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The intrinsic selectivity of cinchonidine-modified Pt/alumina is poor in the hydrogenation of 3,5-di-(trifluoromethyl)-

acetophenone but stirring of the catalyst system in toluene under nitrogen prior to reaction more than triples the ee. SEM and TEM

analysis revealed dramatic restructuring of the catalyst and the Pt particles. We propose that the interaction of the hydroxy methyl-

quinoline fragment (‘‘anchoring moiety’’) of cinchonidine with Pt is responsible for the restructuring. Reductive pretreatment at

elevated temperature as well as the attrition induced by stirring in toluene accelerate the process. The higher ee is attributed to

morphological changes of Pt, leading to the development of a more ‘‘selective’’ surface. The chirality of cinchonidine is

unimportant in the restructuring and no correlation between the size of Pt particles and the ee has been found.
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1. Introduction

Since Orito’s discovery in the late seventies [1,2],

there has been a remarkable development in the

understanding of the functioning of cinchona-modified

Pt in the enantioselective hydrogenation of activated

ketones [3–8]. The progress is less impressive when

considering the critical role of the Pt surface in the

enantioselection. The premature state in this area is

illustrated by the contradictory opinions concerning the

structure sensitivity of the reactions, i.e., the influence of

metal particle size and shape on the enantioselectivity

[9–11].
A closely related and thoroughly investigated obser-

vation is that pretreatment of Pt/alumina at elevated

temperature in hydrogen can improve, sometimes even

double, the enantiomeric excess (ee) in the hydrogena-

tion of numerous activated ketones [2,9,12–19].

Recently, the enhanced enantioselectivity of Pt was

attributed to an adsorbate-induced restructuring during

the high-temperature treatment in hydrogen, whereas

other effects, such as removal of surface impurities or

change of Pt particle size, could be excluded [16].
Another effective preconditioning of supported Pt is

the sonochemical activation under hydrogen, the pro-

cedure that increased the ee up to 98% in the

hydrogenation of ethyl pyruvate [20]. The positive effect

of ultrasonication, observed only in the presence of the

cinchona alkaloid modifier, was attributed to a decrease

of the metal particle size and to the evolution of a more

homogeneous metal particle-size distribution. An alter-
native explanation might be the removal of strongly

adsorbed surface impurities [21]. However, applying a
higher than optimal ultrasound frequency or too long a
sonication time eliminated the selectivity improvement,
even though the Pt particles were small and presumably
cleaner. Hence, a direct correlation between the Pt
particle size and ee is questionable; the shift in the

particle-size distribution should rather be considered as
an indication of restructuring and development of a
more ‘‘selective’’ surface.

Here we report a new observation, the remarkable
enhancement of ee during the hydrogenation of 3,5-di-
(trifluoromethyl)-acetophenone (1) with the Pt/alumina-
cinchonidine (CD) system (scheme 1) [19]. It is even
more intriguing that stirring of the catalyst slurry in the

presence of CD before reaction more than tripled the
initial ee, which is considered as the intrinsic enantios-
electivity of the catalyst. In the light of a recent review
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Scheme 1. Hydrogenation of 3,5-di-(trifluoromethyl)-acetophenone

(1) to 1-[3,5-di-(trifluoromethyl)-phenyl]ethanol (2) over cinchona-

modified Pt/Al2O3.
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[22] and striking STEM evidence for adsorbate-induced
chiral restructuring of a Cu(110) surface [23,24], the
question arises whether CD would play a similar role in
the restructuring of Pt/alumina.

2. Experimental

3,5-di-(trifluoromethyl)-acetophenone (1, ABCR),
cinchonidine (Fluka) and quinoline (Fluka) were used
as received.

Table 1 summarizes the conditions used in methods
a–h to study the effect of catalyst pretreatments. For the
gas-phase treatment (methods b–h), the 5wt% Pt/Al2O3

catalyst (Engelhard 4759) was flushed with N2 at 400
�C

for 30min in a fixed-bed reactor, followed by a reductive
treatment in H2 for 90min at the same temperature.
After cooling to room temperature in H2, the catalyst
was immediately transferred to the 50-mL glass reactor.
In the subsequent pretreatments in the liquid phase
(methods c–h), the catalyst was contacted with a
toluenic solution under N2 for 1 h, with or without
stirring (500 rpm). After this treatment the missing
components were added and the reaction was started
by stirring at 500 rpm in hydrogen at 1 bar. In all the
methods, 84� 2mg catalyst, 3.68-mmol substrate, 13.6-
�molmodifier and 10-mL solvent (toluene) were applied
and the hydrogenation of 1 was followed for 2 h. The
liquid-phase catalyst treatments and the hydrogenation
reaction were carried out at 1 bar and room temperature
ð23–25 �CÞ.

