= j, i, j = 1, 2, . . . , d .
Integration by parts yields

ki j =
∫

Rd
φ(x)

∂ρ

∂xi
(x)x j dx = −

∫
Rd

∂φ

∂xi
(x)ρ(x)x j dx

because of the compact support of ρ. For the symmetry of K
we show that ki j − k ji vanishes. With the potential φ(x) =∫
Rd �(x − y)ρ(y) dy and because of �(x − y) = g(|x − y|)

we get

ki j − k ji

= −
∫

Rd

∂

∂xi

{ ∫
Rd

�(x − y)ρ(y) dy

}
ρ(x) x j dx

+
∫

Rd

∂

∂x j

{ ∫
Rd

�(x − y)ρ(y) dy

}
ρ(x) xi dx

= −
∫

Rd

∫
Rd

g′(|x − y|) xi − yi

|x − y|ρ(y) ρ(x) x j dy dx

+
∫

Rd

∫
Rd

g′(|x − y|) x j − y j

|x − y| ρ(y) ρ(x) xi dy dx .

=
∫

Rd

∫
Rd

g′(|x − y|) x j yi − xi y j

|x − y| ρ(y) ρ(x) dx dy

Since the integrand is antisymmetric, the integral vanishes
and thus, ki j − k ji = 0 holds and K is symmetric.

4 Semi-discrete model

The force terms involve integrals that can only be evaluated
approximately in a computer code. This entails choosing ap-
propriate quadrature rules.
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4.1 Semi-discrete finite mass method

In order to compute the motion of the particles, the equa-
tions of motion (12) have to be solved. Therefore, the inte-
grals of the forces have to be evaluated, and this should be
done without disturbing the invariance of the particle model
under translations and rotations. Since these properties are
not conserved, if we use a quadrature formula with nodes
fixed in space, the finite mass method uses a particle depen-
dent quadrature formula for the approximation of the force
integrals.

First, we explain the general approach to this quadrature
formula before applying it to the integrals of internal pres-
sure in (8). To this end, we consider an integral of the form∫

fρ. By inserting the mass density (3) and after transfor-
mation to the reference particle, we obtain
∫

Rd
f (x)ρ(x) dx =

N∑
i=1

mi

∫
Rd

f (qi + Hi y)ψ(y) dy.

Again, N ∈ N denotes the number of particles. Now, it re-
mains to evaluate these integrals on the support of the refer-
ence particle. To this end, the reference particle is equipped
with quadrature points aν ∈ R

d inside its support and
weights αν > 0, ν = 1, 2, . . . , n. Note that the shape func-
tion ψ is used as weight function here and is already in-
corporated into the weights. In terms of individual particles
this means that each particle i has its own quadrature points
Xi

ν = qi + Hi aν and weights α̃i
ν = miαν . These nodes are

attached to the particle and move with it. Thus, the above
integral can be approximated by the following sum
∫

Rd
f (x)ρ(x) dx →

N∑
i=1

mi

n∑
ν=1

αν f (qi + Hi aν)

=
∑
i,ν

α̃i
ν f (Xi

ν) =:
∫

Rd
f dµ, (24)

i.e. the discrete integral
∫

f dµ can be evaluated by simply
summing over all nodes of all particles.

By means of this quadrature formula we can define the
discrete internal energy (ε̃ := ε/ρ)

E int
h =

∫
Rd

ε̃(ρ, s) dµ =
N∑

i=1

mi

n∑
ν=1

αν ε̃(qi + Hi aν),

Then, the pressure forces can be derived from the discrete
energy analogously to the procedure in Sect. 2. Note that
the pressure forces are not approximated by applying the
quadrature rule directly to formula (8). Furthermore, by us-
ing this discrete internal energy the conservation properties
of Sect. 2.4 carry over to the discrete situation (see [9, Sect. 3
and 4]).

4.2 Discrete gravitational fields

In the spirit of the previous section we have to introduce a
discrete potential energy. Yet, we also have to worry about a

discrete approximation φh of the potential φ. Both issues are
settled instantly, once we fix a H1

loc(R
d)-conforming finite

element trial space Sh for φh . It will be based on a grid Gh
of a bounded domain � ⊂ R

d with supp(ρ) ⊂ �. For �
large enough the error due to this cut-off will be arbitrarily
small.

Using the weak form of the potential Eq. (17) we end up
with: seek φh ∈ Sh

a(φh, ϕk) = (ρ, ϕk) for all ϕk ∈ Sh, (25)

with the scalar product

(u, v) :=
∫

�

u(x) v(x)dx (26)

and the symmetric bilinear form

a(u, v) := −
∫

�

∇u(x) · ∇v(x)dx .

