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Abstract We present a comprehensive probabilistic hazard assessment for tephra fallout

of Cotopaxi volcano (Ecuador), a quiescent but active stratovolcano known for its highly

explosive behaviour. First, we developed a set of possible eruptive scenarios based on

thorough field investigations, literature studies and using the Global Volcanism Program

(GVP) database. Five eruption scenarios were identified, including two based on large pre-

historical sub-Plinian/Plinian eruptions with eruptive parameters constrained from field

investigations (One Eruption Scenario; OES) and three Eruption Range Scenarios (ERS)

based on the Volcanic Explosivity Index (VEI) classification, for which eruptive param-

eters (i.e. erupted volume, plume height and median grainsize) were stochastically sampled

within boundaries defined by VEI 3, 4 and 5. Second, the modelling was performed using

the advection-diffusion model TEPHRA2 in combination with wind profiles from the

NOAA NCEP/NCAR Reanalysis 1 database. We performed 1,000 runs for each eruption

scenario, stochastically sampling a wind profile (OES and ERS) and a set of eruptive

parameters (ERS only) at each run. Using the conditional probabilities of occurrence of

eruption of VEI 3, 4 and 5 calculated from the GVP catalogue, we assessed the probability

of tephra accumulation in a given time window. Based on the GVP database, a simple

Poisson model shows that an eruption of VEI C3 has a 36 % probability of occurrence in

the next 10 years. Finally, the hazard assessment was compiled based on three different

outputs, including (i) probability maps for a given tephra accumulation, (ii) isomass maps

for a given probability value and (iii) hazard curves for a given location. We conclude that

the area west of Cotopaxi is exposed to light to severe tephra fallout for the smallest

eruption magnitude considered (i.e. VEI 3). This area comprises a main communication

axis (Panamerican Highway) topographically constrained at the bottom of the Interandean
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Valley, as well as the capital Quito and the town of Latacunga. In a companion paper,

Biass et al. (this volume) propose a method for a rapid risk assessment for tephra fallout

using global and easily accessible data and the hazard assessment described here.

Keywords Volcanic hazard � Tephra � Probabilistic hazard assessment � Cotopaxi �
Ecuador

1 Introduction

Providing authorities with comprehensive eruption scenarios for sustainable land-use

planning and efficient tools for decision-making is a key objective of modern volcanology.

The complexity of hazard assessments comes from the fact that: (i) volcanic activity is

usually the result of interactions between many independent physical and geological

processes acting over different time scales (Mendoza-Rosas and la Cruz-Reyna 2008); (ii)

the effects of large eruptions are less assimilated by the public compared with other natural

phenomenon such as earthquakes, tsunamis or hurricanes, due to their rare occurrence; (iii)

explosive eruptions typically produce a wide range of hazardous phenomena that require

independent studies; and (iv) the constant population increase results in more exposed

critical infrastructure on which modern societies depend (Blong 1984; Simkin and Siebert

1994; Johnston et al. 2000; Small and Naumann 2001; Moteff et al. 2003; Hellström

2007).

It is nowadays broadly accepted that the fulfilment of a comprehensive risk assessment

includes three necessary steps (Fournier d’Albe 1979; Mendoza-Rosas and la Cruz-Reyna

2008). First, the assessment of the hazard aims at evaluating the nature, the return period

and the extent of hazardous phenomena. Second, the vulnerability assessment evaluates the

likelihood of the exposed elements to be affected by a given threat. Finally, the risk

assessment is a convolution of the two previous aspects.

Thorough risk assessments typically require a large number of data and information

difficult to obtain (e.g. field data, wind profiles, recurrence of tephra production, geo-

graphical information, location of critical facilities). This paper presents a probabilistic

hazard assessment for tephra fallout associated with moderate to large explosive erup-

tions of Cotopaxi volcano (Ecuador), based on global and easily accessible databases

(Fig. 1). Tephra, referring here to all particles produced during an explosive volcanic

eruption regardless of size or composition, is usually not a direct cause of fatalities

(Blong 1984; Siebert and Simkin 2002). Nevertheless, due to the large area it typically

affects (C10 km for moderate eruptions of VEI 3), it can impact several aspects of

modern societies resulting in complex risk patterns (Hill et al. 1998; Connor et al. 2001).

