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Abstract Since its discovery, mobile DNA has fascinated researchers. In partic-
ular, many researchers have debated why insertion sequences persist in prokaryote
genomes and populations. While some authors think that insertion sequences persist
only because of occasional beneficial effects they have on their hosts, others argue
that horizontal gene transfer is strong enough to overcome their generally detrimental
effects. In this study, we model the long-term fate of a prokaryote cell population, of
which a small proportion of cells has been infected with one insertion sequence per
cell. Based on our model and the distribution of IS5, an insertion sequence for which
sufficient data is available in 525 fully sequenced proteobacterial genomes, we show
that the fitness cost of insertion sequences is so small that they are effectively neutral
or only slightly detrimental. We also show that an insertion sequence infection can
persist and reach the empirically observed distribution if the rate of horizontal gene
transfer is at least as large as the fitness cost, and that this rate is well within the rates of
horizontal gene transfer observed in nature. In addition, we show that the time needed
to reach the observed prevalence of IS5 is unrealistically long for the fitness cost and
horizontal gene transfer rate that we computed. Occasional beneficial effects may thus
have played an important role in the fast spreading of insertion sequences like IS5.
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1 Introduction

Bacterial insertion sequences (ISs) are the simplest form of autonomous mobile DNA.
They are short (800–2,500 bp) DNA sequences typically consisting of one open read-
ing frame that codes for the enzyme transposase which is needed for transposition.
The open reading frame is flanked by short terminal inverted repeats which serve as
recognition sites for the transposase. This enzyme usually excises the IS and inserts it
elsewhere in the genome (conservative transposition), but occasionally it replicates the
IS during this transposition process (replicative transposition) (Chandler and Mahillon
2002). An IS may get lost from a genome through excision. ISs have been assigned
numbers, roughly in the order of their discovery: e.g. IS1A, IS5, IS630. Based on their
internal structure and the inverted repeats, all ISs have been classified into 20 different
families (Chandler and Mahillon 2002; Mahillon et al. 2009). The focus of our study,
IS5, belongs to a rather heterogeneous family of ISs that is widely distributed among
bacteria and archaea.

IS5 and all other ISs are inherited through vertical transmission. But they can also
be horizontally transmitted by horizontal gene transfer (HGT) between prokaryotes,
i.e. by natural transformation, by transduction through phages, and by conjugation
through plasmids. The reported rates of transposition, excision and HGT are typically
very low. Table 1 provides an overview over these rates.

Due to their transposition activity and the deletions, insertions and inversions
through homologous recombination that are possible if more than one IS is present
in a genome (Galas and Chandler 1989; Kleckner 1989; Schneider and Lenski 2004),
ISs pose a potential threat to their hosts, although occasional beneficial effects have
also been reported (Hall 1999; Schneider and Lenski 2004). Besides acting on their
own, two ISs can also form a composite transposon, which consists of two copies of
an IS that flank intermediary genes and transpose synchronously, thereby mobilising
the intermediary genes. In this way, ISs are involved in transferring genes that confer
resistance to antibiotics (Berg 1989; Kleckner 1989), genes that encode toxins (So and
McCarthy 1980), or genes with new metabolic functions (Top and Springael 2003).

Table 1 Transposition, excision, and HGT rates reported by different authors

Event Rates Sources

Transposition Conservative 10−7–10−4 Kleckner (1989),
Chandler and Mahillon (2002)

Excision 10−10 Kleckner (1989)

HGT Transformation 10−6–10−3 Williams et al. (1996)

Transduction 10−8 Jiang and Paul (1998)

Conjugation 10−6–10−5 Dahlberg et al. (1998)

Rates have been converted into events per cell or IS and generation
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On the one hand, ISs therefore help to spread antibiotic resistance among pathogens
and pose a public health threat, but on the other hand, ISs are also valuable tools used
in genetic engineering.

While most authors agree that harboring ISs in the genome is in general detrimental
to the cell, there is disagreement about whether ISs persist because they are occasion-
ally beneficial to their hosts (Blot 1994; Shapiro 1999; Schneider and Lenski 2004)
or because HGT is sufficiently strong to overcome selection against ISs due to their
detrimental effects on their hosts (Dawkins 1976; Doolittle and Sapienza 1980; Orgel
and Crick 1980; Charlesworth et al. 1994; Nuzhdin 1999).

In an earlier study, we used a stochastic, branching process model to show that even
purely detrimental ISs can invade a host cell population and persist, provided that the
HGT rate is larger than the fitness cost caused by the IS (Bichsel et al. 2010). Based on
our model, we showed that most IS infections do not persist and die out very quickly.
Those infections that do persist, take a very long time to reach noticeable population
sizes. While the branching process model is well suited to model the initial phase of
an IS infection, it does not allow for interactions between cells, and is not useful for
modeling the long-term effects of an IS infection. In this study, we therefore use a
deterministic model based on a system of ordinary differential equations to examine
whether purely detrimental ISs can persist. We then determine how large a fitness
cost of an IS and a HGT rate would be needed to obtain the IS count distribution we
observe in bacterial genomes. In doing so, we focus on the largely proteobacterial
insertion sequence IS5, the only IS for which sufficient data is available. Because very
similar IS count distributions have been observed in many other ISs (Sawyer et al.
1987; Wagner 2006; Touchon and Rocha 2007), we presume that our results are at
least qualitatively comparable to those that would be obtained for other ISs.