Assuming problem (25) can be solved, the discrete po-
tential φh is represented by the linear combination of (nodal)
basis functions ϕk ∈ Sh

φh =
m∑

k=1

µk ϕk, µk ∈ R, (27)

where m := dim Sh . We shortly write

�φh = (µk)
m
k=1 ∈ R

m,

where �φh denotes the coefficient vector of the discrete poten-
tial. With this representation of the potential φh , the gravita-
tional energy required for the force computation becomes

Epot = 1

2

∫
Rd

φh(x)ρ(x) dx = 1

2

m∑
k=1

µk(ϕk, ρ). (28)

However, neither (28) nor (25) is fully discrete, as the
scalar product (26) still involves the exact evaluation of
an integral. This is not possible, because the particle can
have arbitrary position and orientation with respect to the
finite element grid. The application of a quadrature rule is
mandatory. In this case we have two possibilities to choose
the quadrature formula:

– It could depend on the grid used for the approximation
of the gravitational potential. This results in a quadrature
formula which is fixed in space.

– It could depend on the particles like the quadrature rules
introduced in Sect. 4.1.

By means of the discretised scalar product, the discrete po-
tential can be computed, and we obtain a fully discrete rep-
resentation of the gravitational energy. Finally, from this en-
ergy discrete gravitational forces are derived analogously to
Sect. 3.

In the following we show how the gravitational forces
are computed in each case. First, we have a look at the grid
dependent quadrature rule used to approximate the scalar
product (26).
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4.3 The grid based quadrature

From now we fix Sh as a space of continuous multilinear
functions on a non-uniform tensor product grid Gh . Such a
grid can be considered as a hierarchy of increasingly finer
tensor product grids which cover smaller and smaller subdo-
mains. These grids may be extremely locally refined in such
a way that the local grid size of abutting cells differs widely.
However, a certain regular grid structure simplifies the al-
gorithms. Thus, the construction we use will maintain local
quasi-uniformity of the grid in the sense that the grid size of
adjacent cells differs at most by the factor 1

2 .
To obtain a fully discrete representation of the right hand

side of the variational formulation (25) as well as of the grav-
itational energy (28), we define a discrete counterpart of the
scalar product (26). This discrete scalar product depends on
the grid Gh : we start from a quadrature rule for each ele-
ment e of Gh , which is characterised by quadrature points
pi ∈ R

d (1 ≤ i ≤ n) and related weights ωpi ∈ R∫
e

f (x)dx →
n∑

i=1

ωpi f (pi ).

Further, let P be the set of the quadrature points of all el-
ements of Gh . Then, we can define a discrete scalar product
independently of the particles by

(u, v)G :=
∑
p∈P

ωpu(p)v(p). (29)

Now, we can discretise the right hand side of the varia-
tional Eq. (25)

a(φh, ϕ j ) = (ρ, ϕ j )G ∀ϕ j , j = 1, 2, . . . , m

⇔ ∑m
k=1 µka(ϕk, ϕ j ) = (ρ, ϕ j )G ∀ϕ j , j = 1, 2, . . . , m.

We obtain the discrete Poisson equation


h �φh = �ρ
with the symmetric, negative definite stiffness matrix

h := (a(ϕ j , ϕk))

m
j,k=1

and the right hand side
�ρ := ((ρ, ϕk)G)m

k=1. (30)
With this notation the discrete potential can now be written
as solution of the discrete potential equation
�φh = 
−1

h �ρ,

and thus, the coefficients µk have the representation

µk =
m∑

j=1


−1
h

∣∣∣∣∣∣k j �ρ j =
m∑

j=1


−1
h

∣∣∣∣∣∣
k j

(ρ, ϕ j )G . (31)

In a straightforward fashion, based on the Euclidian
scalar product 〈., .〉 in R

m , we define the discrete energy

Epot
h := 1

2
〈 �φh, �ρ〉 = 1

2

m∑
k=1

µk(ρ, ϕk)G

= 1

2

m∑
k=1

µk

∑
p∈P

ωp

N∑
i=1

miψi (p)ϕk(p). (32)

This shows that definition (32) of the discrete potential
energy is equivalent to replacing the scalar product in Eq.
(28) by the discrete one (29).

By means of the discrete potential energy we can derive
the gravitational forces analogously to the continuous case
in Sect. 3. To compute the gravitational forces the deriva-
tives of the potential energy (32) with respect to the posi-
tions qi and the deformation matrices Hi of the particles are
required. Here, we have

∂

∂qi
Epot

h = 1

2

∂

∂qi
〈 �φh, �ρ〉 = 1

2

∂

∂qi
〈
−1

h �ρ, �ρ〉.

Using the symmetry of 
−1
h yields

∂

∂qi
Epot

h =
〈

−1

h �ρ,
∂

∂qi
�ρ
〉

=
m∑

k=1

µk
∂

∂qi
(ϕk, ρ)G .

Inserting

∂

∂qi
(ρ, ϕk)G =

∑
p∈P

ωp

N∑
l=1

ml
∂

∂qi
ψl(p)ϕk(p)

=
∑
p∈P

ωpmi
∂

∂qi
ψi (p)ϕk(p),

we obtain

∂

∂qi
Epot

h =
m∑

k=1

µk

∑
p∈P

ωpmi
∂

∂qi
ψi (p)ϕk(p).

Analogous computations for the deformation matrices lead
to

∂

∂ Hi
Epot

h = 1

2

∂

∂ Hi
〈 �φh, �ρ〉 =

m∑
k=1

µk

(
ϕk,

∂ρ

∂ Hi

)
G

=
m∑

k=1

µk

∑
p∈P

ωpmi
∂ψi

∂ Hi
(p)ϕk(p).

