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Abstract This study monitors regional changes in the
crystallinity of carbonaceous matter (CM) by applying
Micro-Raman spectroscopy to a total of 214 metasediment
samples (largely so-called Biindnerschiefer) dominantly
metamorphosed under blueschist- to amphibolite-facies
conditions. They were collected within the northeastern
margin of the Lepontine dome and easterly adjacent areas
of the Swiss Central Alps. Three-dimensional mapping of
isotemperature contours in map and profile views shows
that the isotemperature contours associated with the Mio-
cene Barrow-type Lepontine metamorphic event cut across
refolded nappe contacts, both along and across strike
within the northeastern margin of the Lepontine dome and
adjacent areas. Further to the northeast, the isotemperature
contours reflect temperatures reached during the Late
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Eocene subduction-related blueschist-facies event and/or
during subsequent near-isothermal decompression; these
contours appear folded by younger, large-scale post-nappe-
stacking folds. A substantial jump in the recorded maxi-
mum temperatures across the tectonic contact between the
frontal Adula nappe complex and surrounding metasedi-
ments indicates that this contact accommodated differential
tectonic movement of the Adula nappe with respect to the
enveloping Biindnerschiefer after maximum temperatures
were reached within the northern Adula nappe, i.e. after
Late Eocene time.

Keywords HP-metamorphism - Barrovian
metamorphism - Graphitization - Metasediments -
Micro-Raman spectroscopy - Central Alps

Introduction

The metamorphic structure of the Alps reflects long-lasting
plate convergence and collision between the European and
Adriatic continental plates in Cretaceous to Cenozoic times
(e.g. Triimpy 1960; Frisch 1979; Tricart 1984; Schmid
et al. 1996; Handy et al. 2010). The geodynamic evolution
and resulting metamorphic zonation of the Central Alps
(Lepontine) and easterly adjacent areas are related to
Cenozoic orogeny (e.g. Schmid et al. 1996; Bousquet
et al. 2008) that followed an earlier Cretaceous cycle
(Froitzheim et al. 1994; Schmid et al. 2008) only preserved
in the Austroalpine units (e.g. Handy and Oberhinsli 2004;
and references therein) and is therefore not addressed in
this study. The metamorphic evolution can be subdivided
into two distinct stages: (1) Latest Cretaceous—Late
Eocene subduction-related pressure-dominated metamor-
phism and deformation (see review in Berger and Bousquet
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2008; and references therein) that affected oceanic litho-
sphere formed during the opening of the Alpine Tethys
as well as small parts of the immediately adjacent
Europe-derived continental lithosphere; and (2) Oligocene—
Middle Miocene temperature-dominated, Barrow-type
metamorphism (Koppel et al. 1981; Hunziker et al. 1992;
Berger et al. 2009; Janots et al. 2009; Rubatto et al. 2009)
related to the collision between Europe and Adria. Colli-
sion involved accretion of massive volumes of crustal
material derived from the lower, European plate (e.g.
Lepontine dome and Tauern window; Bousquet et al. 1997;
Schmid et al. 2004; Wiederkehr et al. 2008) to the upper
plate comprising the older Austroalpine nappes and their
previously accreted high-pressure units (e.g. Handy et al.
2010).

Several pioneering studies on the spatial distribution of
index minerals as well as on different metamorphic facies
types established the zonation of Alpine metamorphism,
particularly within the Lepontine dome of the Central
Alps (e.g. Wenk 1962, 1970; Niggli and Niggli 1965;
Trommsdorff 1966; Frey 1969, 1978; Niggli 1970; Frey
et al. 1980, 1999; Oberhinsli et al. 2004). However, the
metamorphic zonation related to pressure-dominated
metamorphism should be distinguished from that related
to Barrovian overprint in the Alps. Whereas the pressure-
dominated units (blueschists and eclogites) form a con-
tinuous belt striking parallel to the orogenic trend,
remnants of the temperature-dominated event are local-
ized, primarily in the Lepontine dome and the Tauern
window (e.g. Goffé et al. 2003; Bousquet et al. 2008).
From a geodynamic point of view, only the Central Alps
(Lepontine dome) and the Tauern window in the Eastern
Alps reached the mature stage of a collisional orogenic
belt characterized by pervasive Barrovian overprint. The
Western Alps never reached this stage and hence can be
interpreted as a frozen-in subduction zone (Bousquet
2008).

This study addresses a key area for the reconstruction of
the Alpine geodynamic evolution at the northeastern mar-
gin of the Lepontine dome and adjacent areas further east
in which both pressure- and temperature-dominated meta-
morphic domains are found to be in close contact. This
provides important constraints on the metamorphic evolu-
tion of the Central Alps during the transition from sub-
duction to collision (e.g. Bousquet et al. 2002; Wiederkehr
et al. 2008, 2009). The metasediments studied, predomi-
nantly calcschists, have great potential for recording the
metamorphic evolution and can therefore be used for the
geodynamic reconstruction of the Alpine orogenic belt (see
also Goffé and Chopin 1986; Wiederkehr et al. 2008,
2009). Moreover, these metasediments cover large areas,
making them ideal for correlating the structural and
metamorphic evolution over long distances. This is rarely
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possible in mafic rocks, which usually occur only as dis-
membered and isolated bodies.

Despite the remarkable progress made on reconstructing
the metamorphic evolution of HP/LT and LP/LT metase-
diments (see review of Bousquet et al. 2008; and references
therein), accurate characterization of metamorphic gradi-
ents and P-T-paths still remains problematic. Classical
petrology based on analysing coexisting mineral assem-
blages and applying equilibrium thermodynamics reaches
its limits, particularly in rocks that experienced low-grade
conditions. A potentially powerful tool for estimating
paleotemperatures is the investigation of the evolution of
natural carbonaceous material, i.e. organic matter.

The presented investigation demonstrates the great
potential for using Raman spectroscopy of carbonaceous
material in the context of a detailed petrological and
structural study. This method is very powerful for deter-
mining the maximum temperatures reached during meta-
morphism. Provided that the sampling is uniformly dense
over a large area, this method also yields three-dimensional
information on temperature gradients in the field. Up to
now, such detailed spatial information has only been
locally available in the Central Alps, as revealed by map-
ping of three-dimensional isograd patterns on a local scale
(e.g. Streckeisen and Wenk 1974; Fox 1975; Thompson
1976). Carbonaceous material (CM) is ubiquitous in
metasedimentary rocks in the area of investigation. This
method is based on the widely accepted notion that the
continuous transformation of the crystalline structure of
CM from disordered organic matter to fully ordered
graphite (generally called graphitization; e.g. Teichmiiller
1987) is mainly temperature-dependent. Hence, the struc-
tural order of CM as detected with Raman spectroscopy is
expected to increase systematically with increasing tem-
perature (e.g. Pasteris and Wopenka 1991; Yui et al. 1996)
and indeed, the relationship between structural ordering
and temperature has been calibrated as a reliable geother-
mometer (Beyssac et al. 2002a; Rahl et al. 2005). A key
feature of this method is that graphitization is an irrevers-
ible thermal process, as supported by the observation that
the degree of crystallinity of CM is irreversible (e.g.
Beyssac et al. 2002a). Therefore, this geothermometer
always reliably records the peak temperature reached by a
rock specimen along its P-T-path (e.g. Beyssac et al. 2004,
2007; Bollinger et al. 2004; Rantitsch et al. 2004, 2005;
Guedes et al. 2005; Rahl et al. 2005; Negro et al. 2006;
Judik et al. 2008; Kribek et al. 2008; Angiboust et al. 2009;
Gabalda et al. 2009; Rantitsch and Judik 2009; Aoya et al.
2010).

This study presents a first systematic, comprehensive
investigation of the evolution of CM using Raman spec-
troscopy over a large area of the Central Alps at the
northeastern rim of the Lepontine dome that is
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characterized by high topographic gradients. The peak
temperature distribution in maps and profiles covers a large
volume of calcareous, organic-rich metasediments (gener-
ally referred to as Biindnerschiefer) that were deposited
onto basement of the European continental margin and the
adjacent Valais oceanic domain in Cretaceous time
(Steinmann 1994; Berger et al. 2005; Wiederkehr et al.
2008). The dataset comprises a total of 214 samples
(Figs. 1, 2, Table 1) and allows for high-resolution map-
ping of maximum metamorphic temperatures in three
dimensions. Two different calibrations (Beyssac et al.
2002a; Rahl et al. 2005) were used and will be compared
with each other in this study. The peak temperature dis-
tribution will be discussed in terms of the P-T-paths
associated with the high-pressure and Barrow-type meta-
morphisms, respectively.

Geological setting and sampling strategy

The analysed Mesozoic metasediments are located partly
within the northeastern rim of the Lepontine dome and
partly in easterly adjacent areas (inset of Fig. 1). This
working area turned out to be ideal for studying tempera-
ture gradients in a transition zone between realms that are
characterized by collision- and subduction-related meta-
morphic overprints. The investigated zone of transition
extends from the Garvera-Lukmanier-Pizzo Molare area in
the W to the Prittigau half-window in the E and also
includes the N-S-oriented Misox Zone located between
the Adula and Tambo nappes (Figs. 1, 2). This allows for
continuous observation of the same metasedimentary units
along strike, i.e. from an area dominated by amphibolite-
facies, Barrovian overprint in the SW to one dominated by
blueschist-facies conditions in the NE (Fig. 1; Wiederkehr
et al. 2008).

Tectono-metamorphic background

Within our working area, pre-Alpine basement nappes
predominate over Mesozoic metasediments in the west and
at deeper structural levels. These basement nappes formed
by scraping off of uppermost crustal slices from the
southward-subducting European margin and accreting
them to the overlying Penninic nappe stack during the
latest stages of Alpine plate convergence (Schmid et al.
1996). Because they structurally underlie the Penninic
nappes formed by the remnants of two branches of Alpine
Tethys and slices of an intervening Briangonnais micro-
continent, they are referred to as Sub-Penninic (Milnes
1974; Froitzheim et al. 1996; Schmid et al. 2004). The
basement nappes include, from bottom to top, the Gotthard,
Lucomagno-Leventina, Simano and Adula nappes.

Together, they form the bulk of the Lepontine structural
dome that exposes the deepest tectonic units of the Alps.
These basement nappes are overlain directly by thin slivers
of Mesozoic metasediments that were part of the Mesozoic
cover of this European margin (Europe-derived metasedi-
mentary units of Figs. 1, 2). These Europe-derived
metasediments are complexly folded and wrapped around
the frontal parts of the Sub-Penninic basement nappes (e.g.
Thakur 1973; Milnes 1974; Probst 1980).

The Penninic Basal Thrust separates the Europe-derived
Sub-Penninic units from the Lower Penninic cover nappes
and thrust slices that originated from the Valais Ocean (e.g.
Steinmann 1994; Wiederkehr et al. 2008). The latter,
referred to as Valaisan, consist almost exclusively of
Mesozoic metasediments referred to as Biindnerschiefer
(e.g. Probst 1980; Steinmann 1994; Berger et al. 2005;
Figs. 1, 2). Because they constitute a structurally higher
nappe stack with an axial plunge towards the east, they are
predominantly found in the eastern parts of the studied
area.