2 Data, model, and methods

2.1 Data

We obtained the genome sequences of 1447 fully sequenced prokaryote genomes from
542 genera that were available at NCBI on September 1, 2011 (NCBI 2011). We also
obtained the sequences of one representative IS from each of the 20 known IS families
from the IS Finder database (Mahillon et al. 2009). We then used IScan (Wagner et al.
2007) to search the 1,447 genome sequences (only chromosomes, no plasmids) for
these 20 representative IS sequences. For later analysis, we needed independent IS
count observations. We were therefore interested in ISs that occur in many genera.
Of all 20 ISs, only 3 occur in more than 10 different genera. And of these 3 ISs, only
IS5 occurs often enough in these genera so that a random sample of one genome per
genus contains on average more than 10 infected genomes. To get more dependable
results in our statistical analysis, we therefore focused on IS5. It turned out that IS5
(as most of the other 20 ISs we examined) can be found mainly in genomes from
proteobacteria: only 4 of 58 infected genomes do not belong to proteobacteria. We
thus restricted our IS5 count analysis to proteobacteria. In our data set, this phylum
consists of 525 genomes in 180 genera, where we have added Shigella to the genus
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Fig. 1 Model design. Zk = Dk/K is the normalized density of cells with k ∈ {0, . . . , l} ISs, where Dk is
the density of cells with k ISs, and K is the carrying capacity; r = 1 is the base growth rate per uninfected
cell; s is the base fitness effect of one IS; u is the base replicative transposition rate of one IS; e is the excision
rate per IS; h is the HGT rate; l = 60 is the maximal IS count per genome; α, β, γ ∈ {0, 1, 2} are power
function exponents that control the increase of the fitness effect, of the HGT rate, and of the replicative
transposition rate with increasing IS count per cell. All rates are per time unit. Because r = 1, one time unit
corresponds to the doubling time during the exponential cell growth phase. Solid lines indicate a change in
the total cell density, and dashed lines indicate a change only in the normalized density distribution of the
cells with different IS counts in their genome

Escherichia because of their well-known close phylogenetic relationship (Lan and
Reeves 2002).

2.2 Model design

Figure 1 shows the design of our model.
We assume an uninfected prokaryote host cell population living at carrying capacity

K , where K is a cell population density. The prokaryote cells live in a well-mixed
bulk environment, and their normalized population density is given by Z0 = D0/K ,
where D0 is their density. The change of Z0 over time is governed by the logistic
equation Ż0 = r(1 − Z0)Z0, with the base population growth rate r . We set r = 1,
so that one time unit corresponds to the doubling time during the early exponential
growth phase, and we take this as the generation time of a cell. At the begin of an IS
infection, each cell of a very small proportion of cells (e.g. 10−6) is infected with one
IS in its genome. We then model the spread of the IS infection through the host cells
and compute the equilibrium distribution of the IS count per prokaryotic cell genome.
To do so, we use a system of ordinary differential equations for the normalized cell
densities Zk = Dk/K , where Dk is the density of cells carrying k ISs in their genome.
To keep the computation numerically tractable, we limit the maximal number of ISs
per infected cell to l = 60. This is not a strong limitation, because only few genomes
harbor more than 60 ISs, as other authors have reported (Sawyer et al. 1987; Wagner
2006; Touchon and Rocha 2007). Furthermore, we show in the results section that no
genome in our data set contains more than 60 copies of IS5, the focus of our inter-
est. Besides the base population growth rate r , our model contains the following rate
parameters: the base fitness effect s of one IS, the base replicative transposition rate
u of one IS, the excision rate e per IS, and the HGT rate h.

We allow for a nonlinear impact of an increasing IS count per cell on the cell’s fit-
ness, its infectiousness to other cells, and its total replicative transposition rate. To this
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end, we model the fitness effect, the HGT rate and the total replicative transposition
rate of all ISs in a cell as a power function of the cell’s IS count, with exponents α, β

and γ , respectively. We choose α, β, γ ∈ {0, 1, 2}, where an exponent of 0 reflects
independence of the rate from the cell’s total IS count, an exponent of 1 reflects lin-
ear dependence, and an exponent of 2 reflects quadratic dependence of the rate from
the cell’s total IS count. This is equivalent to a diminishing (exponent 0), a constant
(exponent 1) and an increasing (exponent 2) effect per IS of an increasing IS count on
the rate. For simplicity, we let the total excision rate increase linearly with the cell’s
IS count, i.e. we assume that ISs are excised independently of each other.

Our data suggest that the number of infected cells in a population stays low com-
pared to the total number of cells (see Fig. 2). This has also been observed before
(Wagner 2006; Touchon and Rocha 2007). To simplify our model, we therefore
assume that infected cells are surrounded by uninfected cells only, and that no HGT
occurs between infected cells. Furthermore, we assume that during HGT only one
IS gets copied from an infected to an uninfected cell. This is justified by the obser-
vation that during transformation and transduction typically only small DNA frag-
ments are transferred from one cell to another, and that ISs on a plasmid transferred
during conjugation must first be inserted into the chromosome (Madigan et al. 2009,
p. 297ff).

2.3 Model analysis

Based on our model design shown in Fig. 1, we describe the dynamics of an IS
infection with the following system of ordinary differential equations, where Z =∑l

k=0 Zk ≥ 0:

Ż0 = r(1 − Z)Z0 − h Z0

∑l

k=1
kβ Zk + eZ1

Ż1 = [r(1 − Z) + s] Z1 + h Z0

∑l

k=1
kβ Zk − u Z1 − eZ1 + 2eZ2

Ż2 = [
r(1 − Z) + 2αs

]
Z2 + u Z1 − 2γ u Z2 − 2eZ2 + 3eZ3

... (1)

Ż j = [
r(1 − Z) + jαs

]
Z j + ( j − 1)γ u Z j−1 − jγ u Z j − jeZ j + ( j + 1)eZ j+1

...

Żl = [
r(1 − Z) + lαs

]
Zl + (l − 1)γ u Zl−1 − leZl

This system has two obvious equilibrium solutions: the first one is Z0 = Z1 =
· · · = Zl = 0, i.e. population extinction, and the second one is Z0 = 1 and Z1 =
· · · = Zl = 0, i.e. IS extinction. We are more interested in equilibria where not all Zk

for k ∈ {1, . . . , l} vanish. In that case Z > 0, and using the proportions pk = Zk/Z
and their derivatives with respect to time,
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ṗk = Żk

Z
− Zk · Ż

Z2 = 1

Z
Żk − pk

1

Z

l∑

j=0

Ż j = 1

Z
Żk − pk

⎛

⎝r(1 − Z) + s
l∑

j=1

jα p j

⎞

⎠,

we define a new system of ordinary differential equations for pk (k ∈ {0, . . . , l}) and
for Z :

ṗ0 = − h p0 Z
∑l

k=1 kβ pk + ep1 − s p0
∑l

k=1 kα pk

ṗ1 = sp1 + h p0 Z
∑l

k=1 kβ pk − up1 − ep1 + 2ep2 − s p1
∑l

k=1 kα pk

ṗ2 = 2αsp2 + up1 − 2γ up2 − 2ep2 + 3ep3 − s p2
∑l

k=1 kα pk
...