Finally, using (27) the formulas for the discrete gravita-
tional forces are given by

Fgr
i =− 1

mi

∂

∂qi
Epot

h =−
∑
p∈P

ωp
∂ψi

∂qi
(p)φh(p),

Mgr
i =− 1

mi

∂

∂ Hi
Epot

h =−
∑
p∈P

ωp
∂ψi

∂ Hi
(p)φh(p).

(33)

4.4 The particle based quadrature

As an alternative to the grid based quadrature formula we
can use a particle based quadrature formula to discretise the
scalar product on the right hand side of the variational for-
mulation (25). Then again, by means of this discrete scalar
product we obtain a fully discrete representation of the po-
tential energy (28) from which the discrete gravitational
forces can be derived. To define the discrete scalar product
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corresponding to (26), we use the quadrature formula (24) of
Sect. 4.1. As one argument will always be the mass density
ρ, we can set

(ρ, v)P :=
N∑

i=1

mi

n∑
ν=1

ανv(qi + Hi aν) =
∑
i,ν

α̃i
νv

(
Xi

ν

)
.

Then, the variational formulation of the potential equation is
given by

a(φh, ϕk) = (ρ, ϕk)P for ϕk ∈ Sh, k = 1, 2, . . . , m

with the discrete right hand side

(ρ, ϕk)P =
N∑

i=1

mi

n∑
ν=1

ανϕk(qi + Hi aν)

=
∑
i,ν

α̃i
νϕk

(
Xi

ν

)
.

(34)

Thus, we get the discrete Poisson equation 
h �φh = �ρ,
with a right hand side arising from the particle based scalar
product �ρ := ((ρ, ϕk)P)m

k=1. The discrete potential �φh =

−1

h �ρ can be represented as in (31) now using the particle
based scalar product.

Analogously to the preceding section we can define the
discrete potential energy as

Epot
h := 1

2
〈 �φh, �ρ〉 = 1

2

m∑
k=1

µk(ϕk, ρ)P .

Thus, for the discrete potential energy we obtain a for-
mula depending on the particle quadrature points. Again,
this definition is equivalent to replacing the term of the scalar
product in Eq. (28) by the discrete one (34).

If we assume for the moment that the basis functions
ϕk are continuosly differentiable, the discrete gravitational
forces acting upon the particles can be derived as before
from the given discrete potential energy Epot

h and are again

∂

∂qi
Epot

h = 1

2

∂

∂qi
〈 �φh, �ρ〉 =

m∑
k=1

µk
∂

∂qi
(ρ, ϕk)P .

Inserting (34) yields

∂

∂qi
Epot

h =
m∑

k=1

µk

N∑
j=1

m j

n∑
ν=1

αν

∂

∂qi
ϕk(q j + Hj aν)

= mi

n∑
ν=1

αν

m∑
k=1

µk
∂

∂qi
ϕk(qi + Hi aν).

With analogous computations for the derivatives with re-
spect to Hi we obtain the representation

Fgr
i = − ∑n

ν=1 αν(∇φh)(qi + Hi aν),

Mgr
i = − ∑n

ν=1 αν[(∇φh)(qi + Hi aν)][aν]T .
(35)

Remark. Unfortunately, the standard multilinear trial func-
tions are not sufficiently smooth to allow for these opera-
tions. However, as shown by the examples below, the method

nevertheless works well, if one formally adopts the expres-
sions above and simply replaces the discontinuous gradient
∇φh with the continuous multilinear interpolant of an aver-
aged ∇φh . This technique was used throughout in the nu-
merical experiments that employed particle based quadra-
ture.

4.5 Conservation properties

Deriving the equations of motion from a discrete Lagrangian
involves the conservation of the total discrete energy, as long
as we use a trial space Sh that does not vary with time.

Theorem 3 The discrete energy

E tot
h (t) := Ekin(t) + E int

h (t) + Epot
h (t)

is conserved.

Proof The usual techniques, cf. the proof of Theorem. 2,
carry over to the discrete setting, see [2, Sect. 3.2.3].

However, employing an Eulerian grid rules out the
invariance of the model with respect to translations and
rotations. Thus, we can no longer expect the conservation
of total (discrete) linear and angular momentum, as it is
guaranteed for the plain finite mass method described in
Sects. 2 and 4.1, respectively.

Remark. In the case of the particle dependent quadrature,
the proved conservation of the energy holds only if the
forces (35) use the true potential gradient ∇φh . If force
computation relies on a smoothed gradient, the conservation
of total discrete energy does not hold anymore. However,
the computational experiments of Sect. 6 show that the
conservation of the total energy seems not to be affected
much by employing a smoothed gradient. This seems to be
a good way to improve the accuracy of the method with
minimal impact on the conservation of the energy.

Remark. The two options for the discretisation of the scalar
product (26) can be combined: it can be advantageous to
use the grid based quadrature to evaluate the right hand side
of the discrete potential equation (cf. formula (30)) and to
apply the particle based quadrature to the computation of the
force integrals (cf. formula (35)), as we will discuss at the
end of Sect. 5. Yet, a strict conservation of energy remains
elusive in this case.