The northeastern margin of the Lepontine dome is the
locus of several pioneering studies addressing fundamental
principles related to the evolution of prograde Barrovian
metamorphism (Niggli and Niggli 1965; Chadwick 1968;
Frey 1969, 1978; Niggli 1970; Wenk 1970; Fox 1975; Livi
et al. 2002). Metamorphic grade increases continuously
from chloritoid- and margarite-bearing micaschists that
are part of the greenschist-facies domain in the Urseren-
Garvera Zone (Frey 1978; Livi et al. 2002) to staurolite-
kyanite-garnet-biotite-bearing metasediments indicating
amphibolite-facies conditions around the Lukmanier area
and Pizzo Molare (Fig. 1; Chadwick 1968; Frey 1969;
Thakur 1971; Fox 1975). Lower/middle amphibolite-facies
metamorphic conditions (0.5-0.8 GPa and 500-550°C)
have been estimated for Barrow-type metamorphism in the
northeastern Lepontine dome (Chadwick 1968; Frey 1969;
Fox 1975; Engi et al. 1995; Todd and Engi 1997; Frey and
Ferreiro Médhlmann 1999). A similar progressive increase
in metamorphic conditions is also found in the Misox Zone
further to the east (Thompson 1976; Teutsch 1982; Fig. 1).

Low-grade metasediments predominate in the area
northeast of the Lepontine dome, but there the metamor-
phic record is ill-constrained due to the scarcity of unam-
biguous mineral assemblages; often one can only infer
“greenschist-facies” conditions. However, the recognition
of Fe—Mg carpholite in the metasediments of the Valaisan
east of the Lepontine dome indicates that blueschist-facies
conditions of 1.2-1.4 GPa and 350-400°C were estab-
lished before the late-stage overprinting under greenschist-
facies conditions (Fig. 1; Goffé and Oberhinsli 1992;
Oberhénsli et al. 1995; Bousquet et al. 1998). The dis-
covery of carpholite documented the existence of a second
and northern subduction zone within the Valais oceanic
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domain, located between units derived from the Brian-
connais micro-continent and those derived from the distal
European margin (e.g. Oberhinsli 1994). The trace of this
subduction zone is again found in the carpholite-bearing
HP/LT Petit St. Bernard Unit located southwest of the
Lepontine dome (Goffé and Bousquet 1997; Bousquet et al.
2002; Loprieno et al. 2010). This HP/LT belt marks the
suture of the Valais Ocean and is separated from a second
more southerly located suture of the Piemont-Liguria
Ocean also marked by a well-established HP-belt. The
Brianconnais-derived nappes, which partly lack a high-
pressure overprint (Frey and Ferreiro Mihlmann 1999;
Engi et al. 2004), separate these two HP/LT belts from each
other.

The subduction-related blueschist-facies overprint, as
well as the subsequent greenschist-facies retrogression
in the NE part of the investigated area, pre-date an
entirely separate collision-related, Barrow-type amphibo-
lite-facies metamorphic overprint that is only developed in
the southwestern part of the investigated area (see e.g.
Wiederkehr et al. 2008). The two events were diachronous
at the scale of the Alpine orogen and hence all indicators of
metamorphic zoning such as peak-metamorphic tempera-
ture inferred by the present study must be diachronous as
well (e.g. Hunziker et al. 1992; Brouwer et al. 2005;
Wiederkehr et al. 2009). Diachronism is well documented
by recent isotopic investigations. These report 42—40 Ma
for the timing of HP-metamorphism of metasediments
belonging to the Valaisan northeast of the Lepontine dome
(Wiederkehr et al. 2009). Towards the southwest, this
HP-event was subsequently overprinted by a surprisingly
young amphibolite-facies Barrow-type metamorphic event
affecting the northern part of the Lepontine thermal dome,
recently dated to be younger than 20 Ma (Allaz 2008;
Janots et al. 2009; Wiederkehr et al. 2009). Note that the
earlier HP/LT metamorphism not only affected the me-
tasediments of the Valaisan but also parts of the metase-
dimentary units derived from the European margin (i.e.
Peidener slices and Piz Terri-Lunschania Unit; Figs. 1, 2;
Wiederkehr et al. 2008; Derungs 2008; Wiederkehr 2009).
This first metamorphic event is separated structurally from
the second MP/MT Barrovian overprint by at least two
deformational events, which results in a typically bimodal
P-T-path (Brouwer et al. 2005; Zulbati 2008; Wiederkehr
et al. 2008).

Sediments derived from the distal European margin
(Sub-Penninic cover nappes and slices)

The sediments originally deposited onto the former distal
European margin include the Urseren-Garvera Zone, the
Scopi Unit and Peidener slices that together form the
so-called Gotthard Mesozoic units as well as the Piz Terri-

Lunschania Unit (Figs. 1, 2; see Wiederkehr et al. 2008 for
further details). In general, these sedimentary slices are
made up of a Triassic sequence consisting of quartzite,
dolomitic marble, evaporite, metapelite and metamarl fol-
lowed by a lower to middle Jurassic sequence of shale,
sandstone, limestone, carbonaceous metapelite and calc-
schist; the latter often resemble the so-called Biindner-
schiefer units derived from the Valais Ocean (Baumer et al.
1961; Probst 1980; Etter 1987; Berger et al. 2005). Juras-
sic-age black shale, marl and calcschist with a high content
in CM were selected for sampling.

We also sampled Mesozoic metasediments found inside
the northern basement-dominated Adula nappe complex
(so-called “internal Mesozoic”; Low 1987; sampling
points depicted in Fig. 2 within the Adula nappe com-
plex). These sediments consist of Triassic quartzite,
dolomitic marble and evaporite that were sliced and
imbricated with the Adula crystalline basement. Kyanite-
chloritoid-garnet-zoisite/clinozoisite-bearing metamarl and
calcschist of probably Lower Jurassic age are unambigu-
ously associated with these Triassic sediments in some rare
outcrops (Fig. 1; Jenny et al. 1923; Van der Plaas et al.
1958; Low 1987; Thiiring 1990; Wyss and Isler 2007).
Given their strong lithological affinity with the metasedi-
ments found in the Scopi Unit, we also attribute these
occurrences to the sediments scraped off of the distal
European margin.

Sediments derived from the Valais Ocean (Lower
Penninic cover nappes and slices)

Sediments derived from the predominantly oceanic Valais
realm form voluminous and rather monotonous sequences
of calcschist (Biindnerschiefer) thrust along the Penninic
Basal Thrust onto the sediments of the former European
margin. These Biindnerschiefer, together with flysch units,
marbles and ophiolitic occurrences that are also part of the
Valaisan, are subdivided into a number of tectonic units.
The largest are the Grava nappe (including the Prittigau
Flysch) and the Tomiil nappe (Figs. 1, 2), both consisting
of Cretaceous- to Eocene-age calcschist, limestone, shale,
marl and sandy limestone (Nidnny 1948; Ziegler 1956;
Steinmann 1994). The existence of mafic and ultramafic
rocks (Nabholz 1945) indicates that at least parts of the
Valaisan Biindnerschiefer were deposited on oceanic crust
(Steinmann 1994; Steinmann and Stille 1999). Some of the
samples analysed come from the Misox Zone, a narrow
zone of Mesozoic metasediments that also includes
ophiolitic slices (e.g. Steinmann 1994). This zone is located
between the Adula nappe complex and the overlying
Tambo basement nappe (Gansser 1937; Strohbach 1965;
Fig. 1) and represents the root zone of the Valaisan oceanic
domain.
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Sampling strategy

The most densely covered area lies between Lukmanier
and Pizzo Molare in the west to Safiental in the east (see a
complementary study on this area by Wiederkehr et al.
2008). Sampling is particularly dense between Olivone and
Vrin (Fig. 2), where a pronounced lateral temperature
gradient is indicated by the growth over an amazingly short
distance (5 km along strike) of new porphyroblasts related
to the Barrovian overprint (zoisite/clinozoisite, plagioclase,
biotite and garnet).

In order to include additional samples located at con-
siderable distance to the east and north from the closer area
of investigation in Wiederkehr et al. (2008), and also to
increase sample density, we also re-analysed reference
samples used in previous studies (see Table 1). X-ray dif-
fraction, combustion analysis, thermal analysis and vitri-
nite reflectance data (Petrova et al. 2002), as well as
transmission electron microscopy (Ferreiro Méihlmann
et al. 2002) were previously presented along a profile that
stretches from the part of the Misox Zone where amphib-
olite-facies conditions prevail (southernmost sample points
in Fig. 1) all the way into the Prittigau half-window, which
was only affected by very low- to low-grade metamor-
phism (in the northeastern corner of Fig. 1). These samples
were reinvestigated in the present study not only in order to
spatially extend the data set, but also for comparing these
previous results with those obtained by Raman spectros-
copy. Moreover, additional samples were taken from the
collection of M. Frey (University of Basel) that were the
subject of earlier investigations (Hoefs and Frey 1976; Frey
1978; Frey et al. 1982; Teutsch 1982; Thoenen 1989). The
latter partly come from the Urseren-Garvera Zone (samples
number 14 in Fig. 2 and Table 1) and somewhat increased
the sample density in the adjacent Lukmanier area to the
south and in the Misox Zone.

Raman spectroscopy of carbonaceous matter (RSCM
method)

The continuous transformation of the crystalline structure
of carbonaceous matter (CM) from disordered organic
matter to fully ordered graphite (generally referred to as the
graphitization process; e.g. Teichmiiller 1987) is mainly
temperature-dependent. Hence, the crystallinity of CM,
referred to as degree of ordering (graphitization), is
expected to increase systematically with increasing tem-
perature and can therefore be used to estimate the meta-
morphic grade of a given rock sample (e.g. Quinn and
Glass 1958; French 1964; Landis 1971; Grew 1974; Itaya
1981; Buseck and Huang 1985; Ferreiro Méhlmann et al.
2002; Petrova et al. 2002). Numerous studies have shown

@ Springer

that Raman spectroscopy is a reliable and powerful tool for
recording the structural characterization (degree of order-
ing) of CM (e.g. Wang et al. 1989; Wopenka and Pasteris
1993; Beyssac et al. 2002b).

We monitor the regional changes in the structure of CM
by using Micro-Raman spectroscopy. In contrast to other
methods (X-ray powder diffraction, high-resolution trans-
mission electron microscopy, isotope geochemistry or
vitrinite reflectance measurements), Micro-Raman spec-
troscopy has the following advantages: (1) Raman spectra
show significant changes with increasing metamorphic
grade (e.g. Wopenka and Pasteris 1993; Beyssac et al.
2002b); (2) the method can be applied in a non-destructive
way by in situ analysis and therefore permits the charac-
terization of individual grains while preserving their pet-
rological and textural relations; and (3) the sample
heterogeneity can be quantified thanks to a high spatial
resolution and short spectrum-acquisition time, which
allows recording numerous spectra within a given sample.
Hence, Micro-Raman spectroscopy of CM provides a
precise indicator of metamorphic grade (Pasteris and
Wopenka 1991; Yui et al. 1996), especially because the rela-
tionships between the degree of crystallinity as is expressed
by the shape of the Raman spectra, and the metamorphic
conditions have been calibrated as a geothermometer over
a broad temperature interval from 330 to 650°C (Beyssac
et al. 2002a). The calibration by Rahl et al. (2005) extended
the range of the geothermometer to temperatures as low as
100°C and up to 700°C. (Rahl et al. 2005). A discussion of
the calibration to lower temperatures is given in Lahfid
et al. (2010).