Control experiments using different amounts of
catalyst and varying the stirring frequency did not
indicate significant external mass transport limitation
for the (slow) hydrogenation reactions. Intraparticle
diffusion effects cannot be ruled out completely, but are
unlikely due to the small catalyst particle size
ð< 100�mÞ.

Chemoselectivity, conversion and ee were determined
by an HP 6890 gas chromatograph equipped with a
chiral capillary column (WCOT fused silica
25m� 0:25mm, coating CP-Chirasil-Dex CB, Chrom-
pack). Enantioselectivity is expressed as ee
ð%Þ ¼ 100� jðR–SÞj=ðRþ SÞ.

The products were identified by GC/MS. Reprodu-
cibility of ee was within �0:5%. A comparison of the
optical rotation of the products (Perkin Elmer 241
Polarimeter) with literature data [25,26] revealed that in
toluene the Pt-CD system afforded the (S)-enantiomer
in excess. The actual or incremental ee is calculated as
�ee ð%Þ ¼ ðee1Y1 � ee2Y2Þ/ðY1 �Y2Þ, where Y repre-
sents the yield to the alcohol product (2) and index 2
refers to a sample taken subsequent to sample 1.

For transmission electron microscopy (TEM), the
material was dispersed in ethanol and deposited onto a
perforated carbon foil supported on a copper grid. The
measurements were performed on a CM30 microscope
(Philips; LaB6 cathode, operated at 300 kV). The high-
resolution TEM (HRTEM) images were recorded with a
slow-scan CCD camera. Volume-weighted mean particle
size was calculated by the following formula [27]:
dav ¼ ð�nidi

3=�nidi
2:19

Þ
1:23.

Scanning electron microscopy (SEM) was performed
on a LEO 1530 Gemini, operated at 2 and 5 keV (field
emission gun). The sample was deposited on silicon
wafers and investigated as synthesized (uncoated).

3. Results and discussion

3.1. Catalytic experiments

The influence of various catalyst pretreatment meth-
ods on the hydrogenation of 3,5-di-(trifluoromethyl)-
acetophenone (1) over CD-modified Pt/alumina is
shown in figure 1. The conditions for the different
pretreatment procedures are summarized in table 1.

When the catalyst was used as received, the initial ee
was very low, 17% at 2min, and increased slowly up to
22% in 2 h (figure 1, curve a). The incremental or
differential ee in figure 2, curve a, shows that the actual
ee at the end of the reaction was still below 25%.

After heat treatment of Pt/alumina in gaseous
hydrogen, the initial ee was almost the same as without
this treatment, but increased steadily up to 52% at 2-h
reaction time (figure 1, curve b). Note that this is the
standard pretreatment method of Pt/alumina that is
used before the hydrogenation of 1 [19,28] and several
other activated ketones. The incremental ee in figure 2,

Table 1

An overview on the various catalyst pretreatment methods

Method Treatment in gas phase Treatment in the liquid phase for 1 h in N2 (solvent composition)

(a) No No

(b) Yes No

(c) Yes No stirring (toluene, 1, CD)

(d) Yes Stirring (toluene)

(e) Yes Stirring (toluene, 1)

(f) Yes Stirring (toluene, quinoline)

(g) Yes Tirring (toluene, CD)

(h) Yes Stirring (toluene, 1, CD)
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curve b, shows that transformation of the catalyst

during reaction is much faster after the reductive heat

treatment and that after 10-min reaction time there is no

significant change in the actual ee. Apparently, the heat

treatment of Pt/alumina with gaseous hydrogen acti-

vates the catalyst for the subsequent development of

more selective sites during the hydrogenation reaction.
Next, we tested various pretreatment methods (c–h)

in the liquid phase to clarify the reason for the selectivity

enhancement during reaction. All these treatments were

carried out under nitrogen, subsequent to prereduction

of the catalyst with gaseous hydrogen at 400 �C. During

transfer of the prereduced catalyst to the reactor, the

surface Pt atoms were oxidized by air. Note that the

effect of various pretreatments on a reduced metal

surface in hydrogen atmosphere would be distorted by

hydrogenation of the modifier [21].
When the reaction mixture was left standing under