5 Aspects of implementation

5.1 Pressure forces

Forces constitute the right hand side of the large system of
ordinary differential equations describing the evolution of
particles and fields. Their computation is a core algorithmic
issue. Let us recall the strategy for the computation of the
pressure forces [9, 15]: The crucial distinction is between
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Fig. 2 Computation of the discrete force integrals of internal pressure

data associated with particles (like mi , Si , qi , Hi , q ′
i , and

H ′
i ), and data required at the particle quadrature points like

ρ, s, ∂ε̃
∂ρ

, and ∂ε̃
∂s . These are kept in independent data struc-

tures.
The computation of the first term of the internal pressure

forces proceeds as schematically shown in Fig. 2:

1. Interpolate the required particle data (ρ, s) at the particle
quadrature points Xi

ν

2. Compute ∂ε̃
∂ρ

and ∂ε̃
∂s required for the forces at the quadra-

ture points Xi
ν

3. Evaluate the discrete force integrals

5.2 Gravitational forces

As the discrete potential φh is given as a finite element func-
tion on a grid, the transfer of information between grid and
particles becomes a key issue. In Sect. 4.3 and 4.4 we out-
lined how it can be accomplished using different quadrature
policies. Figure 3 shows a schematic diagram of the force
computation procedure independent of the applied quadra-
ture rule that proceeds as follows:

1. Computation of the right hand side of the discrete po-
tential equation, i.e. the evaluation of the discrete scalar
product (., .)G or (., .)P

2. Computation of the gravitational potential (e.g. by a
multigrid method)

3. Computation of the forces, i.e. evaluation of (33) or (35)

5.2.1 Grid based quadrature

In this case, to approximate the potential, the right hand
side (30) of the discrete Poisson equation has to be com-
puted first by means of the discrete scalar product (29). The
storage of the values of the mass density at the quadrature
points is essential to save computational effort. To this end,
the mass density ρ has to be interpolated at the quadrature

Fig. 3 Computation of the gravitational force

points of the grid. Again, we use the fact, that the mass dis-
tribution functions ψi of the particles have compact support.
Hence, for the density value at a quadrature point w we have
to consider only the particles ψi fulfilling w ∈ supp (ψi )

ρ(w) =
∑

i,p∈supp(ψi )

miψi (w).

In order to avoid traversing the particle set for each quadra-
ture point, we evaluate this sum by distributing the density
contributions of the particles to the values at the quadrature
points. Therefore, we have to find all quadrature points con-
tained in a particle. This is done by searching the grid cells
intersecting a particle, i.e. the support of ψi . These elements
and, thus, the quadrature points contained in the support of
a particle can be easily determined by using the bounding
box of each particle (i.e. the smallest rectangle with edges
parallel to the axes containing the particle).

For the computation of the right hand side of the poten-
tial equation, i.e. the discrete scalar product, a loop over all
quadrature points is required during which the values at the
quadrature points are distributed to the vector components
( �ρ)k .

After the interpolation of the mass density and the eval-
uation of the discrete scalar product, the potential equa-
tion can be solved, e.g. by a multigrid method. Then, the
gravitational potential is given at the grid points. To com-
pute the forces (cf. Eq. (33)) the potential is required at the
quadrature points where it has to be interpolated. It can also
be useful to store these values because the nodes can be con-
tained in the supports of several particles and thus, they con-
tribute to the forces of each of these particles. As before we
can exploit that ψi and ϕk have compact support. Hence, the
interpolation of the potential is given by

φh(w) =
m∑

k=1
p∈supp(ϕk )

µkϕk(p),

and formula (33) for the force computation reduces to

Fgr
i = −

∑
p∈P

w∈supp(ψi )

ωp
∂ψi

∂qi
(p)

m∑
k=1

p∈supp(ϕk )

µkϕk(p),

Mgr
i = −

∑
p∈P

w∈supp(ψi )

ωp
∂ψi

∂ Hi
(p)

m∑
k=1

p∈supp(ϕk )

µkϕk(p).

Hence, also the force computation involves a loop over all
particles.

Particle based quadrature

If this strategy is used for the computation of the gravi-
tational forces, the particle data are required at the parti-
cle quadrature points. However, this interpolation procedure
is already done for the computation of the pressure forces.
Largely, it is the same as for the grid quadrature points and
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can be done by a loop over all particles. For the computation
of the right hand side (34) basically the weights α̃i

ν = miαν

of the particle quadrature points are required. But they can
be computed once and for all because the particles do not
change their mass, and the weights and the locations of the
quadrature points are fixed with respect to the particle. Then,
the evaluation of (34) consists of a loop over all particle
quadrature points. To this end, the element of the grid con-
taining a particle quadrature point has to be found.

After the approximation of the potential, the gradient of
the potential has to be interpolated at the particle quadrature
points. Since the gradient of the potential is required only
once at each particle quadrature point, its value need not be
stored.

Remark. Thanks to the simple tensor product structure of
the grid, see Sect. 4.3, it takes simple index calculations to
determine the grid cells, in which a point is located.