Several studies showed that Raman spectroscopy of
carbonaceous material (RSCM method) is the best-suited
method for in situ determinations of the crystallinity of CM
in thin sections (e.g. Pasteris and Wopenka 1991; Wopenka
and Pasteris 1993; Yui et al. 1996; Beyssac et al. 2002b,
2003a). When empirically calibrated against independently
determined temperatures (Beyssac et al. 2002a; Rahl et al.
2005), the spectra obtained provide a reliable geother-
mometer. It is important to note that the thermally induced
graphitization process is strictly irreversible (e.g. Teichmiiller
1987). Therefore, the structure of CM only depends on the
maximum temperature reached along a given P-T-path and is
insensitive to a polymetamorphic evolution and/or a retro-
grade overprint (Wopenka and Pasteris 1993; Beyssac et al.
2002a).

Because the 214 samples analysed for determinations of
maximum temperature were collected in areas either
dominated by subduction-related HP/LT metamorphism or
dominated by collision-related MP/MT Barrovian overprint
(Figs. 1, 2, Table 1), only the 3-D pattern of the tempera-
tures derived by this method combined with additional
petrological data allows one to discriminate between these
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Fig. 3 Spectral deconvolution
of the first- and second-order
region of the Raman spectrum A
of CM, indicating a relatively
disordered structure (sample Nr.
205 for which 350°C were
inferred, see Table 1).

a Position of the graphite G
band and the D1, D2, D3 defect
bands in the first-order region;
b position of the graphite S1 and
S2 bands in the second-order

Intensity

region (L DL L
1050

Wavenumber (Raman shift, cm')

two events. All the results obtained by Micro-Raman
spectroscopy were converted to peak-metamorphic tem-
peratures by using both calibrations (Beyssac et al. 2002a;
Rahl et al. 2005). In order to obtain comparable results, we
strictly followed the analytical instructions given in Beyssac
et al. (2002a, 2003b).

Sample preparation

The Raman spectra were recorded in situ, i.e. in conven-
tionally polished petrographic thin sections, allowing for
the preservation of the textural relationship between CM
and the surrounding mineral matrix. Additionally, the
surrounding rock matrix facilitates the removal of laser-
induced heat, which may affect the degree of structural
ordering due to the extreme sensitivity of CM to laser-
induced heating during spectra acquisition (Beyssac et al.
2003b). Moreover, the recorded Raman spectra are highly
sensitive to the orientation of CM due to its strong struc-
tural anisotropy, particularly in the case of well-crystal-
lized graphite (e.g. Wang et al. 1989; Wopenka and
Pasteris 1993). Recently, Tan et al. (2004) demonstrated
that the Raman spectrum of mono-crystalline graphite is
not very sensitive to polarization and orientation effects in
the green part of the visible spectrum. However, we closely
followed the instructions given in Beyssac et al. (2002a,
2003b) in order to avoid systematic variations. Therefore,
the thin sections were cut perpendicular to the main foli-
ation, and whenever possible, also parallel to the stretching
lineation in order to record Raman spectra consistently in
the same orientation, i.e. perpendicular to the expected
mean stacking axis of the CM. In this way, it is possible to
set the polarization of the laser beam perpendicular to the
mean c-axis orientation of the CM.

Raman spectrum of carbonaceous material

In general, Raman spectra of CM can be decomposed into
first-order (1,100-1,800 cm™") and second-order (2,500~

D1 First-order Second-order
region b region
A
S1
G >

)
S
S S2

D2

D3
T I T I T I T I T T I T I T I T I T I T I 1
1250 1450 1650 1850 2500 2700 2900 3100

Wavenumber (Raman shift, cm™")

3,100 cm_l) regions (Tuinstra and Koenig 1970; Nema-
nich and Solin 1979; Fig. 3). The first-order region is
perfectly suited for recording the degree of order/disorder
of CM and thereby determining peak-metamorphic condi-
tions (Pasteris and Wopenka 1991; Wopenka and Pasteris
1993; Yui et al. 1996; Beyssac et al. 2002a, b; Rantitsch
et al. 2004; Rahl et al. 2005). This first-order region
includes up to four Raman peaks or bands (Fig. 3a),
including the G band characteristic of perfect crystallized
graphite and up to three additional bands (generally called
D1, D2 and D3) that are directly related to the degree of
structural disorder (so-called defect bands; Tuinstra and
Koenig 1970; Pasteris and Wopenka 1991; Beyssac et al.
2002a, 2003a; Nasdala et al. 2004).

The second-order region is mainly characterized by the
appearance of two bands, S1 and S2 (Fig. 3b; Nemanich
and Solin 1979; Wopenka and Pasteris 1993; Beyssac et al.
2003b; Lee 2004). As is the case regarding the first-order
region, there are also systematic changes within the sec-
ond-order region due to increasing graphitization (see e.g.
Wopenka and Pasteris 1993; Beyssac et al. 2002a, b).

During progressive temperature-induced ordering, the
Raman spectra of CM exhibit a characteristic evolution that
is most obvious by looking at the intensities of bands
related to disorder in the crystalline structure (D1, D2 &
D3), but also evident from the position and width of the
characteristic G band in the first-order region as well as
from width and asymmetry of the S1 band in the second-
order region (Pasteris and Wopenka 1991; Wopenka and
Pasteris 1993; Yui et al. 1996; Beyssac et al. 2002a, b; Lee
2004). Beyssac et al. (2002a, b) showed that peak intensity
ratio R1 (R1 = D1/G) and peak area ratio R2 (R2 = D1/
[G + D1 + D2]), both calculated from bands in the first-
order region, are the most reliable indicators for the degree
of ordering in CM. They found a linear relationship
between the R2 ratio and peak-metamorphic temperature in
the range of 330-650°C by calibration with other geo-
thermometers (Beyssac et al. 2002a). Recently, a revised
calibration involving both R1 and R2 ratio was presented
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by Rabhl et al. (2005). The R1 ratio, taken into account by
this second calibration method, shows significant varia-
tions, particularly under low- and very low-grade condi-
tions. This contrasts with the R2 ratio, which is rather
insensitive below 330°C and above 650°C (e.g. Beyssac
et al. 2002a). Therefore, this revised calibration potentially
extends the temperature range to the 100-700°C interval
(Rahl et al. 2005). Due to uncertainties in the two cali-
bration methods, the temperatures derived can only be
accurate to within £50°C (Beyssac et al. 2002a; Rahl et al.
2005). However, the precision is much better and allows
inter-sample variations as small as ~ 10-15°C to be easily
detected (Beyssac et al. 2004).

Analytical procedure: spectra acquisition and treatment

Micro-Raman spectroscopy was performed at the Raman
Laboratory of the Institute of Earth and Environmental
Sciences at Potsdam University using a confocal, notch filter-
based spectrometer (LabRam HR 800, HORIBA Jobin—
Yvon) equipped with an Olympus BX 41 microscope, an
air-cooled Nd-YAG laser (Compass 315 M, Coherent) for
Raman excitation with the 532 nm line and a Peltier-cooled
CCD detector (Andor Technology). A Leica 50x microscope
objective was used for sample viewing under both reflected
and transmitted light, as well as for the Raman measurements.
The laser spot diameter at the sample surface was about 3 pum,
and the confocal pinhole was set to 200 pum. The laser power
was reduced to 2-3 mW at the sample surface by a neutral D1
filter (transmission: 10% of the laser power) in order to
exclude effects due to sample heating. The LabSpec software
of HORIBA Jobin—Yvon has been used for data acquisition
and estimation of the spectral parameters of the Raman bands.
Before each session, a silicon standard was used for checking
the calibration of the spectrometer. Since section preparation,
particularly polishing, induces mechanical damage to the
structure of CM (Nemanich and Solin 1979; Beyssac et al.
2003b), we focussed the laser beam onto CM matter located
beneath a transparent mineral within the section (Pasteris
1989; Beyssac et al. 2002a, 2003b), preferentially beneath
quartz, although calcite, feldspar and chloritoid were also
used.

The application of a grating of 300 lines/mm and a slit
width of 100 um resulted in the acquisition of Raman spectra
in the range 175-3,300 cm™' with a spectral resolution of
about 10 cm ™. This configuration allowed for the registration
of all first-order Raman bands of graphite in the region
1,100-1,800 cm ™! used for the estimation of the peak-meta-
morphic temperatures, and additionally the Raman bands of
the covering transparent minerals, within a single spectral
window. In each sample, a minimum of 10, and as many as 45
independent spots were analysed in order to gather insight
regarding structural heterogeneities of the CM within one and
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the same sample. Depending on the intensity of the Raman
bands, between two and four accumulations with an acquisi-
tion time ranging from 20 to 90 s were performed on each spot
in order to improve signal to noise ratios of the spectra.

The Raman spectra were processed by using the pro-
gram PEAKFIT 4.12 (Seasolve Software Inc.) with a Voigt
function (combined Gaussian and Lorentzian profiles) and
a linear background correction to determine the spectral
parameters such as peak position, peak area, peak height
and peak width FWHM (full width at half-maximum).

Weused a 532-nm laser for Raman excitation instead of the
514-nm laser used in the calibration of Beyssac et al. (2002a).
This is a crucial point due to the fact that the defect bands of
CM exhibit a dispersive behaviour because it means that
Raman band position and relative intensities vary with the
excitation wavelength (Pocsik et al. 1998; Matthews et al.
1999; Cangado et al. 2006, 2007; Pimenta et al. 2007).
Unfortunately, up to now there is no simple way to correct
Raman parameters such as the R2 ratio for analyses performed
by using the 532-nm laser. Being aware of the variations
caused by a different laser wavelength, we are convinced that
any systematic differences are of only minor importance for
the following reasons (see also Aoya et al. 2010): (1)
Numerous studies based on the calibration of Beyssac et al.
(2002a) presented very reliable peak-metamorphic tempera-
tures as obtained with the 532-nm laser in this study. These
temperatures are generally in good agreement with the cor-
responding tectono-metamorphic setting (e.g. Rantitsch et al.
2004, 2005; Guedes et al. 2005; Judik et al. 2008; Kribek et al.
2008; Rantitsch and Judik 2009); (2) The geothermometer
provided by Rahl et al. (2005) was calibrated with a 532-nm
laser as well, and as discussed later (see “Comparison between
the available calibration methods”) and also shown by other
investigations (e.g. Judik et al. 2008; Kribek et al. 2008), the
recorded peak-metamorphic temperatures were generally
close to those obtained by the calibration of Beyssac et al.
(2002a); (3) Some samples investigated by this study were
collected in the same area as that used for the calibration by
Beyssac et al. (2002a; their sample “luk/Lukmanier”), i.e.
from the area around Lukmanier (Fig. 1). The estimated R2
ratios for this area are in the range of 0.26-0.18 (Fig. 2,
Table 1), i.e. well inside or close to the 0.24 4 0.05 value
determined for the R2 ratio by Beyssac et al. (2002a: sample
“luk/Lukmanier” in their Table 2).