nitrogen for 1 h before introducing hydrogen (figure 1,

curve c), the time dependence of ee remained similar,

though the ee values were about 5% higher than those

measured after the standard procedure (b). Repeating

this pretreatment with stirring the reaction mixture

under nitrogen (method h) afforded the highest ee. The

incremental ee (figure 2, curve h) shows that the

enantioselectivity was practically constant during this

experiment. Obviously, stirring plays an important role

in the evolution of more selective catalytic sites.
Next, before the hydrogenation of 1, the catalyst was

stirred in the presence of only toluene (d) or toluene and

1 (e), and the other reaction components were added

before starting the hydrogenation reaction. Figure 1

shows that the enantioselectivities are almost identical

and both curves d and e lie between b and h. We can

conclude that (i) the reactant does not influence the

transformation of the catalyst and (ii) not only the

magnetic stirring but also the presence of CD are critical

for achieving the highest ee. The same conclusions can

be drawn from the comparison of curves g and h in

figure 1 and the dependence of the incremental ee in

figure 2, curves d and h.
Recent in situ ATR-IR studies [29,30] proved that

CD adsorbs on Pt via its quinoline ring system, the so-

called ‘‘anchoring moiety’’ of the modifier. Thus, we

repeated the pretreatment by stirring the catalyst in

toluene with quinoline (method f) instead of CD

(method g). A comparison of the two curves f and g in

figure 1 reveals that quinoline is almost as effective as

CD in accelerating the restructuring of Pt. The small

difference is likely due to the presence of the OH group

in CD, whose function is also involved in the adsorption

of CD when it is present in the so-called ‘‘open-3’’

conformation [31].
In some experiments, the time of catalyst pretreat-

ment in the toluenic solution was varied. When applying

method d, i.e., stirring in toluene only, a decrease of the

pretreatment time diminished the positive effect on the

enantioselectivity. For example, stirring of the slurry

only for 5min instead of 1 h decreased the initial ee from

49 to 26%. In contrast, when stirring of the catalyst in

toluene in the presence of 1 and CD (method h), 5min

was sufficient to achieve the same ee as that measured

after 1 h. This observation corroborates the accelerating

effect of CD on the catalyst restructuring.
Figure 3 shows some examples of the time depen-

dence of the conversion of 1. After catalyst pretreat-

ments b, d and h, the reaction rate decreased slowly with

time, as expected. In contrast, when the catalyst was

used as received (curve a), an unusual rate enhancement

was observed after about 30min. This behavior may be

attributed to the slow removal of some strongly

adsorbed impurity from the Pt surface, from which

species are removed by the reductive treatment at

elevated temperature when applying methods b–h.
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Figure 2. Time-dependent changes of incremental ee during hydro-

genation of 1. The letters a, b, d and h indicate the pretreatment

methods, as shown in table 1.
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Figure 1. Time-dependent changes of enantioselectivity during hydro-

genation of 1. The letters a–h refer to the catalyst pretreatment

methods summarized in table 1.
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3.2. Electron microscopy: evidence for catalyst
restructuring

Electron microscopy provided a strong proof for the

restructuring of Pt/alumina during the various catalyst

treatments prior to the enantioselective hydrogenation

of 1. The scanning electron micrographs (SEM) in figure

4 show that the catalyst particles are considerably

smaller after stirring in toluene for 1 h (method d) than
before this treatment (method b). It has been shown
earlier for the same type of catalyst by light scattering
that the mean catalyst particle size decreased to one-half
in about 8min because of magnetic stirring of the
catalyst slurry [32].

The back-scattered electron SEM pictures indicate
redistribution of the Pt particles during the liquid-phase
treatment (figure 5). Stirring of the catalyst in toluene
for 1 h (method d) resulted in a relatively even
distribution of small Pt particles (white spots) from the
unevenly distributed bigger Pt particles developed
during the reductive treatment at 400 �C (method b).

The effect of catalyst pretreatments on the Pt
particle-size distribution was studied by high-resolution
transmission electron microscopy. The untreated cata-
lyst (‘‘as received’’) contained small, well-dispersed Pt
particles (method a, figure 6). The reductive treatment at
400 �C (method b, figure 7) broadened the Pt particle-
size distribution and almost doubled the mean particle
size. The subsequent stirring of the catalyst in toluene
for 1 h (method d, figure 8) decreased the metal particles
again and narrowed the particle-size distribution. This
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Figure 3. Conversion of 1 as a function of time after the catalyst

pretreatment methods a, b, d and h (for details, see table 1).