5.3 Grids and adaptivity

There are many rationales for using a non-uniform and tem-
porally varying grid Gh for the computation of the discrete
potential φh :

– the mass distribution may be grossly non-uniform and
display considerable temporal variations.

– the artificial boundary of the computational domain has
to be sufficiently far from suppρ to justify the use of
a simple boundary condition (as, e.g., (36) in Sect. 6).
Thus, it may have to be extended, if ρ changes.

– far off suppρ the potential will be very smooth and can
be economically resolved on a rather coarse grid.

– in order to guarantee a prescribed accuracy of the fi-
nite element solution grid adaptation controlled by an
a-posteriori error estimator must be applied [6].

It turns out that the quadrature policy – the grid based
as well as the particle based – has a profound impact on the
grid refinement strategy:

Grid based quadrature: the grid refinement has to guaran-
tee that the support of each particle contains at least a few
grid quadrature points. If this rule is ignored, a particle not
containing any grid quadrature points would not give a con-
tribution to the right hand side of the potential equation and
would not be influenced by the gravitational force. As par-
ticles can shrink significantly, a substantial part of the mass
can become invisible to the potential equation. The need for
the grid to resolve small particles can lead to excessive grid
refinement and can clash with control by an a-posteriori er-
ror estimator.
Particle based quadrature: the refinement of the grid has
to guarantee that particle quadrature points are contained in
each element of the grid intersected by a particle. Otherwise
some grid cells will fail to see any mass density. This will
be mistaken for strong oscillations of the right hand side by
an error estimator and lead it astray. Thus, the grid resolution
has a lower bound given by the particle size. However, this is

not very satisfactory, since for a good approximation of the
potential and particularly, of the gradient of the potential, a
finer grid may be necessary.

Summing up, with both methods a coupling of the grid
refinement with the particle size is necessary. This is not the
case with the asymmetric quadrature policy sketched at the
end of Sect. 4.5, which uses the grid based quadrature for the
evaluation of the right hand side scalar product (cf. Eq. (30))
and the particle based quadrature for the force computation
(cf. Eq. (35)). The advantage of this procedure is that the re-
finement of the grid is largely independent of the particles
and thus, an error estimator can be applied easily. Yet, there
is no theory which ensures the conservation of energy. How-
ever, if the approximation of the respective integrals is good
enough, this may be negligible.

5.4 Computational effort

A crude estimate for the computational effort involved in
the transfer of information between particles and grid can be
obtained by counting the number of accesses to quadrature
points.

Below, let N denote the number of particles, n P the total
number of particle quadrature points, and n P

i the number
of particle quadrature points contained in the support of the
i th particle. Analogously, let nG denote the total number of
grid quadrature points and nG

i the number of grid quadrature
points contained in the support of the i th particle. With these
notations Table 1 summarises the following consideration.

First, we consider the interpolation of the mass den-
sity at the quadrature points (cf. Table 1, Step 1). For this
interpolation a particle contributes to the density at each
quadrature point it contains. Therefore, using the particle
oriented method, the effort depends on

∑N
i=1 n P

i . Note that
the interpolation at the particle quadrature points is also re-
quired for the computation of the pressure forces and thus,
this means no additional effort. Applying the grid oriented or
asymmetric method, the effort for the interpolation depends
on

∑N
i=1 nG

i .
For the computation of the right hand side of the discrete

potential equation, we only have to consider the effort for

Table 1 Dependence on the number of quadrature points of the com-
putational effort

Particle Grid
Method oriented Asymmetric oriented

1. Interpolation of ρ
∑N

i=1 n P
i

∑N
i=1 nG

i
2. Right hand side:

quadrature n P nG

restriction Same effort for same grids
3. Multigrid method Same effort for same grids
4. Force computation:

(a) Interpolation of n P nG

∇φh , resp. φh
(+ effort for smoothing ∇φh)

(b) Forces of the
particles n P ∑N

i=1 nG
i
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the evaluation of the quadrature rule on the individual grid
elements. Hence, the costs of the quadrature depend on the
total number of quadrature points, i.e. on n P using the parti-
cle oriented method and nG using the grid oriented method
and thus, also using the asymmetric method (cf. Table 1,
Step 2).

Next, for the force computation the potential (grid based
method) or the gradient of the potential (particle based and
asymmetric method) has to be interpolated at the respective
quadrature points (cf. Table 1, Step 4(a)). If these values are
stored, the costs are proportional to nG and n P , respectively.
Smoothing of the gradient requires additional work.

Finally, the effort for the evaluation of the forces de-
pends on n P in the case of the particle based and asymmetric
method, since only the quadrature points of the i th particle
contribute to the forces acting on this particle. Therefore,
in this case one need not store the values of the gradient
of the potential at the quadrature points. Conversely, using
the grid based method, a grid quadrature point contributes
to the forces of all particles in which it is contained. For
this reason, the effort for the force computation depends on∑N

i=1 nG
i (cf. Table 1, Step 4(b)). Furthermore, if the values

of the potential are not stored at the quadrature points, the in-
terpolation of the potential has to be carried out many times.