Results of the RSCM investigations

Table 1 summarizes the results of decomposing the spectra
of all 214 samples and gives the estimated peak-meta-
morphic temperatures based on both calibrations (Beyssac
et al. 2002a; Rahl et al. 2005) in terms of mean values.
Measurement-induced uncertainties regarding the derived
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temperatures are given as 95% confidence intervals (CI),
i.e. close to 2¢ errors corresponding to a confidence
interval of 95.5%.

The change in metamorphic temperature over the entire
area of investigation, ranging from lower/middle amphi-
bolite-facies conditions in the southwest to lower green-
schist-facies conditions with occasional blueschist-facies
relics in the northeast (see Wiederkehr et al. 2008 for
details), is directly illustrated by the corresponding evolu-
tion of the Raman spectra of CM, reflecting the degree of
structural ordering as shown in Fig. 4. This evolution
shows all the typical features described in earlier studies
(e.g. Pasteris and Wopenka 1991; Wopenka and Pasteris
1993; Yui et al. 1996; Beyssac et al. 2002b) and will not be
further discussed in this study.

Comparison between the available calibration methods

Given the exceptionally large number of measured samples
and the large temperature interval covered in the study
area, a comparison between the two available calibration
methods by Beyssac et al. (2002a) and Rahl et al. (2005) is
appropriate. Figure 5 graphically correlates the tempera-
ture estimates based on Beyssac et al. (2002a) with those
obtained using Rahl et al. (2005). In general, the temper-
ature differences between the two calibrations are well
inside the +£50°C uncertainty inherent in the empirical
calibration used by Beyssac et al. (2002a); both methods
provide similar temperature estimates, discrepancies being
less than 30°C (Fig. 5). At temperatures of 350, 425 and
530°C, both calibrations yield exactly the same tempera-
ture estimates. In the intermediate temperature intervals,
some systematic differences are observed (Fig. 5). In the
450-525°C range, the temperatures calculated according to
Rahl et al. (2005) are systematically lower, whereas the
temperature estimates between 350—400°C and from 550°C
upwards are higher than those calculated according to Beyssac
etal. (2002a). The great advantage of the method of Rahl et al.
(2005) is the possibility to estimate metamorphic tempera-
tures in low- to very low-grade metasediments, i.e. in the
100-330°C temperature interval. In general, the relative
uncertainties in temperatures derived with the calibration of
Rahl et al. (2005) are higher, however, compared to those
derived with Beyssac et al. 2002a, especially at temperatures
higher than 480°C (see Table 1, Fig. 5).

Mapping thermal field gradients in 3 dimensions

Method used for contouring thermal field gradients in map
and profile view

Based on the maximum temperatures obtained from
the RSCM method, we present what we refer to as

First-order Second-order

region ? s1 region
D1 l
l D2 S2
oy
i ~600°C
@ ‘/\J‘ =~ 550°C J\\’\
A ~530°C /L
J\Jk =515°C L
J\VJ\\ ~495°C
@) M ~435°C A\/\
~405°C
j\\j\\ o ‘j\/\
h ~365°C JL\
h ~350°C M
~335°C M
= 260°C M
@19 S140°C e
‘1(1)50T 12‘50X 14;50X 12350X 1é50 Z;OOX 27‘00X ZS;OOX 3‘;00

Raman shift (cm™) Raman shift (cm™)
Fig. 4 Selection of representative first-order and corresponding second-
order parts of the Raman spectra, arranged from bottom to top by
increasing inferred temperatures and going from SW to NE across the
area of investigation, respectively. The positions of the G, D1, D2, D3, S1
and S2 bands, as well as the estimated peak-metamorphic temperatures
are indicated. The numbers on the left-hand side refer to the sample
numbers listed in Table 1, for geographical locations see also Figs. 1, 2.
The small narrow band at around 1,160 cm ™" in the first-order region is
due to quartz as overlying transparent mineral; see text
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Fig. 5 Correlation of peak-metamorphic temperatures estimated
based on the calibrations provided by Beyssac et al. (2002a) and
Rahl et al. (2005), respectively, for all the analysed samples. See text
for details

“isotemperature contours” in map and profile view. These
contours simply represent lines connecting locations that
reached a given maximum temperature in map or profile
view, regardless of when these locations reached their
maximum temperature and at which pressure. Note that
these contours by no means necessarily represent true
isotherms at a given instant in time, because maximum
temperatures could have been reached at different times, as
might indeed be expected given the complex metamorphic
evolution of this area (see Wiederkehr et al. 2008, 2009 for
details). Parts of the isotemperature contours reflect the
temperatures reached during the earlier HP/LT event, or its
subsequent greenschist-facies overprint during decom-
pression, and are laterally continuous with other segments
that record the temperatures reached during a later Barrow-
type event.

When attempting to construct such contours, it soon
became apparent that there is a rather small number of
locations (16 locations out of a total of 214 measured) that
obviously do not fit into a regional trend, neither in map
nor in profile view, in that they exhibit much higher tem-
peratures than their neighbouring specimens. These are
highlighted with bold letters in Table 1 and were not
included in the construction of the isotemperature contours.
Dealing with such discrepancies that can be attributed to
the heterogeneous nature of natural carbonaceous matter
(e.g. Beyssac et al. 2002b; Aoya et al. 2010) is a challenge
when using the RSCM method (e.g. Beyssac et al. 2003b).

Four reasons are held responsible for such discrepan-
cies: First, such heterogeneities may be caused by depo-
sitional mixing of sedimentary detritus (e.g. Diessel et al.
1978; Itaya 1981; Petrova et al. 2002). Thus, one can
obtain peak temperatures valid for the source area rather
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than for the metasediments sampled. A recent study per-
formed along the metamorphic profile from the Prittigau
half-window to the Misox Zone (Fig. 1) provided evidence
for the common occurrence of detrital graphite in nearly all
samples, as documented by X-ray diffraction data (Petrova
et al. 2002). The widespread occurrence of detrital graphite
is in agreement with the study by Galy et al. (2008)
addressing recycling of graphite.

Secondly, such discrepancies may reflect the fact that
the metamorphic structure of the Central Alps is rather
complex. The occurrence of closely juxtaposed tectonic
units with drastically different peak-metamorphic conditions
is a common feature. Hence, inter-sample heterogeneities
may simply reflect variations in the tectono-metamorphic
evolution of different tectonic units.

Thirdly, such heterogeneities may be caused by the fact
that the graphitization process is not strictly temperature-
dependent. Reasons for this include the effects of pressure
(Diessel et al. 1978; Teichmiiller 1987), tectonic stress/
strain (Bustin et al. 1986; Suchy et al. 1997; Ferreiro
Maihlmann et al. 2002; Nover et al. 2005; Aoya et al. 2010),
duration of the thermal/metamorphic event (e.g. Itaya
1981; Okuyama-Kusunose and Itaya 1987), host-rock
lithology (e.g. Grew 1974; Wopenka and Pasteris 1993;
Wada et al. 1994), catalytic species/minerals (e.g. Bonijoly
et al. 1982; Okuyama-Kusunose and Itaya 1987 and ref-
erences therein), type of organic precursors (Kribek et al.
1994; Large et al. 1994; Bustin et al. 1995) and composi-
tion/activity of metamorphic fluids (Large et al. 1994;
Guedes et al. 2005).

Finally, the entire analytical procedure may induce
heterogeneities due to the measurement technique itself or
due to the fitting procedure (e.g. Beyssac et al. 2003b). In
order to minimize such effects, we closely followed the
instructions given by Beyssac et al. (2002a, 2003b) thereby
avoiding systematic inter-sample variations.

A detailed discussion of the samples yielding abnor-
mally high temperatures in respect to neighbouring speci-
mens (highlighted in bold letters in Table 1) will be
provided in the Interpretation/Discussion paragraph.

The isotemperature contours were drawn manually
based on the calibrations of Beyssac et al. (2002a) and Rahl
et al. (2005) in Fig. 6, and based on Beyssac et al. (2002a)
in Figs. 7 and 8. We contoured the data manually, because
we also tried to keep the spacing between isolines more or
less constant, had to exclude some of the specimens (see
below) and, in case of the Lunschania antiform, also used
structural information. The resulting manually constructed
peak-temperature contours were found to be close to those
obtained by geostatistical methods using a kriging routine.

In the temperature—distance and temperature—altitude
profiles presented in Figs. 7 and 8, respectively, and prior
to the contouring within the plane of the section, the
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(incl. Urseren-Garvera Zone, Scopi Unit, Peidener
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Metasediments of the Valaisan domain
(incl. Valser slices, Aul Unit, Grava nappe,
Tomiil nappe, Préattigau flysch)

Fig. 6 Comparison of the estimated peak-metamorphic temperature
distribution in map view in the form of isotemperature contours (see
text) derived from the samples listed in Table 1 using the calibrations

sample locations were projected into the profile plane in a
direction parallel to the isotemperature contours, as previ-
ously constructed in map view (Fig. 6) and from within a
corridor whose width is given in the figure captions. The
sample localities were projected horizontally in the case of
Figs. 7 and 8a, and by using the angle of the local axial
plunge specified in the figure caption in case of Fig. 8b—e.

Comparison of the thermal field gradients obtained
with two alternative calibration methods

We first present the peak-metamorphic temperatures
obtained by the RSCM method as a function of geo-
graphical location (see also Table 1). The two maps
depicted in Fig. 6 based on the two available calibrations
predict comparable and very reliable peak-metamorphic
temperatures that vary from <330°C in the northeast
(Prattigau half-window) up to 560-590°C in the southwest
(Pizzo Molare, Lepontine thermal dome; Table 1, Fig. 6).

Both maps show similar shapes of the constructed iso-
temperature contours, especially for the 425 and 525°C
range (compare Fig. 6a, b). It is also remarkable that in
both maps the 375, 400 and 425°C isotemperature contours

+.+.| underlying European domain

b+ o+

E overlying Briangonnais, Piemont-Liguria
and Austroalpine domain

given by a Beyssac et al. (2002a), and b Rahl et al. (2005).
Temperatures are given in °C. Stippled line indicates the trace of the
axial plane of the Lunschania antiform

show the same characteristic curved indentation towards
the northeast in map view. As discussed in Wiederkehr
et al. (2008), this feature is related to the fact that the
isotemperature contours in the northeast record tempera-
tures that were acquired during the earlier metamorphic
evolution and were subsequently folded around a NE-
plunging antiform (Lunschania antiform of Voll 1976).
However, this excursion towards the northeast is not shown
by the isotemperature contours in the 450-550°C range that
are aligned more or less parallel to a NW-SE-direction, i.e.
perpendicular to the predominant metamorphic field gra-
dient in the western part of the investigated area. There,
these isotemperature contours are related to temperatures
that prevailed during the Barrow-type event and that were
higher than those acquired during the earlier HP/LT stage
and/or subsequent greenschist-facies overprint. This Bar-
row-type event not only post-dates an earlier HP/LT stage,
but also the subsequent folding of the older field temper-
ature gradient (e.g. Wiederkehr et al. 2008).