Table 1 provides examples of exposed elements likely to be impacted by the fallout of

tephra. A probability assessment of eruptions of each VEI class was performed based on

the data from the Global Volcanism Program of the Smithsonian Institution (Siebert and

Simkin 2002) and a statistical analysis of wind patterns achieved using the NOAA

NCEP/NCAR Reanalysis 1 database (Kalnay et al. 1996). A companion paper (Biass

et al., this volume) proposes a risk assessment around Cotopaxi, which combines the

outcome of the present paper with a thematic vulnerability assessment using free and

easily accessible geo-referenced data. The whole analysis was performed using GIS

softwares, allowing for new ways of combining hazard and vulnerability assessments

into a qualitative risk assessment.
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2 Geological background

Ecuador (256,000 km2) is geographically divided in three distinct zones: La Costa (west),

La Sierra (highlands, centre) and La Amazonia (east), of which the first two comprise most

of Ecuador’s 13 million inhabitants (Fig. 1). Historical reports of volcanic activity at

Cotopaxi begin during Spanish conquests in 1534. According to the EM-DAT database

(EM-DAT 2011), volcanic eruptions are the second most important natural hazard in

Ecuador in terms of number of affected people, with floods affecting even more.
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Fig. 1 Overview map around Cotopaxi volcano, showing three levels of administrative units (provinces,
cantons and parishes), the main cities, airports, the road network and the topographic context. Quito and
Latacunga are located 50 km north and 35 km south of Cotopaxi volcano, respectively

Table 1 A non-exhaustive list of references treating various impacts of tephra fallout

Exposed element References

Health Horwell et al (2003), Horwell and Baxter (2006), Wilson et al (2011b)

Buildings Blong (1984, 2003), Spence et al (1996, 2005), Pomonis et al (1999)

Marti et al (2008), Zuccaro et al (2008)

Lifelines Chester et al (2000), Johnston et al (2000), Wilson et al (2011a)

Economy Johnston et al (2000), Wilson et al (2012)

Environment Inbar et al (1995), Robock (2000), Millard et al (2006)

Martin et al (2009)
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Cotopaxi (0.68�S 78.44�W, 5,897 m a.s.l., Fig. 1) is located in the Eastern Cordillera of

the Ecuadorian Andes in the Northern Volcanic Zone, with a cone that rises 2,900 m above

the highlands of the Interandean Depression (Mothes et al. 2004; Aguilera et al. 2004).

This edifice of a diameter of 20 km dominates two populated provinces: the province of

Pichincha in the north, which includes Ecuador’s capital Quito, and the province of Co-

topaxi in the south, with its capital Latacunga. The Panamerican Highway, a trunk road

running N-S, goes by the western side of the volcanic edifice in the Interandean Valley. In

addition, the main rail-road connecting the capital Quito to Ecuador’s largest city

Guayaquil is located at the bottom of the Interandean Valley.

For at least the past 4,000 years, the eruptive activity of Cotopaxi volcano has been

mainly dominated by andesitic magmatism (Hall and Mothes 2008; Pistolesi et al. 2011),

including 22 layers of tephra fallout described by Barberi et al. (1995) for the past

2,000 years. Historical activity at Cotopaxi has been characterized by the effusion of lava

flows and moderate to strong explosive episodes, which have always triggered lahars

through partial melting of the ice cap (Barberi et al. 1992, 1995). The town of Latacunga

has been heavily affected by lahars following the eruptions of 1742, 1768 and 1877

(Mothes et al. 2004; Aguilera et al. 2004).

Most of the recent literature available on Cotopaxi describes tephra deposits and their

ability to generate lahars (e.g. Barberi et al. 1992, 1995; Mothes et al. 2004; Aguilera et al.