One advantage of the particle oriented method is that the
interpolation of the density is also required for other force
computations and thus, causes no additional effort. More-
over, the evaluation of the gravitational forces acting on the
i th particle only depends on its quadrature points. The same
is true of asymmetric method. However, using these methods
in practice entails smoothing the gradient of the potential,
which means additional costs.

6 Numerical experiments

We study the behaviour of the finite mass mesh method for
a few two-dimensional cases. This can be thought of as a
three-dimensional arrangement with translation invariance
in one coordinate direction. In a sense, we look at the evo-
lution of “gas columns” under self-gravity. For all examples
the equation of state of barytropic ideal gases

ε = π0

γ − 1

(
ρ

ρ0

)γ

exp

(
s

cvρ

)

with ρ0 = 1, π0 = γ−1
γ

, and γ = 1.4 provides the density
of the internal energy which is required e.g. for the com-
putation of the pressure forces. In all examples the pressure
forces, the gravitational forces, the frictional forces, and the
heat production are taken into account. Throughout scaled
equations are considered.

The gravitational potential is computed on a non-
uniform tensor product grid using continuous piecewise bi-
linear finite elements. We remark that in our computations

on the boundary of the cut-off domain � (cf. Sect. 4.2) the
Dirichlet boundary conditions

φ(x) =
N∑

i=1

mi
1

2π
log(|x − qi |), x ∈ ∂� (36)

are imposed. This amounts to an approximation of the par-
ticles by point masses. If the boundary of � is far enough
away from the boundary of the support of ρ, this assump-
tion is reasonable.

The discrete potential equation is solved by means of
a hierarchical transformation multigrid method (s. [10]),
which enjoys fast convergence such that its truncation error
is negligible, by and large. If the force terms are evaluated by
the particle based quadrature rule, the potential gradient has
to be smoothed. In all two-dimensional numerical tests this
is achieved by averaging at the grid points and subsequent
bilinear interpolation.

For the particle based quadrature strategy of Sect. 4.1 the
quadrature rule described in [9, Sect. 4] is used. This quadra-
ture formula is exact for fifth order polynomials, and in this
approach a particle owns 25 quadrature points. For the grid
based quadrature, the tensor product of a one-dimensional
three point Gauß quadrature rule is used. An exponential in-
tegrator is used for timestepping, cf. [9, Sect. 5], [13].

Since the method does not prevent the particles from
large deformations, they can become thin long “needles”
that are not capable of adapting properly to the curvature
of a flow. Of course, as long as integration in time is done
exactly this does not affect stability: since the energy is con-
served and therefore bounded, the particles cannot become
arbitrarily small in a finite time interval. But in the fully dis-
crete setting this could mean a tight threshold on the size of
the time steps.

To overcome these problems we use restarts of the sim-
ulation. If the size of a particle decreases too much, the cur-
rent particle set is discarded and the global physical quan-
tities, like the mass density and the velocity field, are rep-
resented by a new set of particles. This restart method was
presented and analysed in [8], to which we refer for more
details. We point out that more elaborate restarting schemes
are conceivable [16], but they had not yet been implemented
at the time of our numerical experiments. Restarts are re-
lated to the projections used in almost all solution methods
for conservation laws. However, in contrast to these methods
that use such interpolations in every time step, in the finite
mass method the restart is employed more rarely.

For the approximation of the initial data, we proceed as
described in [9, Sect. 6]. As a result, we obtain an initial
particle configuration which is arranged on a regular grid
covering the region occupied by mass.

6.1 Gas column in hydrostatic equilibrium

For this first numerical example we have an analytic solu-
tion (exact scaled radius 3.229). The discretisation by the fi-
nite mass method relies on 1041 particles and the problem is
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Fig. 4 Cross sections of the mass density and the corresponding error (scaled by 100 and plotted in red) of the gas column in equilibrium at
time t (bilinearly interpolated averaged gradient of potential)

solved for the period 0 ≤ t ≤ 101 by an exponential integra-
tor using 10100 time steps. 3 The potential is approximated
on a non-uniform tensor product grid which is adapted by a
hierarchical a-posteriori error estimator. This is feasible, be-
cause the asymmetric quadrature policy is used, which per-
mits us to decouple the grid resolution from the particle size.

The approximate solution for ρ is compared with the ex-
act equilibrium density. In Fig. 4, one-dimensional cross sec-
tions along the x-axis of the approximated density and the
error (plotted in red and multiplied by the factor 100) are
depicted. We observe an oscillation of the error which in-
dicates that the approximation oscillates slightly around the
equilibrium state. But the difference of the exact and the ap-
proximated density is rather small.

6.2 Rotating and oscillating gas column

For this example we use the transformed initial mass density
ρ(r) := c2 · ρ̂(c r), where ρ̂(r) denotes the density corre-
sponding to the equilibrium state of the previous example
and c = 0.85. Moreover, the gas column is provided with
the angular velocity ω = 0.1. This yields a configuration
of a rotating gas column that is not in equilibrium but os-
cillates around the equilibrium state. Again, for the simula-
tion 717 particles, and 10100 time steps on the time inter-
val [0, 101] are used. First, we show results for the particle
based method. The refinement of the grid is controlled by
the particle size.