The most obvious discrepancies between Fig. 6a and b,
i.e. between the field temperature gradients derived from
the two alternative calibrations, are found in the northeast,
i.e. at low temperatures. The temperature distribution

@ Springer



1048

Int J Earth Sci (Geol Rundsch) (2011) 100:1029-1063

pattern of the Rahl et al. (2005) (Fig. 6b) calibration gen-
erally shows a higher maximum temperature gradient, as
revealed by additional isotemperature contours down to
150°C. This independently illustrates the advantages of
using the Rahl et al. (2005) calibration at low temperatures.
Minor discrepancies are also found in two other areas: In
the intermediate temperature domain above about 450°C,
the isotemperature contours derived from the Rahl et al.
(2005) calibration appear more closely spaced, which
reflects a higher temperature gradient. In particular, the
450°C isotherm is shifted to the west. Moreover, in the
highest-temperature domain slightly higher temperatures
are inferred and an additional isotemperature contour at
575°C had to be constructed when analysing the tempera-
tures obtained from the calibration of Rahl et al. (2005).

We conclude that despite minor discrepancies, both
calibrations yield essentially identical features at temper-
atures higher than 330°C, features that are mainly charac-
terized by a field temperature gradient that decreases
radially away from the Lepontine dome in the southwest
towards the Prittigau half-window in the northeast,
superimposed on an excursion of the isotemperature con-
tours to the northeast that coincides with an antiform which
folds isotemperature contours lower than about 450°C. In
the following, we present the peak-metamorphic tempera-
tures obtained in more detail, as well as thermal field
gradients in profile view, thereby addressing the third
dimension of the spatial distribution of maximum
temperatures.

Peak temperatures along the Pizzo Molare-Domleschg
profile

Along this SW-NE-oriented profile (Fig. 7a) metasedi-
mentary units derived from both the European margin and
the Valais oceanic domain are exposed continuously. This
allows a clear correlation of deformational phases and
relative timing of metamorphic events along strike (Wie-
derkehr et al. 2008). These authors showed that both the
metasediments of the Valaisan domain (Grava nappe) and
parts derived from the distal European margin (Peidener
slices) are characterized by a bimodal P-T-path in which
the amphibolite-facies Barrovian overprint represents a
distinct heating pulse that followed isothermal or nearly
isothermal decompression from an earlier HP/LT blue-
schist-facies event. Hence, most of the specimens analysed
derive from this profile in which temperature ranged from
560-590°C in the southwest down to 350-370°C in the
northeast (Fig. 7a).

The highest temperatures were obtained at localities
near Pizzo Molare and Grumo (northern Valle di Blenio;
Fig. 1), which marks the northeastern edge of the high-
temperature part of the Lepontine thermal dome
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characterized by amphibolite-facies, Barrow-type meta-
morphism (e.g. Engi et al. 1995; Todd and Engi 1997; Frey
and Ferreiro Miahlmann 1999) and where recorded tem-
peratures decrease radially towards the north and northeast.
The overall thermal field gradient along this SW-NE sec-
tion partly exhibits a relatively high lateral thermal field
gradient along Val Luzzone, ranging from 540°C north of
Olivone down to 430-450°C around the Piz Terri over a
distance of only 10 km (Fig. 7a). This portion with a high
lateral gradient coincides with dramatic changes in the
mineralogy of the metasediments (Wiederkehr et al. 2008)
and is interpreted to represent the northeastern edge of the
Lepontine Barrow-type thermal dome. Further to the
northeast, between Vrin and Safiental/Domleschg (Fig. 7a),
the lateral thermal field gradient is significantly lower,
within the 450-350°C interval (Fig. 7a).

Interestingly, this change in the lateral thermal field
gradient also coincides with a change in the inclination of
the isotemperature contours in Fig. 8a. This figure enables
a reliable construction of the steepness of the isotempera-
ture contours in a region of high relief and dense sampling.
Across Val Luzzone, the isotemperature contours steepen
to some 30-45° inclined to the northeast, but flatten
towards the east in the area of Piz Terri (Fig. 8a). The
metamorphic field gradient (not necessarily equal to a
geothermal gradient) amounts to some 14°C/km. Further,
the change to a more moderate inclination northeast of Piz
Terri (Fig. 8a) coincides with a significant change in the
trend of the isotemperature contours in map view, as dis-
cussed earlier: in the southwest (i.e. where the contours are
steeply inclined in Fig. 8a) they cut across the Lunschania
antiform, whereas further to the northeast they are folded
by this same antiform (Fig. 6). This supports the interpre-
tation that the isotemperature contours reflect the maxi-
mum temperatures reached during at least two separate
metamorphic events that pre-date and post-date folding of
the Lunschania antiform, respectively.

Peak temperatures along two profiles across folded
isotemperature contours

Effects due to the folding of the Tmax-contours (Wie-
derkehr et al. 2008) are visualized by two temperature—
distance profiles oriented at a high angle to the fold axis of
the Lunschania antiform depicted in Fig. 7b (Spliigen-
Ilanz) and Fig. 7c¢ (Misox Zone-Ilanz). Both profiles show
a localized temperature peak reaching some 425°C in the
Valsertal and coinciding with the core of the Lunschania
antiform, superimposed onto the overall lateral thermal
field gradient. This corroborates the idea of folded iso-
temperature contours in the eastern part of the working
area. Interestingly, the transition between folded and
intersecting isotherms is located between 450 and 425°C
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Fig. 7 Temperature—distance profiles summarizing the peak-meta-
morphic temperatures as inferred by the RSCM method using the
Beyssac et al. (2002a) calibration method along NE-SW to N-S
trending profile traces, whose locations are indicated in an inset
(lower right). The samples and inferred temperatures listed in Table 1
were projected into the cross-section plane perpendicular to the
isotemperature contours shown in Fig. 6a from within a corridor of
the following width: a 16 km for profile P. Molare—Domleschg;

(see Fig. 6). This is within the temperature interval where
the steep lateral thermal field gradient becomes flatter
towards the east (Figs. 7a, 8a). All this clearly indicates
that the isotemperature contours record the older HP/LT

b 6 km for profile Ilanz—Spliigen; ¢ 10 km for profile Misox Zone—
Ilanz; d 10 km to the WNW and 7 km to the ESE off the profile trace
for profile P. Molare—Urseren-Garvera Zone; e 20 km for profile
Misox Zone—Prittigau half-window. Line represents manual best of
the temperature—distance gradient. Encircled samples are from
specimens that record temperatures related to an upper blueschist/
eclogitic HP/LT stage (see text for “Discussion”). See Fig. 1 for the
location of geographic localities

metamorphic event and/or immediately subsequent green-
schist-facies overprint in the northeast, whereas in the
southwest they record the younger Barrow-type event,
where obviously the temperatures associated with the older
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HP/LT event were reset during Barrow-type thermal
overprinting.

Peak temperatures along the Pizzo Molare-Urseren-
Garvera Zone profile

Owing to the lack of metasediments on the basement of the
Gotthard unit, maximum temperatures along this profile
(Fig. 7d) are rather poorly constrained in its northern part,
where only four samples (samples 1-4, Table 1; Fig. 2)
from a thin veneer of Mesozoic sediments from the E-W
striking Urseren-Garvera Zone were suitable for analysis.
Nevertheless, this profile provides important information
concerning the northern limit of the Lepontine thermal
dome in an area that experienced no prior HP/LT overprint
(Urseren-Garvera Zone and Scopi Unit). Hence, the Tmax
field gradient is expected to be solely related to the late-
stage Barrow-type event. This is corroborated by the
thermal field gradient in Fig. 7d, characterized by a con-
tinuous temperature decrease from 560-590°C at Pizzo
Molare to 450°C at Alp Tgom (sample 1) and finally to
360-375°C at Garvera (sample 4). A high lateral thermal
field gradient is also reflected in the close spacing of the
isotemperature contours in Fig. 6; a similarly high gradient
is recorded along Val Luzzone (Fig. 7a).

Peak temperatures along the Misox Zone-Prdttigau profile

The transition from subduction-related HP/LT metamor-
phism and associated subsequent greenschist-facies over-
print to collision-related, Barrow-type metamorphism is
also preserved along this profile (Fig. 7e). Also shown are
the data from the frontal part of the Adula nappe complex
(“internal Mesozoic”, Low 1987) and from the adjacent
northern Misox Zone (Aul Unit), characterized by much
higher peak-metamorphic temperatures. These units expe-
rienced an upper blueschist/eclogitic HP/LT event during
which considerably higher temperatures were reached than
in the surrounding carpholite-bearing metasediments, i.e.
Grava and Tomiil nappes (see presentation of the Adula
nappe complex below).

Due to the significantly lower density of investigated
samples, only a rough overview of this profile can be given.
Peak-metamorphic temperatures range from 540-550°C in
the southern Misox Zone down to 130-140°C in the
northeastern part of the Prittigau half-window (Fig. 6b).
The overall trend of decreasing temperatures towards the
north is again not uniform. Whereas a remarkable lateral
thermal field gradient between Mesocco and Spliigen is
marked by a rapid decrease in temperatures from
540-550°C down to 370-390°C, the maximum tempera-
tures stay remarkably constant in the 350-375°C range
(Fig. 7e) further to the northeast.
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A closer look at the Misox Zone reveals a more complex
pattern: Samples 190 and 191 (Table 1) taken from the
boundary area with the Adula nappe complex as well as
samples 146-149 (Table 1) collected inside the northern
Adula nappe complex indicate locally higher maximum
temperatures in the range of 500-515°C. This is not in
accordance with the overall south-to-north trend of
decreasing peak-metamorphic temperatures (“eclogitic HP/
LT event” indicated in Fig. 7c, e). These anomalously high
temperatures were obtained from Grt-Ctd micaschists in
the southern continuation of the Aul Unit (Gansser 1937,
Steinmann 1994) as well as from Ky-Grt-Ctd-Zo micaschists
of the internal Mesozoic sediments of the Adula nappe com-
plex (see further explanations for the Adula below).

Peak-metamorphic temperatures obtained for the northern
Adula nappe complex

Only four samples (Ky-Grt-Ctd-Zo micaschists) from the
frontal part of the Adula nappe complex were suitable for
analysis (samples 146-149). The peak-metamorphic tem-
peratures all cluster around 500-520°C. In the surrounding
metasediments, maximum temperatures are estimated at
410-430°C. This clearly indicates a jump in peak-meta-
morphic conditions of some 100°C across the nappe
boundary (Fig. 6). This jump clearly indicates that the
Adula nappe complex had a different metamorphic evolu-
tion than that of the surrounding metasediments (except for
the localities of samples 190 and 191 mentioned above).