2004; Pistolesi et al. 2011), with some examples of multi-hazard risk assessments

(D’Ercole 1996; D’Ercole and Demoraes 2003). However, comprehensive hazard assess-

ments of tephra fall are still missing for most of Ecuadorian volcanoes, even though the

country is often affected by tephra fall episodes. For example, the November 3, 2002

eruption of the nearby Reventador volcano produced a blanket of tephra of 3–5 mm over

the Mariscal Sucre International Airport in Quito, closing the airport for 8 days as a result

of ash deposition on runways and airplanes (Guffanti et al. 2009). In addition, tephra

resulting from the August 16, 2006 eruption of Tungurahua affected more than 300,000

people and was responsible for losses in agriculture of about $150 million (EM-DAT

2011).

Accurate tephrostratigraphic investigations are a necessary step towards the develop-

ment of comprehensive explosive eruption scenarios, but do not constitute comprehensive

hazard and risk assessments. In order to help the development of effective mitigation

measures, both the recurrence rate of tephra production and its dispersal need to be

assessed, in combination with the identification of the various geographical areas that will

be affected.

3 Method

Hazard assessments for tephra accumulation typically require the development of eruption

scenarios determined from the study of the eruptive history of a volcano. Such parameters

include plume height, erupted mass, eruption duration and grainsize distribution. Hazard

assessments also require wind data and a calculation grid. Each of these items is discussed

below.

3.1 Eruptive history

The reconstruction of the eruptive history of a given volcano is typically achieved through

thorough field investigations. Two of the largest eruptions of Cotopaxi (i.e. Layer 3 and
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Layer 5) have been characterized by Biass and Bonadonna (2011). When no detailed field

data are available, one alternative solution is to use eruption databases, such as the Global

Volcanism Program (GVP; Siebert and Simkin 2002). For example, Fig. 2a shows the

cumulative number of eruptions of any VEI at Cotopaxi volcano, based on the GVP

database. This study focuses on VEIs 3 to 5, as a VEI 3 is the minimum size of eruption

considered to be a threat to populations in this area and VEI 5 is the largest category of

events in the history of Cotopaxi volcano. Figure 2b–d shows the cumulative number of

eruptions of VEI 3, 4 and 5, respectively.

3.2 Wind data

The hazard assessment presented here uses wind profiles from the NOAA NCEP/NCAR

Reanalysis 1 database (Kalnay et al. 1996), which provides 4-daily measurements of wind

velocity and direction for 17 pressure levels, from 1948 to present on a 2.5� 9 2.5� degrees

grid. Figure 3a, b shows wind velocities and directions for the 1997–2008 period for the

median of the whole dataset (±standard deviation) and the median of each separate year,

respectively. Figure 4 shows the probability of the wind blowing in a given direction and

the wind velocity (bins are 20�) at each altitude and for the whole dataset. Figures 3 and 4

show dominant westward wind directions between ground level and about 15 km, in

agreement with the dispersal axis inferred from isomass maps for previous eruptions (Biass

and Bonadonna 2011). Figure 4 shows a [50 % probability of wind blowing in a west

sector for the same altitudes, and a *90 % probability of wind blowing in a sector

comprised between 240� and 300� between vent level and about 13 km. In order to

investigate the influence of El Niño/La Niña phenomena on the distribution of wind

profiles, we have considered two important events (1982–1983 and 1997–1998) without

finding any particular trend (Fig. 3c, d).
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Fig. 2 Eruptive trend inferred from the GVP database; a complete record showing the rhyolitic period
(grey) and the andesitic period (white); b VEI = 3; c VEI = 4 and d VEI = 5. Vertical dashed lines show
the break in slope used to define the complete record
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3.3 Calculation grid

Tephra dispersal models usually require a geo-referenced grid for calculation purposes.

One convenient way of obtaining these grids is to use free and global digital elevation

models (DEM), such as the NOAA Global Land 1-km Base Elevation Project (GLOBE) or

the CGIAR-CSI SRTM 90 m. We used here a modified version of the GLOBE DEM,

setting the resolution of the model output to 1 km, which provides a good compromise

between accuracy at a large scale and computing time. The size of the calculation grid in

this study is 350 9 250 km, that is, 88,294 calculation nodes.