Figure 4. Secondary electron SEM images after reductive treatment of

Pt/alumina in hydrogen at 400 �C (method b), and after the subsequent

stirring of the catalyst in toluene for 1 h (method d). For details of the

pretreatment methods see table 1.

Figure 5. Back-scattered electron SEM images after reductive treat-

ment of Pt/alumina in hydrogen at 400 �C (method b), and after the

subsequent stirring of the catalyst in toluene for 1 h (method d). The

white spots are Pt particles. Details of the pretreatment methods are

listed in table 1.
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Figure 6. TEM image and metal particle-size distribution of Pt/alumina after pretreatment a (see table 1). The black spots are Pt particles.
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Figure 7. TEM image and metal particle-size distribution of Pt/alumina after pretreatment b (see table 1). The black spots are Pt particles.
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Figure 8. TEM image and metal particle-size distribution of Pt/alumina after pretreatment d (see table 1). The black spots are Pt particles.
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Figure 9. TEM image and metal particle-size distribution of Pt/alumina after pretreatment h (see table 1). The black spots are Pt particles.
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redistribution was more pronounced when CD was
present in toluene during stirring (method h, figure 9).
Astonishingly, the particle-size distribution in the least
selective, untreated catalyst and in the most selective
catalyst preconditioned according to method h are
almost identical (cf. figures 6 and 9). Clearly, no
correlation between the Pt particle size and the
enantioselectivity can be drawn, though the changes
presented in figures 6–9 confirm the importance of
structural transformation during catalyst pretreatment.

We have to emphasize that electron microscopy is yet
the only method that supports the catalyst restructuring.
ICP-AES analysis of the reaction solution did not
indicate any dissolved platinum species.

3.3. ‘‘Chiral’’ restructuring?

It has been speculated for long that the enantioselec-
tivity of chirally modified metals might be due to chiral
restructuring of the metal surface induced by the
strongly adsorbed modifier (for a recent review see
[22]). The striking effect of CD on the restructuring of
Pt/alumina, as shown in figure 1, apparently supports
this assumption. However, the control experiment with
quinoline revealed that not the chiral structure but
presumably only the hydroxymethyl-quinoline fragment
of CD is crucial for the restructuring. We propose that
the strong interaction of this moiety with Pt plays an
important role in the morphological changes observed.

There exists substantial literature on the adsorbate-
induced restructuring of metal surfaces [33,34]. A closely
related phenomenon is the remarkable change of the
structure and selectivity of Pd during the Rosenmund
reaction, where structural transformation is accelerated
by the catalyst modifier quinoline [35]. During the
morphological changes, larger Pd particles and thin
single-crystal plates with stepped and kinked sites were
formed.

4. Conclusions

The most important observations of the present study
can be summarized as follows:

1. During the slow hydrogenation of 3,5-di-(trifluor-
omethyl)-acetophenone (1), the enantioselectivity
increases remarkably because of the morphological
restructuring of the Pt/alumina catalyst, which presum-
ably involves surface restructuring of the Pt particles.

2. A key parameter for the catalyst restructuring is
the presence of cinchonidine (CD) during precondition-
ing in toluene under nitrogen. Without the chiral
modifier, the transformation of the catalyst to a more
selective material is slow and incomplete.

3. Pretreatment in hydrogen at elevated temperature
activates the catalyst for the subsequent restructuring in

the liquid phase; the latter is accelerated by magnetic
stirring of the reaction mixture.

We assume that the strong adsorption of the
hydroxymethyl-quinoline fragment of CD is responsible
for the ‘‘reshaping’’ of the Pt particles. In other words,
the chirality of the modifier is unimportant for the
structural changes. It is not clear yet, which types of
active sites are required for higher enantioselectivity.
Considering the relatively large number of Pt sites
occupied by the CD-1 transition complex, identification
of the ‘‘selective’’ and ‘‘nonselective’’ ensembles of
surface sites seems to be a demanding task for future
research.

An important consequence of the present observa-
tions is that due care is required for the interpretation of
kinetic data in heterogeneous enantioselective catalysis.
Catalyst restructuring should always be considered as a
possible distorting factor.
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