Peak temperatures projected onto a series of N-S-oriented
tectonic cross-sections

In order to better illustrate the three-dimensionality of the
pattern of peak temperatures and the spatial relationships
between isotemperature contours and tectonic units, the
inferred maximum temperatures were projected along
strike into a series of N—S-oriented tectonic cross-sections
(Fig. 8b—e; see Wiederkehr et al. 2008 for a description of
additional structural details revealed in these four cross-
sections). Using the measured axial plunge of the structures
and assuming cylindricity of the structures, the profiles are
arranged so as to reveal the large-scale structure of the
area. Note, however, that the isotemperature contours run
across strike (see Fig. 6) and are therefore discordant to
these approximately cylindrical structures along strike. For
this reason, they should not be connected from one profile
to the next perpendicular to strike. Hence, the contours are
only valid for the individual profile for which they are
drawn. It is also important to emphasize that the isotem-
perature contours in Fig. 8b—e are by far less well con-
strained than along strike as depicted in Fig. 8a. This is
because Fig. 8a is based on a much higher density of data.
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Fig. 8 Temperature-altitude cross-sections through the northeastern rim
of the Lepontine thermal dome and easterly adjacent areas. The trace of
cross-section a is the same than for profile shown in Fig. 7a (see inset in
Fig. 7 for location), traces of these cross-sections b—e are indicated in
Fig. 2; the across strike sections (Fig. 8b—e) show the main structural
features (after Wiederkehr et al. 2008) for comparison. Peak-metamorphic
temperatures inferred by the RSCM method are displayed in the form of
isotemperature contours (see text) derived from the samples listed in
Table 1 using the calibrations given by Beyssac etal. (2002a). The slopes of
the isotherms were estimated within the plane of the cross-section after
projecting the sample locations and associated peak-metamorphic into the
cross-section plane. a Along-strike profile with samples horizontally
projected from within a 14-km-wide corridor and parallel to the constructed

peak-metamorphic isolines shown in Fig. 6. In case of the across strike
profiles (see Wiederkehr et al. 2008 regarding structural details), width of
the corridor from within which specimens were projected, and projection
procedures are as follows: b 14-km-wide corridor, projection towards east
and west by using local azimuth and plunge of the Lunschania antiform
(060/12) for the northern part and a plunge of 20° to the east for the southern
part of the cross-section; ¢ 12-km-wide corridor, projection towards the east
and west by using local azimuth and plunge of the Lunschania antiform
(064/16); d corridor limited by 2.5 km to the E and some 6 km to the W of
the profile trace, projection towards the east and west by using local
azimuth and plunge of Chiéra phase-related fold axes (090/30); e 12-km-
wide corridor, projection towards the east and west by using local azimuth
and plunge of Chiera phase-related folds axes (090/20)
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Nevertheless, and despite considerable uncertainties
regarding slope and position of the isotemperature contours
in Fig. 8b—e, the following salient features can be confi-
dently extracted from these cross-sections: (1) The incli-
nation of the isotemperature contours flattens in the
southern parts of Fig. 8c—e, but steepen in the northern
portions of the same cross-sections. This reflects the fact
that the Barrovian overprint (Lepontine thermal dome) that
determines the maximum temperatures in the northern part
of these sections also cuts across structures in a N-S
direction and not only across strike of these structures as
seen in map view (Fig. 6); (2) In contrast to the cross-
sections located further to the west (Fig. 8c—¢) that are
generally characterized by steeply N-dipping isotherms, the
easternmost cross-section exhibits a more complex pattern
with isotherms folded around the Lunschania antiform
(Fig. 8b). This supports the aforementioned inferences for
Fig. 7b, c that it is the older pre-Lunschania antiform LT
regime (blueschist-facies metamorphism and/or subsequent
greenschist-facies overprint) that is recorded by the maxi-
mum temperatures in the eastern part of the working area,
whereas the isotemperature contours related to the late-
stage Barrow-type metamorphic event cut across this an-
tiform. This independently confirms inferences made by
Wiederkehr et al. (2008) based on structural and other
petrological criteria.

Discussion

Comparison between RSCM-derived maximum
temperatures and temperatures inferred from other
petrological data

Figure 9 compares the RSCM-derived temperatures with
those expected from the occurrences of index minerals,
and/or from the P-T-paths. These paths are inferred from
the analysis of mineral parageneses and thermodynamic
modelling of equilibrium phase diagrams (e.g. Wiederkehr
et al. 2008; Wiederkehr 2009). In the following, we discuss
the presented maximum temperatures and compare
them with temperature estimations inferred from other
petrological data for the different tectono-metamorphic
domains.

HP/LT units of the Valaisan and the adjacent Europe-
derived domains

Occurrences of Fe-Mg carpholite, the diagnostic HP-min-
eral found in metasediments of the Valaisan domain and
parts of the metasediments derived from the distal Euro-
pean margin (Goffé and Oberhinsli 1992; Oberhénsli et al.
1995; Bousquet et al. 2002, 2008; Wiederkehr et al. 2008),
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document the HP/LT blueschist-facies event in the eastern
part of the working area. West of this LT area, relics of
carpholite are found all the way up to the 500°C isotem-
perature contour. Pseudomorphs after carpholite were even
found in the vicinity of Pizzo Molare, i.e. up to >550°C
(Fig. 9). This clearly documents that this western area
formerly was also part of a through-going blueschist-facies
metamorphic belt that stretched from the Engadine window
all the way to the Western Alps (Bousquet et al. 2002,
2008). Glaucophane (Gansser 1937; Nabholz 1945; Obe-
rhénsli 1977, 1978) and jadeite (Santini 1992; Ring 1992)
are the other minerals that are diagnostic for this earlier
subduction-related blueschist-facies event. Within the low-
grade Fe-Mg carpholite-bearing metasediments, chloritoid
only rarely occurs within the Fe—-Mg carpholite-bearing
quartz-calcite veins/segregations. In such cases, chloritoid
is interpreted as a part of the HP/LT assemblage (see also
“Discussion” by Oberhénsli et al. 2003). However, most of
the chloritoid found in the area formed during the late-stage
greenschist-facies overprint rather than during the high-
pressure event (Rahn et al. 2002; Wiederkehr 2009). This is
supported by the observation that chloritoid generally
occurs as idiomorphic rosettes, bundles and prisms (e.g.
Wiederkehr et al. 2008). Based on the mineral chemistry of
the observed mineral assemblage, peak-metamorphic con-
ditions of 1.2-1.4 GPa and 350-400°C were estimated for
the blueschist-facies stage in metasediments of the Grava
and Tomiil nappes, as well as in some of the metasediments
derived from the European margin (Peiden slices and Piz
Terri-Lunschania Unit; Wiederkehr et al. 2008).

For areas not affected by the subsequent Barrow-type
metamorphic event, the isothermal or near-isothermal
decompression of the Valais Ocean-derived Biindners-
chiefer and the Europe-derived Peidener Schuppenzone
occurred after the HP blueschist-facies stage (see P-T-
paths indicated in Fig. 9, based on the studies of Bousquet
et al. 2002 and Wiederkehr et al. 2008). This is supported
by Rahn et al. (2002) inference of 400 &+ 50°C for green-
schist-facies metamorphism of the Tomiil nappe, based on
chloritoid-chlorite and chlorite thermometry. This may be
taken to show that the Barrow-type overprint never affec-
ted the eastern areas depicted in Fig. 9. Alternatively, such
an overprint may have been associated with temperatures
less than 400°C, i.e. less than the temperature range pre-
viously reached during the blueschist-facies event and/or
during the subsequent isothermal decompression. Because
folding leading to the Lunschania antiform took place after
the decompression from the blueschist-facies conditions,
the isotemperature contours at or below 400°C are expec-
ted to appear folded by this antiform, as indicated by our
data (Figs. 7, 8). Folded isotemperature contours are also
indicated by Weh (1998) and Petrova et al. (2002). These
authors report a metamorphic high around Chur (Fig. 1)
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that is located in the core of the Lunschania antiform and
was interpreted to have formed by post-metamorphic
deformation. These older findings are confirmed by our
study (Figs. 7, 8) that also demonstrates the high spatial
resolution of the maximum temperature pattern obtained
with the RSCM method and a dense sampling network.
In summary, the RSCM-derived peak-metamorphic tem-
peratures are in excellent agreement with other available
T-estimates (350—400°C; Bousquet et al. 2002; Rahn et al.
2002). However, an unambiguous attribution of the
temperature estimates to a specific early stage of the
P-T-evolution, i.e. either to peak pressures during HP-
metamorphism or to subsequent greenschist-facies
decompression, is not possible.

Prdttigau half-window

Metamorphic grade that increases from diagenesis to lower
greenschist grade conditions in the eastern Prittigau half-
window to greenschist-facies conditions further to the
southwest was also described in previous work (e.g. Frey
and Ferreiro Mdhlmann 1999; Ferreiro Mahlmann et al.
2002; Petrova et al. 2002). Hence, the temperature pattern
derived by the RSCM method appears to be reliable also at
low temperatures, particularly when using the Rahl et al.
(2005) calibration method (Fig. 6b).

Northeastern Lepontine thermal dome

An increase in metamorphic grade is also established in a
N-S direction and across Europe-derived metasediments in
the northwestern part of the working area (Fig. 9), i.e.
across northerly areas that never experienced blueschist-
facies overprint. The peak temperatures obtained by the
RSCM method for the Urseren-Garvera Zone range from
360-450°C (Table 1) and hence are in excellent agreement
with chlorite-chloritoid and calcite-dolomite thermometers
that yield 390-510 and 360-480°C, respectively (Livi et al.
2002), as well as with temperature estimates of 400 +
50°C based on chlorite-chloritoid and chlorite thermometry
(Rahn et al. 2002). Based on the investigation of the iso-
topic composition of carbonaceous matter, Hoefs and Frey
(1976) presented strongly scattered, considerably lower
metamorphic temperatures ranging from 250°C in the
Urseren-Garvera Zone to 750°C in the Lukmanier area.
They claimed equilibrium exchange reactions and kinetic
isotopic effects, i.e. oxidation in the presence of water, to
be responsible for this scatter. The progressive southward
increase in metamorphic grade up to lower/middle
amphibolite-facies conditions in the Lukmanier and Pizzo
Molare area was established early on (Chadwick 1968;
Frey 1969, 1974, 1978; Thakur 1971; Fox 1975). Staur-
olite-kyanite-garnet-bearing micaschists indicate lower to
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middle amphibolite-facies peak-metamorphic conditions at
0.5-0.8 GPa and 500-550°C (Chadwick 1968; Engi et al.
1995; Todd and Engi 1997; Frey and Ferreiro Méahlmann
1999). Interestingly, Fox (1975) made an early attempt to
discern the three-dimensional pattern of the metamorphic
zonation based on isograds obtained from isochemical
Jurassic black shales. In the area around Lukmanier, he
estimated a minimum dip of these isograds of 35° towards
the north, which is in agreement with the dip of our iso-
temperature contours (40-55°; Fig. 8e). Recently published
data obtained along a N-S metamorphic transect predict
0.6-0.8 GPa at 530-575°C for the Lukmanier area in the
north, 0.6 GPa at 550°C in an intermediate area (northern
Valle di Blenio) and finally 0.7-0.85 GPa at 580-600°C for
Pizzo Molare in the south (Janots et al. 2008). In summary,
the predicted peak-metamorphic temperatures determined
by the RSCM method are in good agreement with observed
mineral assemblages, also in this part of the working area.