The particle configuration in Fig. 7 illustrates alternating
phases of contraction (e.g. t = 0, 4, 6) and expansion (e.g.
t = 8, 12, 14). In Fig. 7 one particle is marked to follow
the motion. One can observe the rotation of the gas column,
its contraction, and expansion. The regular orientation of the
particles is conserved during the motion.

The total angular momentum is shown in Fig. 5. The rel-
ative change of the angular momentum remains in the range
of 2 · 10−4. We remark that the oscillations of the angular
momentum seems to be an effect of the change of the grid
that is adapted to the current particle distribution.

3 Unless mentioned otherwise, frictional forces are computed with
R = 500, see [9].
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Fig. 5 Total angular momentum of the rotating and oscillating gas col-
umn and its relative change (note that for the actual value of the angular
momentum one has to add the value 1.23625)
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Fig. 6 Energy balance in the case of the rotating and oscillating gas
column (particle oriented method)

The energy balance shown in Fig. 6 illustrates the alter-
native transformation of the individual energies correspond-
ing to the oscillation. The total energy is conserved. The os-
cillations are slightly damped which is an effect of the fric-
tion (artificial viscosity).

For comparison, we conduct this simulation also with the
asymmetric method. The simulation basically behaves alike.
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Fig. 7 Particles of the two-dimensional rotating and oscillating gas column at time t

The plot of Fig. 8 shows the energy balance in a simula-
tion applying the asymmetric method. The energy balance
seems to be unchanged. Thus, the asymmetric method does
not disturb the conservation of energy. Also the range of the
relative change of the total angular momentum is the same as
before.

6.3 Two-dimensional colliding gas columns

The following numerical examples examine gas columns in
equilibrium attracting each other by gravitation. Eventually,
they collide, merge and oscillate around an equilibrium state.

When the gas columns collide, strong forces due to fric-
tion act on the particles. First of all the particles at the bound-
ary of the gas columns, which have small masses, deform
strongly. As explained earlier, this enforces restarts trig-
gered by shrinking particles. The criterion for a restart is
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Fig. 8 Energy balance in the case of the rotating and oscillating gas
column (asymmetric method)
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Fig. 9 Cross sections of the mass density in the case of two two-dimensional gas columns attracting each other at time t

the change of the particle size, particularly the change of the
determinant of the deformation matrices Hi . For the simula-
tion, the time interval [0, 101] is considered, and 10100 time
steps and 89 restarts are used (cf. Fig. 10).

The computation starts with 966 particles, and the initial
gas columns are given by the mass density of the example
of Sect. 6.1 and their centres are located on the x-axis 8 dis-
tance units apart. 4 Again, the asymmetric method is applied
for the computation of the gravitational forces and the grid
refinement is coupled with the particle size.

In Fig. 9 cross sections of the mass density along the x-
axis are shown. The gas columns attract each other by the
gravitational forces (t = 1), penetrate each other (t = 5),
merge (t = 7), and begin to oscillate (t > 9). For illustration
also some two-dimensional plots of the density are presented
in Fig. 12.

4 This time, the friction parameter R is chosen as function depend-
ing on the density (R = 500ρ), see [9]. This implies that the frictional
forces are smaller at the boundary of the gas columns where they pen-
etrate first and increase with the increasing mass density during the
collision.

The corresponding particle sets are shown in Fig. 11.
One can observe that the particles deform in the area where
the columns begin to penetrate (t = 5, 6, 7). Note that be-
cause of the restarts the particles are not deformed very
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Fig. 10 Restarts of the simulation of two gas columns attracting each
other
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Fig. 11 Particles of two gas columns attracting each other at time t (note that in the diagram at time t = 15 the scale is changed)

strongly and the number of the particles changes during the
simulation. At the time t = 100, the orientation of the par-
ticles are similar to the one we have seen in the example of
the gas column in equilibrium. Mainly the particles at the
boundary of the column deform, whereas in the interior the
regular orientation is conserved. This seems to indicate that
the configuration becomes stable.

The details of some grids used for the computation of
the gravitational potential are shown in Fig. 13. During the
collision the grid can contain much more elements than in
the grids presented here, e.g. 21120 squares at the time t =
9. For comparison, the grids for the same experiment, now
controlled by the error estimator are shown in Fig. 14. These
grids are much smaller.

The restart scheme we use conserves the total mass and
the total entropy. Considering the energy balance (s. Fig. 15)
we observe that the total energy shows some oscillations as
well as the potential energy. Since the discrete potential en-
ergy depends on the grid this is not surprising. If the pro-
gram is restarted the grid has to be built anew from the new
particle data. This may change the grid and the grid data
more than the adaptation of the grid in each time step. In
addition, the decrease of the total energy at the time of the
collision can be an effect of the time discretisation. How-
ever, Fig. 15 also shows that the energy is basically con-
served. First, the gravitational energy decreases since the gas
columns are accelerated due to the gravitation. Thus, the ki-
netic energy increases. The internal energy mainly remains
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Fig. 12 Mass density of two gas columns attracting each other at time t

Fig. 13 Grids in the case of two gas columns attracting each other at time t (particle based refinement)
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Fig. 14 Grids controlled by the error estimator in the case of two two-dimensional gas columns attracting each other at time t
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Fig. 15 Energy balance in the case of two attracting two-dimensional
gas columns (with marked restarts on the time axis)

constant until the columns penetrate. After the collision, an
oscillation can be observed.