ṗ j = jαsp j + ( j − 1)γ up j−1 − jγ up j − jep j + ( j + 1)ep j+1 − s p j
∑l

k=1 kα pk
...

ṗl = lαspl + (l − 1)γ upl−1 − lepl − s pl
∑l

k=1 kα pk

(2)

and

Ż =
l∑

k=0

Żk = r(1 − Z)Z + s Z
l∑

k=1

kα pk =
(

r(1 − Z) + s
l∑

k=1

kα pk

)

Z . (3)

Besides setting r = 1, we set the replicative transposition rate u and the excision
rate e to one of two fixed parameter sets that together cover a range of realistic
rates (see Table 1). In the main text, we use (u, e) = (

10−7, 10−10
)
, and in the

appendix we use (u, e) = (
10−9, 10−11

)
. To solve the system (2, 3), we define

p = (p0, . . . , pl)
T , Sα(p) = ∑l

k=1 kα pk, Sβ(p) = ∑l
k=1 kβ pk , and the HGT param-

eter H(p, Z) = h Sβ(p) Z . Observe that H ≥ 0. The differential equations for
p0, . . . , pl in (2) can now be written in vector notation as

ṗ = M(s, H(p, Z)) · p − s Sα(p) p (4)

where

M(s, H)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−H e
H s − u − e 2e

u 2αs − 2γ u − 2e 3e
· · · · · · · · ·

( j − 1)γ u jαs − jγ u − je ( j + 1)e
· · · · · · · · ·

(l − 1)γ u lαs − le

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

We get again the IS extinction equilibrium for p = e0 = (1, 0, . . . , 0)T , because
Sα(e0) = Sβ(e0) = H(e0, Z) = 0 for any Z > 0, and therefore M(s, 0) · e0 = 0, so
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that M(s, 0) · p − s Sα(p) p = 0. For all other equilibrium solutions (p, Z) of (2, 3)
that may exist, H = H(p, Z) and λ = s Sα(p) must fulfill M(s, H) · p = λ p. We
are therefore looking for non-negative eigenvectors of the matrix M(s, H) for H > 0
(H = 0 is not interesting, because it implies Z1 = · · · = Zl = 0).

M(s, H) for H > 0 is a Metzler–Leontief matrix, i.e. (M)i j ≥ 0 for i �= j (Seneta
1981, p. 45). In addition, M is irreducible. Therefore, for any choice of H > 0, there
exists an eigenvalue τ ∈ R such that τ > Re(μ) for all other eigenvalues μ of M, and
there exists a unique (up to multiples), strictly positive eigenvector q associated with
τ . q can be normed so that ‖q‖1 = 1. Furthermore,

1. if M(s, H) · p = η p for a specific eigenvector p with
∑l

k=0 pk = 1, then
(1, . . . , 1) · M(s, H) · p = η (1, . . . , 1) · p = η,

2. (1, . . . , 1) · M(s, H) · p = s Sα(p) = λ for all proportion vectors p (see the
differential equations (2) for p),

and therefore τ = λ = s Sα(q).
We now have

q̇ = M(s, H(q, Z)) · q − s Sα(q) q = 0,

and therefore, if we set Z = 1+ s
r Sα(q), so that Ż(q) = [

r(1 − Z) + s Sα(q)
]

Z = 0,
the pair (q, Z) is an equilibrium solution of the system (2, 3) for the proportions p and
the total population size Z .

Note that it is hard to compute an equilibrium solution based directly on h, β, and
s, because one then has to solve the differential equation system (2, 3). But it is much
easier to algebraically compute an equilibrium solution of (2, 3) for a given pair (s, H)

with H > 0 and then to find values of h = hβ for any β ∈ {0, 1, 2}. These are the
required computational steps:

1. Compute the unique eigenvector q with ‖q‖1 = 1 that corresponds to the (real)
eigenvalue τ with the largest real part of the matrix M(s, H).

2. Set Z = 1 + s
r Sα(q) = 1 + s

r

∑l
k=1 kαqk .

3. Compute hβ = H
Sβ(q) Z = H

∑l
k=1 kβqk Z

for β ∈ {0, 1, 2}.
To assess the local stability of the equilibrium distribution (q0, . . . , ql), we first

calculate Z j = q j Z for j ∈ {0, . . . , l}. We then compute the eigenvalues of the Jaco-

bian matrix J =
(

∂ fi (Z0,...,Zl )
∂ Z j

)

i, j∈{0,...,l} at the specific values of (s, h) and (α, β, γ )

used to compute the equilibrium. Here, fi (Z1, . . . , Zl) is the right-hand side of the
differential equation for Zi in the system (1). The equilibrium is locally stable if the
real parts of all eigenvalues are negative.

The global stability of the equilibrium is much more difficult to establish. We
confine ourselves to check whether the equilibrium is reached, starting from an ini-
tial cell population at carrying capacity infected with a small proportion of cells
harboring one IS in their genome. To do so, we numerically solve the system
(1) with the values of (s, h) and (α, β, γ ) used to compute the equilibrium. We
have chosen the values 10−9, 10−6, and 10−3 as proportions of initially infected
cells.
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To find values for (α, β, γ ) and (s, h) that lead to the best approximation of an
observed IS5 count distribution by our theoretical IS count distribution, we use a max-
imum likelihood method and compute maximum likelihood estimates of (α, β, γ )

and (s, h). We start by defining the likelihood function L . Given the observed IS
counts (c0, . . . , cl) and the predicted IS count distribution (q0, . . . , ql) based on the
parameters α, γ, s and H , the likelihood function is given by

L(α, γ, s, H) = qc0
0 · . . . · qcl

l ,

and its (natural) logarithm is

ln (L(α, γ, s, H)) = c0 · ln(q0) + · · · + cl · ln(ql).