Northern Adula nappe complex and Misox Zone

As discussed earlier, the frontal part of the Adula nappe
complex experienced an upper blueschist/eclogitic over-
print (Low 1987; Heinrich 1986; Zulbati 2008), in contrast
to the surrounding high-pressure terranes that experienced
blueschist-facies metamorphism at considerably lower
temperatures, as documented by occurrences of Fe-Mg
carpholite. Here too, the RSCM-derived temperatures are
in perfect agreement with the temperatures inferred for this
upper blueschist/eclogite-facies event. Petrological inves-
tigations on eclogites and metapelites yield temperature
estimates related to high-pressure metamorphism of the
northern Adula nappe that are consistent with our esti-
mates: 470-540°C (Low 1987) and 450-550°C (Heinrich
1986). However, they are less than the 640°C proposed for
this area by Dale and Holland (2003). This higher tem-
perature estimate may be related to a pre-Alpine relic, since
Liati et al. (2009) clearly documented a Variscan-age
(340-330 Ma) for some HT eclogites in the northern part
of the Adula nappe complex. In any case, the temperatures
obtained from the northern part of the Adula nappe com-
plex are associated with Alpine-age upper blueschist- to
eclogite-facies conditions at considerably higher tempera-
tures during subduction-related HP/LT metamorphic
conditions when compared to the surrounding Fe-Mg
carpholite-bearing, blueschist-facies metasediments. The
spatial and temporal relationships between this upper
blueschist- to eclogite-facies event within the northern
Adula nappe and the blueschist-facies event and subsequent
Barrow-type overprint in the surrounding metasediments
are not yet clear. Structural arguments suggest a late-stage
differential N-directed emplacement of the Adula nappe
into the surrounding metasediments (Wiederkehr et al. 2008).
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We therefore decided not to draw the isotemperature contours
across the frontal part of the Adula nappe complex in Figs. 6
and 9.

The higher-grade metasediments in the Aul Unit
(Steinmann 1994) of the Misox Zone (Fig. 9) that overlies
the Adula nappe are devoid of Fe-Mg carpholite. Chlori-
toid is commonly associated with garnet (Teutsch 1982),
which represents a characteristic blueschist-facies assem-
blage in metasediments (e.g. Agard et al. 2001; Bucher and
Bousquet 2007; Bousquet 2008). In addition, isolated
occurrences of eclogites within the Misox Zone (i.e. out-
crop “Neu Wahli”, possibly part of a mélange located in
the Aul Unit; Steinmann 1994) that contain glaucophane,
garnet and omphacite (30-50% jadeite component; Obe-
rhédnsli 1977; Ring 1992; Santini 1992) clearly document
that parts of the Misox Zone also experienced an upper
blueschist- to eclogite-facies overprint. This indicates that
higher temperatures were associated with the early HP-
event in this area (Aul Unit). This too is again in agreement
with our estimates of peak-metamorphic temperatures
similar to those recorded for the HP-stage in the frontal part
of the Adula nappe complex (i.e. 500-525°C, samples 190
and 191). The overall thermal structure of the Misox Zone
is characterized by southwards increasing metamorphic
conditions, as already reported in several studies ranging
from greenschist- to middle amphibolite-facies (e.g.
Thompson 1976; Teutsch 1982; Ferreiro Mihlmann et al.
2002; Petrova et al. 2002). The strong metamorphic gra-
dient within the Misox Zone was previously documented
by Thompson (1976) based on the construction of steeply
N-dipping isograds (50-70°), perfectly in line with the
closely spaced isotemperature contours in the southern
Misox Zone (Fig.9) revealed by the RSCM method.
Staurolite first appears in the southernmost part of the
Misox Zone, i.e. south of the 500°C isotemperature con-
tour, and indicates that the southern part of the Misox Zone
was affected by lower/middle amphibolite-facies Barrovian
overprint (Fig. 9; Wenk 1970; Thompson 1976; Teutsch
1982). Teutsch (1982) determined metamorphic conditions
of 0.5-0.7 GPa and 500-550°C near Mesocco, an area
where we obtained 530-540°C (samples 185 & 186,
Table 1). Note that here in the south the temperatures
during late-stage collision-related Barrovian overprint,
which led to the growth of staurolite, may not differ
significantly from those related to the earlier subduction-
related high-pressure event that may have reached eclogite-
facies in the southernmost Misox Zone. In any case, the
temperatures related to the eclogite-facies event continu-
ously increase southwards, also within the adjacent Adula
nappe complex (i.e. Heinrich 1982, 1986). This reflects the
southward subduction of tectonic units during the forma-
tion of the Alpine orogenic belt. Nagel et al. (2002) dem-
onstrated that near-isothermal decompression led to the

growth of staurolite by paragonite breakdown. Hence,
within the southernmost Misox Zone, it may become
impossible to attribute the RSCM-derived temperatures to
either the subduction-related HP-event or the collision-
related Barrovian overprint (indicated by stippled P-T-
paths in Fig. 9). Here, the Barrow-type overprint either
results from isothermal decompression from an eclogitic
stage as proposed by Nagel et al. (2002), or alternatively, it
may result from a separate heating pulse as proposed by
Engi et al. (2001) and Brouwer et al. (2005).

Relationships between isotemperature contours
and the polyphase thermal evolution
of the metasediments

Wiederkehr et al. (2008) showed that the first deforma-
tional event D1 (Safien phase) related to the formation of
an accretionary wedge and subduction of the Valais Ocean
and parts of the distal European margin is associated
with blueschist-facies metamorphism (350-400°C, 1.2-1.4
GPa). This is documented by Fe-Mg carpholite preserved
as hair-like fibres in veins consisting of quartz and calcite.
Substantial decompression to greenschist-facies conditions
was associated with D2 nappe-stacking that led to thrusting
of HP-rocks onto LP-units (Ferrera phase). Interestingly,
the isotemperature contours in the eastern part of the
working area reflect the effect of the D3 (Domleschg
phase) nappe-refolding phase, particularly that of the most
prominent D3 structure, the Lunschania antiform (Figs. 1,
2; Voll 1976; Kupferschmid 1977; Steinmann 1994; Weh
and Froitzheim 2001).

The new RSCM temperature data show that progressive
Barrovian overprinting related to the Lepontine thermal
dome in the southwestern part of the study area clearly
post-dates this D3 event (Wiederkehr et al. 2008); the
isotemperature contours crosscut the Lunschania structure
at temperatures higher than those reached during the
blueschist-facies event and/or subsequent greenschist-
facies overprint, i.e. above 450°C (Figs. 6, 8 and 9). The
isotemperature contours established for the western part of
the study area rather spectacularly crosscut structures, both
viewed along strike and within the N-S profile (Fig. 8).
This demonstrates the power of the RSCM method for
revealing the 3-D geometry of the temperature field during
late-stage collision-related metamorphism. Note, however,
that the original shape of the isotemperature contours may
have been somewhat modified by the last tectonic event
(D4, Chiera phase) that is associated with back-folding and
the formation of the Northern Steep Belt further to the west
(Milnes 1974). This also slightly affected the southwestern
part of the study area.

Our study is the first to reveal a jump in maximum
temperatures across the contact of the Adula nappe
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complex (internal Mesozoic) with the surrounding Valais
Ocean-derived metasediments (Figs. 6, 9). Hence, the
resolution of the temperature pattern in the northeastern
part of the Lepontine dome is much better than in earlier
studies (e.g. Todd and Engi 1997). The thermal disconti-
nuity clearly shows that peak-metamorphic temperatures of
the northern Adula nappe complex were reached before
nappe-stacking, i.e. during the early HP-stage rather than
during the late-stage Barrovian overprint. In the southern-
most Misox Zone, high temperatures were already reached
during the early HP imprint prior to isothermal decom-
pression in this southerly area (e.g. Nagel 2008). Hence, it
is impossible to distinguish between the temperatures
reached during the two events in the southernmost Misox
Zone.

Implications for the tectono-metamorphic evolution
and timing constraints

As discussed earlier and summarized in Fig. 9, high-reso-
lution three-dimensional mapping of isotemperature con-
tours in map and profile view faithfully reflects the current
distribution of peak-metamorphic temperatures that resul-
ted from the superposition of at least three distinct meta-
morphic events. This leads to the following observations:
(1) Within the northeastern rim of the Lepontine dome—
both along and across strike—the isotemperature contours
in the 450-570°C range clearly cut across nappe contacts
and large-scale, post-nappe folds deforming such contacts;
(2) further to the NE, the 350-425°C isotemperature con-
tours are folded by large-scale, post-nappe folds; (3) the
substantial jump in maximum temperatures across the
tectonic contact between the frontal Adula nappe complex
(500-520°C) and the surrounding Valais Ocean-derived
metasediments (410-430°C) indicates that this contact
accommodated differential tectonic movement of the
Adula nappe with respect to the enveloping Biindners-
chiefer. This movement must have taken place after the
temperature peak was reached within the Adula nappe
(sometime between 43 and 35 Ma; see “Discussion” and
references in Wiederkehr et al. 2009). The temperatures
reached within the enveloping Biindnerschiefer during the
late-stage Lepontine event (19-18 Ma; Janots et al. 2008;
Wiederkehr et al. 2009) obviously were not as high as those
attained during the much earlier high-pressure event within
the frontal Adula nappe.

To understand the complex polyphase metamorphic
evolution of the study area (see Wiederkehr et al. 2008,
2009 for details), it is essential to relate the peak-meta-
morphic temperatures presented in this study to specific
metamorphic stages, i.e. subduction-related HP-metamor-
phism or collision-related Barrovian overprint. An unam-
biguous correlation of peak-metamorphic temperatures is
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particularly crucial for tectonic units that followed a
bimodal P-T-path with an earlier HP/LT event followed by
a later thermal overprint. Combined with recent isotopic
age constrains presented for the study area (Allaz 2008;
Janots et al. 2009; Wiederkehr et al. 2009), we attempt to
link the detected RSCM temperatures to the pressure—
temperature-time paths of the different tectonic units in
order to better understand the temperature distribution map
in Fig. 9.

Units characterized by a single loop P-T-path

This group of tectonic units comprises the LP/LT parts of
the Grava nappe exposed in the Prittigau half-window, the
Scopi Unit and the Urseren-Garvera Zone (Fig. 9). Until
now, there has been no reported evidence for an earlier HP/
LT metamorphic event in these units. Consequently, all
recorded RSCM temperatures represent peak-metamorphic
temperatures established along the prograde path of the
metamorphic evolution. These range from lower green-
schist-facies conditions in the Prittigau half-window to
lower/middle amphibolite-facies in the vicinity of Luk-
manier. Recent isotopic studies clearly show that lower
to middle amphibolite-facies metamorphism in the NE
Lepontine dome (western Scopi Unit, Lukmanier; Fig. 9) is
young and that peak-metamorphic conditions were reached
about 19-18 Ma ago (Allaz 2008; Janots et al. 2009;
Wiederkehr et al. 2009). The existence of an earlier and
widespread greenschist-facies metamorphic event was
pointed out by isotopic studies revealing ages of 32-29 Ma
in the Lukmanier area (Janots et al. 2009) and in the
Grisons and Engadine window further to the northeast
(Wiederkehr et al. 2009). Consequently, the recorded peak-
metamorphic temperatures of the eastern Scopi Unit along
the Val Lumnezia south of Ilanz (350—400°C) and of the
LP/LT units in the Prittigau half-window (150-300°C) are
attributed to this Oligocene greenschist-facies overprint.
Unfortunately, there are no age constraints for the Urseren-
Garvera Zone (375-450°C). However, the work of Janots
et al. (2009) indicates that the same 32-29 Ma age range
most likely also applies to this greenschist-facies event.