Figure 16 shows the total angular momentum that is zero
in this example. Despite the restarts the change remains in
the range of 4 · 10−8.
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Fig. 16 Total angular momentum of two attracting two-dimensional
gas columns (with marked restarts on the time axis)

6.4 Attracting gas columns rotating in the same direction

For the next numerical example, we consider two rotating
gas columns attracting each. For the initial configuration we
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Fig. 18 Total angular momentum of two attracting gas columns rotating in the same direction and its relative change (with marked restarts on
the time axis)
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Fig. 19 Particles of two gas columns rotating in the same direction and attracting each other at time t
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Fig. 20 Change of the total angular momentum during a and between two successive restarts (asymmetric method)
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Fig. 17 Restarts of the simulation of two gas columns rotating in the
same direction and attracting each other

choose two rotating gas columns in equilibrium. They rotate
in the same direction with the same angular velocity ω =
0.1. We start with 650 particles and the simulation is con-
ducted for the time interval [0, 101] with a time step size of
5 · 10−3. Again, the restarts have to be used. 5 This time,
the gas columns are located on the straight line x = −y,
and thus, the cross sections of the mass density are along
this line. At the beginning, the centres of the columns have
a non-dimensional distance of about 10.

Unless mentioned otherwise, the asymmetric method is
used for the computation of gravitational forces and the re-
finement criterion is given by the particle size.

In this simulation, 111 restarts occur. In Fig. 17 one can
observe that when the gas columns collide (around the time
t = 10) the frequency of the restarts is highest. This typi-
cal behaviour also occurs, if the grid oriented method (110
restarts) or the particle oriented method (109 restarts) are
used.

Considering the particles in Fig. 19 one can observe the
rotation of the individual columns at the time t = 1 and
the deformation of the particles when the columns collide

5 For the frictional forces we use R = 500ρ as in the preceding
example.

(t = 7, 8, 10). Again, we can observe the stages of attrac-
tion, penetration and the oscillation of the eventual single
gas column. Because of the restarts one can hardly see the
rotation of the total configuration after the collision. And in
fact, in this example the angular momentum is by no means
conserved, but the rotation is damped (cf. Fig. 18). The rel-
ative change of the total angular momentum is almost 70
percent of the initial angular momentum.

To investigate the deviation of the angular momentum L
in more detail, we monitor how it changes during a restart.
To this end, we compute

|L(before restart) − L(after restart)|
|L(before restart)| .

For comparison, the change of the angular momentum be-
tween two successive restarts
|L(trestart i ) − L(trestart i+1)|

|L(trestart i )|
is considered. In Fig. 20 these data are shown. One can ob-
serve that the drift of the total angular momentum is almost
entirely due to the restarts. This holds independently of the
quadrature policy, see [2].

The energy balance (s. Fig. 21) shows the same be-
haviour as in the other example of colliding gas columns. We
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Fig. 21 Energy balance (asymmetric method; ticks mark restarts on
the time axis)
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remark that also in the case of the energy the application of
particle oriented, grid oriented or asymmetric method does
not make much of a difference.

7 Conclusion

We coupled the finite mass method with long range gravita-
tional interactions, where the latter are discretised in an Eu-
lerian framework. The scheme can well cope with massless
regions and strongly anisotropic mass distributions, as long
as restarts are used to avoid grossly distorted mass packets.
The interpolations involved in restarts require a closer ex-
amination in order to curb the drift in energy and angular
momentum observed in numerical experiments.
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thesis, Tübingen, http://w210.ub.uni-tuebingen.de/dbt/volltexte/
2000/178/ (2000)

9. Gauger, C., Leinen, P., Yserentant, H.: The finite mass method.
SIAM J. Numer. Anal. 37, 1768–1799 (2000)

10. Griebel, M.: Zur Lösung von Finite-Differenzen- und Finite-
Element-Gleichungen mittels der Hierarchischen-Trans-
formations-Mehrgitter-Methode. Technical Report TUM-INFO-
01-90-I07-450, SFB 342, Institut für Informatik, TU München,
München, Germany (1990)

11. Gurtin, M.: An Introduction to Continuum Mechanics, vol. 158
of Mathematics in Science and Engineering. Academic Press,
New York (1981)

12. Hernquist, L., Katz, N.: Treesph – a unification of sph with the
hierarchical tree method. Astrophysical Journal, Supplement 70,
419–446 (1989)

13. Hochbruck, M., Lubich, C.: On Krylov subspace approximations
to the matrix exponential operator. SIAM J. Numer. Anal. 34,
1911–1925 (1997)

14. Klingler, M.: Die Methode der Finiten Massen in der astro-
physikalischen Hydrodynamik. PhD thesis, Institut für Physik,
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Tübingen, Tübingen, Germany. Submitted to SIAM J. Sci. Comp.
(2003)

16. Klingler, M., Leinen, P., Yserentant, H.: A restart procedure for
the finite mass method. Report, SFB 382, Universität Tübingen,
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