Because we can only numerically compute the vector of proportions q based on the
parameters α, γ, s, and H , and because we cannot derive q in analytical form, we use
the Nelder–Mead method (Nelder and Mead 1965) to find the maximum log-likeli-
hood in the parameter space (s, H) for all pairs (α, γ ) ∈ {0, 1, 2}2. Having found
the maximum likelihood estimates ŝ and Ĥ for the combination (α̂, γ̂ ) of α and γ

that maximises the likelihood function L , we then obtain the maximum likelihood
estimate ĥ = ĥβ for all values of β ∈ {0, 1, 2} by following the three computational
steps described above, replacing s by ŝ and H by Ĥ throughout.

For four specific maximum likelihood estimates (ŝ, Ĥ), based on four different
exponent pairs (α, γ ) we then use the bootstrap method with 1,000 artificially gener-
ated data sets to show the association between the fitness effect s and the HGT rate
h, and to compute the corresponding 95%-confidence intervals (Efron and Tibshirani
1994, p. 170).

For the numerical analysis, we use Mathematica 8.0.0 (Wolfram 2003).

3 Results

3.1 The IS5 count distribution in proteobacterial cells is L-shaped

Figure 2 shows the IS5 count distribution based on 525 fully sequenced, proteobac-
terial genomes. We have generated 1,000 random samples of genomes. Each sample
consists of 180 genomes, one randomly chosen genome per proteobacterial genus. We
then counted how many genomes per random sample contained 0 ISs, 1–5 ISs, …,
16–20 ISs, or more than 20 ISs. Figure 2 shows the mean number of genomes per IS
count bin over all 1,000 samples, together with the 10th and 90th percentile. Aver-
aging over 1,000 random samples provides us with an approximation of the real IS5
count distribution over proteobacterial genera. Furthermore the 1,000 random samples
provide insight into the uncertainty about the real IS5 count distribution, and about
the resulting uncertainty in determining model parameters.

As can be seen in the figure, the IS5 count distribution in proteobacterial cells is
strongly L-shaped. An overwhelming majority of genomes, namely 92.7%, does not
contain any IS5 copies, a small fraction of genomes contains up to 10 or 15 copies,
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Estimating the fitness effect of an insertion sequence 103

Fig. 2 IS5 count distribution of 1,000 random samples from 525 proteobacterial genomes, each sample
containing 180 genomes. Different IS counts have been collected into bins. Dots mark the mean number
of genomes in the corresponding bin, and the lower and upper ends of the vertical lines mark the 10th and
90th percentile of the number of genomes, respectively. Note the discontinuous scale on the vertical axis

and only few genomes contain more than 15 copies, although there are proteobacterial
genomes with higher IS5 counts. The Pseudomonas syringae tomato DC3000 genome
and all three Xanthomonas oryzae genomes in our data set contain more than 40 copies
of IS5, where Xanthomonas oryzae MAFF 311018 has the highest count of 54 IS5
copies.

3.2 The HGT rate has to be larger than the fitness cost of IS5 for an IS infection to
reach the observed IS5 count distribution in equilibrium

We set the replicative transposition rate u and the excision rate e to (u, e) =(
10−7, 10−10

)
, which is in the range of values provided in Table 1. Note that

Table 1 reports only the conservative transposition rate, and we assume that the
replicative transposition rate is a few orders of magnitude smaller (Tavakoli and
Derbyshire 2001). In the appendix, we present analogous results using a different
set (u, e) = (

10−9, 10−11
)

of parameters.
Next, we compute the maximum likelihood estimates of the fitness effect s and the

HGT parameter H for all 9 possible combinations of the fitness effect exponent α and
the replicative transposition exponent γ . We do so for all 1,000 random samples of size
180 from 525 proteobacterial genomes. To identify in each sample those models that
do not fit the data significantly worse than the best model for the sample, we follow an
argument of Sawyer et al. (1987) and take in each sample the model with the highest
log-likelihood as a proxy for the model with free (and continuous) parameters α and
γ . As a consequence, all our models with specific, fixed α and γ become nested within
this proxy model that is considered to have two additional degrees of freedom. We can
then apply the likelihood-ratio test in each sample to compare the proxy model with all
other models, using a χ2 distribution with two degrees of freedom. Therefore, on a 5%
significance level, models whose log-likelihood is not by more than χ2

0.05,2/2 = 3.0
units lower than the log-likelihood of the best model of the sample, fit observed data
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Table 2 For a replicative transposition rate u = 10−7 and an excision rate e = 10−10, the table shows the
four most frequent exponent pairs (α, γ ) ∈ {0, 1, 2}2 that lead to model fits of the IS5 count distribution
that are not significantly worse than the best fit