Carpholite-bearing HP/LT units characterized
by a bimodal P-T-path

This group comprises the Grava and Tomiil nappes derived
from the Valais Ocean as well as the Peiden slices and Piz
Terri-Lunschania Unit scraped off the adjacent distal
European margin, both covering most of the area of
investigation between Pizzo Molare in the SW to Chur in
the NE (Fig. 9). As discussed earlier, the thermal structure
recorded in the northeast is characterized by isotemperature
contours that are folded around the Lunschania antiform,
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whereas in the southwest the isotemperature contours
clearly cut through this antiform. Hence, the thermal
structure in the northeast is older than the formation of the
Lunschania antiform whereas that in the southwest is
younger. The thermal structure characterized by the
younger crosscutting isotemperature contours (450-575°C)
is clearly related to the lower/middle amphibolite-facies
Barrovian overprint of the northeastern Lepontine thermal
dome, where peak conditions were established as late as
19-18 Ma ago (Allaz 2008; Janots et al. 2009; Wiederkehr
et al. 2009). The temperatures reached during this late
metamorphic event were considerably higher than those
reached during the earlier HP/LT stage. The thermal
structure in the east, on the other hand, is characterized by
folded isotemperature contours (350—425°C) and hence
reflects conditions established during the earlier HP/LT
stage (at around 43-40 Ma for the Valaisan domain;
Wiederkehr et al. 2009) and/or during subsequent decom-
pression leading to greenschist-facies overprint. Unfortu-
nately, the peak-metamorphic temperatures are rather
similar during both these stages (at 350-400°C) that pre-
date the Barrovian overprint found further west. Hence, a
clear separation of maximum temperatures prevailing at
peak-pressure conditions from those prevailing during
decompression cannot be made. For the following reasons,
we favour the interpretation that the folded isotemperature
contours in the east reflect a greenschist-facies thermal
structure related to the decompression stage: (1) The con-
structed isotemperature contours can be traced continu-
ously across the boundary between HP and LP-units and
therefore clearly post-date syn-D1 HP/LT metamorphism
in the Valaisan domain (Wiederkehr et al. 2008); (2) The
spacing of the recorded isotemperature contours that reflect
the thermal gradient is far too large for blueschist-facies
conditions and therefore was probably established during
decompression-related ~ greenschist-facies  overprinting
rather than during blueschist-facies HP/LT metamorphism.
Wiederkehr et al. (2009) posited an age of 32-29 Ma for
this retrograde greenschist-facies metamorphism that
overprints the earlier HP/LT stage and pre-dates the much
younger Barrovian overprint found in the W.

Northern Adula nappe complex and Misox Zone

The substantial jump in maximum temperatures across the
tectonic contact between the frontal Adula nappe complex
(500-525°C) and the surrounding metasediments of the
Valaisan (400-450°C; Fig. 9) indicates that the thermal
structure preserved inside the Adula nappe complex was
established before the final emplacement of the Adula
nappe. The estimated peak-metamorphic temperatures are
perfectly in line with thermobarometric calculations,
reflecting conditions established during subduction-related

blueschist/eclogite-facies metamorphism within the Adula
nappe (e.g. Heinrich 1986; Low 1987). Several studies
estimate this subduction-related metamorphism to have
occurred at about 43-35 Ma ago (Gebauer et al. 1992;
Gebauer 1996; Becker 1993; Brouwer et al. 2005; see also
reviews given by Berger and Bousquet 2008; Nagel 2008).

A clear attribution of the samples from the Misox Zone
that are devoid of Fe-Mg carpholite to a specific meta-
morphic event is impossible due to the significantly lower
sampling density and the complex tectonic evolution of the
Misox Zone. Furthermore, the Misox Zone is a narrow,
highly tectonized narrow thrust zone (mélange zone), fur-
ther complicating a clear distinction between a HP/LT
stage and subsequent Barrovian overprinting. Only the
highest temperatures of 540-550°C measured south of the
village of Mesocco, as well as the occurrence of newly
grown staurolite nearby, can most probably be attributed to
the amphibolite-facies Barrow-type “Lepontine” event.
Towards the north, no unambiguous correlation of RSCM-
derived temperatures with a specific metamorphic stage or
overprint is possible (Fig. 9). The only exceptions to this
are samples 190 and 191 (pre-kinematic garnet-chloritoid
micaschist) that reveal peak-metamorphic temperatures of
500-525°C and can clearly be attributed to the HP/LT
stage (see “Discussion” above).

Discussion of possible reasons leading to inter-sample
heterogeneities

There are a small number of samples (i.e. 16 out of a total
of 214) that are characterized by abnormally high variation
with respect to neighbouring specimens. In general, these
samples exhibit much higher peak-metamorphic tempera-
tures compared to those detected in the surrounding loca-
tions. These locations are highlighted with bold letters in
Table 1 and were not used for the construction of the
isotemperature contours presented in Figs. 6, 8 and 9. In
the following, we discuss the possible reasons of the
detected inter-sample heterogeneities.

In general, samples yielding exceptionally high tem-
peratures can be subdivided into two groups: A first group
marked by samples showing a completely different mineral
assemblage with respect to the neighbouring locations, and
a second group showing no obvious differences in mineral
composition. Samples 44, 51, 84, 86, 97, 115, 136, 139,
140 and 210 (Table 1) belong to the second group. Careful
analysis of some samples from this second group (speci-
mens 97, 136 and 139 originating form the Piz Terri-
Lunschania Unit; Table 1) shows the presence of large and
randomly oriented, isolated flakes of white mica, which are
clearly of detrital origin. This clearly supports the inter-
pretation that depositional mixing of sedimentary detritus
(e.g. Diessel et al. 1978; Itaya 1981; Petrova et al. 2002)
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may yield peak temperatures that are valid for the source
area rather than for the sampled metasediments. We regard
it as likely that depositional mixing of graphite of different
degree of graphitization must have occurred in this case
and that such mixing is the most likely cause of the scatter
among the samples belonging to this group. A study per-
formed along the metamorphic profile from the Préttigau
half-window to the Misox Zone provided evidence for the
occurrence of detrital graphite in nearly all samples, as is
documented by X-ray diffraction data (Petrova et al. 2002).
This interpretation is in line with the findings of Galy et al.
(2008) that recycling of graphite is responsible for the
widespread presence of detrital graphite in natural meta-
morphic rocks.

The first group comprises samples 190 and 191
(Table 1) that originate from the Misox Zone, and hence,
from an area close to the contact with the Adula nappe
complex; specimens 146, 147, 148 and 149 are from within
the Adula nappe complex. As clearly indicated in Table 1,
these samples are characterized by mineral assemblages
that are different from those found in the neighbouring
metasedimentary samples. This points to a relatively higher
grade of metamorphism within the Adula nappe and parts
of the immediately adjacent Misox Zone. Hence, the inter-
sample heterogeneities detected in this group of samples
definitely do not stem from a methodological artefact, but
they simply reflect different peak-metamorphic conditions
within different tectonic units that are offset by later
motion of the Adula nappe and parts of the Misox Zone
with respect to the surrounding metasediments. We con-
sider the 500-525°C temperatures recorded by these
specimens to be related to an upper blueschist- to eclogite-
facies event that had considerably higher temperatures than
the surrounding Fe—-Mg carpholite-bearing blueschist-
facies rocks, and that only affected the Adula nappe
complex and immediately adjacent parts of the Misox
Zone. These temperatures are consistent with earlier ther-
mobarometric calculations (Heinrich 1986; Low 1987).

Conclusions

Raman spectroscopy of a large sampling of carbonaceous
material from metasediments at the margin of the Lepon-
tine dome allows for a comparison of the Beyssac et al.
(2002a) and Rahl et al. (2005) calibrations in the 150—
600°C temperature range. The two calibration methods
yield essentially identical inferred maximum temperatures
above 330°C, with discrepancies of less than 30°C. At
lower temperatures, only the Rahl et al. (2005) calibration
yields a reliable maximum temperature field gradient. The
method can be applied successfully to specimens of low-
grade metasediments (so-called Biindnerschiefer) that are
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devoid of diagnostic mineral assemblages and are therefore
unsuited for accurate estimation of the metamorphic tem-
perature based on equilibrium thermodynamics of coexis-
ting mineral phases.

The results of the three-dimensional mapping of iso-
temperature contours show that the maximum temperature
field gradients inferred from Raman spectroscopy of car-
bonaceous material faithfully reflect the current distribu-
tion of peak-metamorphic temperatures resulting from the
superposition of distinct metamorphic events. This con-
clusion is corroborated by independent petrological and
structural data (e.g. Wiederkehr et al. 2008). It was found
that the maximum temperatures obtained with the RSCM
method compare favourably with temperatures inferred
from other petrological data, e.g. from P-T calculations
and distribution of diagnostic mineral assemblages (e.g.
Chadwick 1968; Frey 1969; Fox 1975; Heinrich 1986; Low
1987; Engi et al. 1995; Todd and Engi 1997; Bousquet
et al. 2002; Rahn et al. 2002; Wiederkehr 2009). The
temperatures reflect the maximum temperatures reached,
also in areas that underwent a polyphase thermal evolution.
The three-dimensional character of those parts of the
constructed contours that reflect the same metamorphic
event yield useful information on the relationship between
deformation and metamorphism. Finally, our data support
the assumption that the transformation of CM to graphite is
a continuous and a mainly temperature-dependent process.

Nevertheless, some samples are characterized by a large
scatter of estimated mean temperature, whereas others
predict peak-metamorphic temperatures that vary among
neighbouring samples. Dealing with such discrepancies
that come from naturally heterogeneous carbonaceous
matter is a common challenge when using the RSCM
method (e.g. Beyssac et al. 2002b, 2003; compare also first
section of paragraph “Mapping thermal field gradients in 3
dimensions™). In this study, depositional mixing of sedi-
mentary detritus originating from different metamorphic
sources (e.g. Diessel et al. 1978; Itaya 1981; Petrova et al.
2002) is one important factor.

The investigation of CM by Raman spectroscopy
revealed at least three different thermal regimes as inferred
from overprinting criteria between the constructed iso-
temperature contours and observed structures: (1) Within
the northeastern rim of the Lepontine dome the isotem-
perature contours associated with the collision-related, late-
stage Barrow-type event clearly cut across nappe contacts
and post-nappe folds, both along and across strike; (2)
Further to the northeast, the isotemperature contours
reflect temperatures reached during an earlier blueschist-
facies event and/or during subsequent near-isothermal
decompression and are folded around large-scale post-
nappe-stacking folds; (3) A substantial jump in maximum
temperatures across the tectonic contact between the
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frontal Adula nappe complex and surrounding Valais
Ocean-derived metasediments indicates that this contact
accommodated differential tectonic movement of the
Adula nappe with respect to the enveloping Biindners-
chiefer. This must have occurred after the attainment of
maximum temperatures within the northern Adula nappe.

When combined with recent isotopic ages, the RSCM
temperatures in our study provide important information
for reconstructing the polyphase metamorphic evolution
of the Central Alps, from subduction-related HP/LT
metamorphism to collision-related, Barrow-type thermal
overprinting.
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