(α, γ ) Quart. ŝ ĥ0 ĥ1 ĥ2

(0, 1) Q1 −1.6 · 10−7 1.1 · 10−7 – –

Q2 −1.3 · 10−7 1.3 · 10−7 – –

Q3 −1.1 · 10−7 1.6 · 10−7 – –

(1, 1) Q1 −2.8 · 10−8 3.8 · 10−8 7.3 · 10−9 –

Q2 −1.8 · 10−8 5.5 · 10−8 1.8 · 10−8 –

Q3 −7.3 · 10−9 6.7 · 10−8 2.8 · 10−8 –

(1, 2) Q1 −2.9 · 10−8 7.7 · 10−8 1.9 · 10−8 –

Q2 −2.3 · 10−8 8.2 · 10−8 2.3 · 10−8 –

Q3 −1.9 · 10−8 8.8 · 10−8 2.9 · 10−8 –

(2, 2) Q1 −3.1 · 10−9 6.3 · 10−8 1.8 · 10−8 7.9 · 10−10

Q2 −1.6 · 10−9 6.5 · 10−8 2.3 · 10−8 1.6 · 10−9

Q3 −7.9 · 10−10 6.8 · 10−8 2.9 · 10−8 3.1 · 10−9

For each pair (α, γ ), the quartiles (Q1, Q2, Q3, where Q2 is the median) of the maximum likelihood esti-
mates of the fitness effect s and of the HGT rate hβ for different scaling exponents β ∈ {0, 1, 2} of the HGT
rate are reported. Only HGT rates that lead to stable equilibria are shown. Observe that Q1 in ŝ corresponds
to Q3 in ĥβ and vice versa

not significantly worse than this best model. Applied to our data, we find that the expo-
nent combinations (α, γ ) = (0, 1) and (α, γ ) = (1, 1) lead to the best fit in 359 and
346 of the 1,000 samples, respectively. Based on our criterium for the log-likelihood
described above, we find that the exponent combinations (α, γ ) = (0, 1) (in all 1,000
samples), (α, γ ) = (2, 2) (in 990 samples), (α, γ ) = (1, 2) (in 957 samples), and
(α, γ ) = (1, 1) (in 951 samples) lead in over 90% of all samples to fits that are not
significantly worse than the best fit in each sample. These findings for γ suggest that
if the assumptions of the model are correct, the transposition rate per IS5 copy does
not decrease with increasing IS5 count per genome. The fitness exponent parameter α

does not show a clear distribution pattern, i.e. all its possible values (0, 1, and 2) can
lead in over 90% of all samples to a fit that is not significantly worse than the best fit
in each sample. Our data does therefore not allow to draw conclusions about possible
interactions between IS5 copies in influencing the fitness of a host cell.

Based on the maximum likelihood estimates of the fitness effect, ŝ, and of the HGT
parameter, Ĥ , we can compute the total population size Z = 1 + ŝ

r Sα(q) in equilib-

rium, as well as the maximum likelihood estimate of the HGT rate, ĥ = Ĥ
Sβ(q) Z , which

depends on our choice of the HGT exponent β. Table 2 shows for the four exponent
pairs of (α, γ ) ∈ {(0, 1), (1, 1), (1, 2), (2, 2)} that we found above the quartiles of the
maximum likelihood estimates of s and of h for different choices of β ∈ {0, 1, 2}. We
show only those HGT rates which lead to a stable equilibrium that can be reached by
starting with a small proportion of infected cells (between 10−9 and 10−3) carrying
one copy of IS5.
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Fig. 3 Observed (large circles) and predicted (small dots, connected by a solid line) IS5 count distributions
for (α, γ ) ∈ {(0, 1), (1, 1), (1, 2), (2, 2)}. In the predicted IS count distribution, the IS count per genome has
been limited to l = 60 copies of IS5. Note the logarithmic scale on the vertical axis. log10(1/180) ≈ −2.3,
i.e. each large circle at log10(fraction) = −2.3 represents only one genome

Table 2 shows that ŝ < 0 for IS5, i.e. that IS5 is generally detrimental. The table also
shows that β ≤ α is needed to reach the equilibrium, starting with a small proportion
of infected cells. In that case, ĥβ ≥ |ŝ|. If, on the other hand, β > α, then ĥβ < |ŝ|
(not shown). The IS5 infection, starting with cells carrying one copy of IS5 only,
will then die out, because HGT is not strong enough to overcome the negative fitness
effect caused by even only one IS5 copy per genome. Therefore, for an IS infection
to spread, persist, and reach the observed IS5 count distribution, the increase in the
infectiousness of a cell with increasing IS count must be smaller than the simultaneous
increase in the total fitness cost.

Figure 3 shows for each of the four exponent pairs (α, γ ) ∈ {(0, 1), (1, 1), (1, 2),

(2, 2)} an example of the predicted equilibrium distribution based on the maximum
likelihood estimates ŝ and Ĥ , together with an observed IS5 count distribution based
on a sample that led to the best model fit with the chosen pair (α, γ ) and the maximum
likelihood estimates ŝ and Ĥ . The four pairs (α, γ ) cover all possible fitness effect
exponents α ∈ {0, 1, 2}, and they lead to a wide range of the estimated fitness effect
ŝ (compare with Table 2). We truncate the computed distribution at l = 60 IS copies
per genome. The bin with 60 copies per genome therefore represents all genomes
with at least 60 copies in the computed distribution. (The highest IS5 count in all
proteobacterial genomes is 54 and therefore well below l = 60.)

A conspicuous feature of the predicted IS count distributions is the sharp upward
spike at the highest IS count. It stems from the truncation we imposed at l = 60 IS
copies per genome. In a model with no upper bound for the IS count per genome,
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the distribution would drop monotonously. We have confirmed this by using higher IS
count limits l and by observing that the spike in the highest IS count then gets smaller
when we again apply the maximum likelihood method (results not shown).

To get an estimate of the time needed to approximately reach the equilibrium dis-
tribution, we compute the population dynamics of an IS5 infection over time, again
for the four exponent pairs (α, β) ∈ {(0, 1), (1, 1), (1, 2), (2, 2)} already used above,
and with the corresponding maximum likelihood estimates of s and hβ = h0. We
choose to focus on β = 0, because HGT is tightly regulated and depends on several
internal and external factors (Dröge et al. 1999), so that the infectiousness of a cell
probably depends only very weakly or not at all on the cell genome’s IS count. Our
choice of the base population growth rate r = 1 means that one time unit corresponds
to the doubling time during the early exponential growth phase of a cell population.
We identify this doubling time with one cell generation and set one cell generation
to one day (Gibbons and Kapsimalis 1967; Savageau 1983) for the purpose of this
analysis. Our computations then show, on the one hand, that the time to reach 90%
of the final prevalence of infected cells is very long if we start with an initial preva-
lence of 10−6 infected cells. It lies between 1.8 · 107 years for (α, γ ) = (1, 2) and
(ŝ, ĥ0) = (−5.6 · 10−8, 1.1 · 10−7) and 1.8 · 1010 years for (α, γ ) = (0, 1) and
(ŝ, ĥ0) = (−1.1 · 10−7, 1.1 · 10−7). On the other hand, the predicted time needed for
the population of infected cells only to approximately reach its final IS count distribu-
tion is much shorter. It lies between about 7’100 years for (α, γ ) = (1, 2) and 33’500
years for (α, γ ) = (0, 1). In the latter computation, we numerically solve the equation
1
2

∑l
j=1|Z j (t)/Z inf(t) − Z


j/Z

inf | = 0.1 for the time t , where Z inf = ∑l

j=1 Z j and
an asterisk (
) indicates the final normalized population densities. In the appendix,
we show for (α, γ ) = (0, 1), s = −1.1 · 10−7 and h0 = 1.1 · 10−7 the computed
dynamics over time of a population of host cells infected with a fraction of 10−6 cells
harboring one copy of an IS in their genome (see Fig. 5). We also demonstrate the
effect of changing the transposition rate u, the IS excision rate e, the fitness effect s,
and the HGT rate h0 on the population dynamics and on the final IS count distribution
(see Fig. 6).

We have computed the dynamics of the total host population size over time during
an infection for each of the four exponent pairs (α, γ ), using the same maximum like-
lihood estimates for s and h0 as in the preceding paragraph. In all cases, the relative
reduction in the normalized population density caused by the infection is negligi-
ble, between 4.7 · 10−9 for (α, γ ) = (1, 1) and 8.2 · 10−9 for (α, γ ) = (1, 2). This
is expected, because the fitness cost of IS5 is generally small, as our computations
show.

3.3 The maximum likelihood estimates of the HGT rate and of the fitness effect are
highly correlated

Using 1,000 random samples of 180 out of 525 proteobacterial genomes, one per
genus, provides insights into the uncertainty about the real IS5 count distribution, and
the resulting uncertainty in determining exponent pairs (α, γ ), fitness effect s, and
HGT rate h. To also get information about the variation in the maximum likelihood
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Fig. 4 Bootstrapped pairs of (ŝ, ĥ0) for (α, γ ) ∈ {(0, 1), (1, 1), (1, 2), (2, 2)}, based on 1,000 resamplings
of four computed IS count distributions. These four IS count distributions have been generated by using four
estimate pairs (ŝ, Ĥ), where each pair has been obtained from the IS5 count distribution in a different random
sample. Black dots lie inside and gray dots lie outside the 95% confidence interval of s. The original, esti-
mated values of (ŝ, ĥ0) are marked by large, black dots. The graphs of the shifted power function approxima-

tions ĥ0 = a ·(−ŝ
)b+c are shown as thin lines. The parameters (a, b, c) are

(
0.998, 1.000, 9.8 · 10−12

)
for

(α, γ ) = (0, 1),
(

0.065, 0.819, 2.5 · 10−8
)

for (α, γ ) = (1, 1),
(

1.113, 1.008, 6.0 · 10−8
)

for (α, γ ) =
(1, 2), and

(
0.114, 0.860, 6.2 · 10−8

)
for (α, γ ) = (2, 2)

estimates of s and h to be expected if our model were correct, and to gain some insight
into the relationship between s and h, we use a bootstrap (Efron and Tibshirani 1994,
p. 170). For each exponent pair (α, β) ∈ {(0, 1), (1, 1), (1, 2), (2, 2)}, we choose the
set of maximum likelihood estimates of s and H that led to the computed IS count
distributions shown in Fig. 3. Based on each of the four computed IS count distribu-
tions, we then generated 1,000 artificial data sets and determined for each data set the
maximum likelihood estimates of s and h0. Figure 4 shows the values of ĥ0 versus
ŝ. We again show only the graphs for β = 0, as in the preceding subsection, and we
marked the pairs (ŝ, ĥ0) in the 95% confidence interval of s with black dots, while
pairs outside the confidence interval are marked with gray dots.

The 1,000 bootstrapped pairs of (ŝ, ĥ0) in Fig. 4 show an almost perfectly functional
dependence between ĥ0 and ŝ. To concisely describe this functional dependence, we
have plotted the graph of the best fit of the shifted power function ĥ0 = a(−ŝ)b + c.
As can be seen, the fit is very good, at least inside the 95% confidence interval. The
functional dependence between ĥ0 and ŝ is almost linear if β = α. We can understand
this linear dependence by observing that from the first equation in the differential
equation system (2) we get in equilibrium
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h = ep1 − sp0Sα(p)

p0 Z Sβ(p)
≈ − Sα(p)

Sβ(p)
s. (5)

Our model therefore suggests that the maximum likelihood estimate of the HGT rate
depends very sensitively and almost exclusively on the maximum likelihood estimate
of the fitness effect (and vice versa). This highlights the crucial role the HGT rate
plays in surmounting the fitness cost of an IS and in allowing an IS to persist in a host
cell population.

4 Discussion

While an IS that provides a benefit to its host can rise to fixation through natural
selection (Hall 1999; Schneider and Lenski 2004), the outcome of an infection with
purely detrimental ISs is less clear. We have shown in an earlier paper that regardless
of whether ISs are moderately beneficial or detrimental, the chances of a successful IS
infection are small (Bichsel et al. 2010). Here we are interested in the longer-term fate
of an IS infection. Specifically, we investigate whether a purely detrimental IS can per-
sist and reach the observed IS5 count distribution in proteobacteria, where IS5 mainly
occurs. We are also interested in the fitness effect s and in the HGT rate h needed to
reach this IS count distribution. We find the maximum likelihood estimates of s and
h0 by analysing 525 fully sequenced genomes from 180 proteobacterial genera. We
now discuss the main points of this study.

4.1 Purely detrimental ISs can persist if the HGT rate is larger than the fitness
cost of an IS

The L-shaped IS5 count distribution in 525 sequenced proteobacterial genomes (and
presumably also in natural host cell populations) suggests that IS5 (and probably
all ISs with similar IS count distribution) is generally detrimental to its hosts. Our
results support this suggestion and show that even purely detrimental ISs may persist
and reach an IS count distribution similar to the one observed in IS5 in sequenced
genomes, provided that the HGT rate is larger than the fitness cost induced by one IS
in the genome of an infected cell. This is in agreement with our earlier result based
on a stochastic infection model (Bichsel et al. 2010). The HGT rate in turn is larger
than the fitness cost of one IS only if the possible increase in the infectiousness of
a cell is smaller than the increase in the fitness cost with an increasing IS count. A
small increase of the infectiousness with an increasing IS count is consistent with ear-
lier observations that HGT is tightly regulated and depends on many different factors
(Dröge et al. 1999). If so, the influence of the IS count on the HGT rate, and therefore
on the infectiousness of a cell, is probably small or even absent.

4.2 The observed IS5 count distribution suggests that the replicative transposition
rate of IS5 is not down-regulated

Our model shows best agreement with the IS5 count distribution in 797 of 1,000
random samples, each containing 180 out of 525 proteobacterial genomes, if the
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replicative transposition rate increases linearly with the IS5 count per genome, i.e.
if replicative transposition is not regulated and copies of IS5 transpose independently.
This is in agreement with results published by Sawyer et al. (1987). Using branching
processes to model the count distribution of several ISs in the ECOR collection of 71
natural isolates of Escherichia coli, these authors report that a linear dependence of
the replicative transposition rate on the IS count agrees best with the available data in
the collection for IS5. Sawyer et al. use for their analysis the ECOR collection, which
is a smaller albeit more homogeneous dataset than our collection of 525 sequenced
proteobacterial genomes. Besides using a larger dataset, our analysis is based on an
ordinary differential equation model that allows for interactions between cells and for
density-dependent population growth and infection, which makes it more suitable to
analyse the long-term fate of an IS infection than the branching process model used
by Sawyer et al.

4.3 ISs might be effectively neutral to their hosts

Our model predicts a fitness effect in the range ŝ ∈ [−10−7,−10−9
]

for IS5 (see
Table 2). Considering that the effective population size of typical prokaryotes is of
the order of Ne ≈ 108 (Lynch 2007, p. 92), IS5 might therefore be effectively neutral
or only slightly detrimental to its hosts. Hence, HGT is probably strong enough to
enable IS5 to persist and spread in a host cell population (see Table 1). At the same
time, our model predicts an unrealistically long time for IS5 to approximately reach
the final prevalence of infected cells, while the predicted time to approximately reach
the IS5 count distribution in infected cells only is much shorter. It therefore seems that
the time scale of the infection process may be much larger than the time scale of the
process that leads to an equilibrium distribution in the population of infected cells.
While the former time scale is determined by the antagonistic actions of HGT and the
fitness cost of one IS copy, the latter time scale is determined mainly by replicative
transposition and the fitness cost of varying numbers of IS copies. This observation of
different time scales leads us to suggest that IS5 may have been at least occasionally
and temporarily beneficial to its host cells, which can accelerate its spreading through
single populations and through populations all over the world.

4.4 Caveats

The sequenced genomes stem from various proteobacterial cell populations all over
the world and do not constitute a genome sample from a single population. At first
sight, it is therefore not clear that we can compare the IS5 count distribution in the
sequenced genomes with the IS count distribution that our model of a single population
predicts. However, we note that a very similar, L-shaped IS5 count distribution has
also been observed in the ECOR collection of 71 strains of Escherichia coli (Sawyer
et al. 1987), which is a less heterogeneous sample that covers a smaller taxonomic
range than the proteobacterial genomes in our data set. This observation, together with
the fact that the L-shaped IS count distribution can be observed in several other IS
families (Sawyer et al. 1987; Wagner 2006; Touchon and Rocha 2007), motivates our
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assumption that this distribution does not depend on a specific IS and on the taxonomic
scale. We thus assume that the same distribution does also exist in other ISs and on
the smallest taxonomic scale, that of a cell population.

Another objection to our approach might be that we use IS5 count data from phylo-
genetically related genomes to conduct a maximum likelihood analysis which assumes
independence between observations. The genomes in our data set are related and their
IS5 counts are therefore not strictly independent of each other. Nevertheless, we have
reduced this dependence by choosing only one genome per genus for the likelihood
analysis. Furthermore, we generated 1,000 sample data sets, each containing one
genome per genus and repeated the maximum likelihood analysis for each of these
data sets.

It might also be argued that the IS5 count distribution in our data set is L-shaped
because many ISs show certain DNA target specificities (Chandler and Mahillon
2002). IS5 does in fact show some preference for the target sequence CTAG. However,
because this nucleotide sequence is very short and therefore occurs frequently in host
genomes, target specificity is probably not strong enough to limit the IS5 count dis-
tribution noticeably in the IS count range on which we base our computations (0–60
copies of IS5 per genome). This is supported by the observation that although most
infected proteobacterial genomes have very low IS5 counts, some genomes contain
more than 40 copies of IS5. The same argumentation probably also holds for other ISs
with some target specificities.

Acknowledgments MB and AW would like to acknowledge support from Swiss National Science Foun-
dation grants 315200-116814 and 315200-119697, as well as from the YeastX grant of SystemsX.ch.

Appendix

Results for other replicative transposition and excision rates

We have repeated our calculations for another combination of the replicative transposi-
tion rate u and the excision rate e, this time at the lower end of the rate range described
in Table 1, namely (u, e) = (

10−9, 10−11
)
. Because the effect of the excision rate is

small, and because the effect of an IS5 infection on the normalized population density
Z is again negligible, the fitness effect s and the HGT rate h scale almost linearly with
the assumed transposition rate u [see the differential equation system (2, 3)]. This is
exactly what can be observed. Table 3 shows for the four exponent pairs of (α, γ ) that
are most frequently not significantly worse than the best fitting pair in each sample
the quartiles of the maximum likelihood estimates of s and of h for all choices of
β ∈ {0, 1, 2}. We show only those HGT rates which lead to a stable equilibrium that
can be reached by starting with a small proportion of infected cells (between 10−9 and
10−3) carrying one copy of IS5.

As can be seen when compared with Table 2 in the main text, the quartiles of the
maximum likelihood estimates of s and h scale almost perfectly linearly with the new
choice for the replicative transposition rate u.

We draw the same conclusions as in the main text: IS5 seems to be effectively
neutral (even more so for this parameter combination of u and e), and HGT ist most
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Table 3 For a replicative transposition rate u = 10−9 and an excision rate e = 10−11, the table shows the
four most frequent exponent pairs (α, γ ) ∈ {0, 1, 2}2 that lead to model fits of the IS5 count distribution
that are not significantly worse than the best fit

(α, γ ) Quart. ŝ ĥ0 ĥ1 ĥ2

(0, 1) Q1 −1.6 · 10−9 1.1 · 10−9 – –

Q2 −1.3 · 10−9 1.3 · 10−9 – –

Q3 −1.1 · 10−9 1.6 · 10−9 – –

(1, 1) Q1 −2.8 · 10−10 3.8 · 10−10 7.3 · 10−11 –

Q2 −1.8 · 10−10 5.5 · 10−10 1.8 · 10−10 –

Q3 −7.3 · 10−11 6.7 · 10−10 2.8 · 10−10 –

(1, 2) Q1 −2.9 · 10−10 7.8 · 10−10 1.9 · 10−10 –

Q2 −2.3 · 10−10 8.2 · 10−10 2.3 · 10−10 –

Q3 −1.9 · 10−10 8.8 · 10−10 2.9 · 10−10 –

(2, 2) Q1 −3.1 · 10−11 6.4 · 10−10 1.8 · 10−10 8.0 · 10−12

Q2 −1.6 · 10−11 6.6 · 10−10 2.4 · 10−10 1.6 · 10−11

Q3 −7.9 · 10−12 6.8 · 10−10 2.9 · 10−10 3.1 · 10−11

For each pair (α, γ ), the quartiles (Q1, Q2, Q3, where Q2 is the median) of the maximum likelihood esti-
mates of the fitness effect s and of the HGT rate hβ for different scaling exponents β ∈ {0, 1, 2} of the HGT
rate are reported. Only HGT rates that lead to stable equilibria are shown. Observe that Q1 in ŝ corresponds
to Q3 in ĥβ and vice versa

probably strong enough to overcome the fitness cost caused by a copy of IS5 in the
host cell genome.

Population dynamics of an IS infection in dependence of the model parameter set

Figure 5 shows the computed population dynamics of a host cell population that has
been infected with a fraction of 10−6 cells harboring one IS copy in their genomes.
We chose r = 1, u = 10−7, e = 10−10, and the maximum likelihood estimates
ŝ = −1.1 ·10−7 and ĥ0 = 1.1 ·10−7 for the exponent pair (α, γ ) = (0, 1) to compute
the infection dynamics based on the equation system 1.

Observe that the IS count distribution at 1013 generations in Fig. 5 is the same
as the computed IS count equilibrium distribution in Fig. 2. As can be seen in Fig.
5, on the one hand, it takes a very long time to reach the population equilibrium of
uninfected and infected cells. On the other hand, it takes a much shorter time to reach
an equilibrium in the IS count distribution among infected cells only.

To illustrate the influence of different model parameters on the population dynam-
ics and on the final IS count distribution, Fig. 6 shows the population dynamics if each
of the parameters u, e, s, and h0 has been separately set to one tenth of its original
value as used in Fig. 5.

Compared with Figs. 5, 6 shows that reducing the transposition rate leads to a
steeper final IS count distribution, with less cells harboring high numbers of IS copies
in their genome (top left graph with u = 10−8). Figure 6 also shows that reducing
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Fig. 5 Computed population dynamics of a host cell population infected with a fraction of 10−6 cells
harboring one IS copy in their genomes. We chose r = 1, u = 10−7, e = 10−10, (α, γ, β) = (0, 1, 0),
and the corresponding maximum likelihood estimates ŝ = −1.1 · 10−7 and ĥ0 = 1.1 · 10−7 as model
parameters. The curves for cells harboring different numbers of IS copies in their genomes are indicated
on the right. The curve for cells harboring 0 IS copies in their genomes is shown in bold, and the curve for
cells harboring at least 60 IS copies in their genomes is shown as a dashed line. Time is measured in cell
generations. Note the logarithmic scale on the vertical axis

Fig. 6 Computed population dynamics of a host cell population infected with a fraction of 10−6 cells har-
boring one IS copy in their genomes, for different parameter sets. The original model parameters are the same
as in Fig. 5: r = 1, u = 10−7, e = 10−10, (α, γ, β) = (0, 1, 0), s = −1.1 · 10−7, and h0 = 1.1 · 10−7.
For each of the four graphs, exactly one parameter has been changed compared to the original parameter
set: u = 10−8 (top left), e = 10−11 (top right), s = −1.1 ·10−8 (bottom left), and h0 = 1.1 ·10−8 (bottom
right). In each graph, the curve for cells harboring 0 IS copies in their genomes is shown in bold, and the
curve for cells harboring at least 60 IS copies in their genomes is shown as a dashed line. Time is measured
in cell generations. Note the logarithmic scale on the vertical axis
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the IS excision rate does not change the final IS count distribution noticeably, but it
takes a longer time to reach this final distribution (top right graph with e = 10−11).
Reducing the fitness cost tenfold leads to a population dominated by infected cells
with the highest IS count allowed in our model, noticeably reducing the normalized
density of uninfected cells (bottom left graph with s = −1.1 · 10−8). Reducing the
HGT rate below the fitness cost, in turn, does not allow the population of infected cells
to persist (bottom right graph with h0 = 1.1 · 10−8).
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