4 Hazard assessment

Numerical simulations are valuable tools that can help to infer parts of deposits that are

either inaccessible or removed by erosion, but require inputs that are usually empirically
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Fig. 3 Wind profiles showing the a median velocity and b median direction the wind blows to for the years
1997–2008. Error bars indicate the standard deviation. The median of each year is also shown for c wind
velocity and d wind direction
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chosen with the assumption that future activity will be similar to past activity, or will

follow the current trend. In addition, a probabilistic approach helps to describe the

uncertainty associated with complex volcanic processes, which is required for mitigation

measures of potentially affected communities.

We use event trees similar to those proposed by Newhall and Hoblitt (2002) and Neri

et al (2008) in simplified forms, considering two different time windows (Fig. 5). First, we

assessed the probability of tephra accumulation at given coordinates for an eruption of a

given intensity as basic information for emergency management (i.e. evaluation of node 3,

knowing an eruption of a given magnitude is occurring). Second, we evaluated the

probability of tephra accumulation at given coordinates, based on the probability of

occurrence of an eruption of a given magnitude in a given time window (nodes 1–3), in an

attempt to produce useful information for long-term land-use planning.

4.1 Eruption probability

Assessing the long-term probability of an eruption is usually based on the assumption of a

constant eruptive rate over a time period considered (Jones et al. 1999; Dzierma and

Wehrmann 2010; Swindles et al. 2011). As a result, we used the GVP database to infer the

eruptive behaviour at Cotopaxi. In this particular case, and as described above, we chose to

consider eruptions of VEI 3 to 5, corresponding to bulk tephra volumes of 0.01-10 km3

(Newhall and Self 1982).
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Fig. 4 Probability of wind blowing to a given direction (bins = 20�) at selected altitudes and for all years
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During the Holocene, magmatism at Cotopaxi has periodically switched from rhyolitic

to andesitic, with andesitic magmatism dominating the last 4,000 years (Hall and Mothes

2008). In order to guarantee the conditions of a constant eruptive rate, it is necessary to

discard all data points that occurred before this change in eruptive style, fixing the

beginning of the relevant catalogue at 4,000 years B.P. Figure 2a shows the cumulative

eruptive history of Cotopaxi for this time period for all VEI classes considered here. As

described by Simkin and Siebert (1994), this type of data shows easily definable break-

points in the eruptive rate corresponding to different degrees of completeness of the

eruptive record (vertical dashed lines in Fig. 2). As a result, the flattest trend is charac-

terized by lack of observations where only the largest eruptions are recorded, whereas the

steepest slope corresponds to a more complete record including historical reports and the

preservation of smaller eruptive events. Breakpoints for VEIs 3 and 4 were defined at 1698

AD and 1350 AD, respectively, whereas VEI 5 occurred only once during this time period.

The ratio of number of events over the time period considered represents the yearly

eruption rate (k), which are 3.5 9 10-2, 9.0 9 10-3 and 2.5 9 10-4 eruption per year for

VEI 3, 4 and 5, respectively. In order to aggregate the three magnitude subsets, we

interpolated the different record length to the longest time period (namely 4,000 years),

assuming a constant eruption rate. The resulting yearly eruption rate for VEI C3 is

4.5 9 10-2 eruption per year, yielding an average recurrence interval of 22 years (Jenkins

et al. 2012a, b).

Different models have been proposed to describe random patterns of activity at

explosive volcanoes (De la Cruz-Reyna 1993; Jones et al. 1999; Mendoza-Rosas and la

Cruz-Reyna 2008; Dzierma and Wehrmann 2010). For simplicity, we chose to calculate

long-term probabilities assuming that volcanic eruptions are stochastic processes that can

be described by a Poisson distribution. Such a distribution requires that events must be

independent and may occur only one at a time, and the probability of an event occurring in

the next small time increment does not depend on the time that has already elapsed since

the last event occurred (Borradaile 2003; Dzierma and Wehrmann 2010; Swindles et al.

2011). In the context of forecasting volcanic eruptions, we are interested in the probability

that an observed repose time T is smaller than or equal to an hypothetical time period

t (Dzierma and Wehrmann 2010; Swindles et al. 2011):

FðtÞ ¼ PðT � tÞ ð1Þ

The simplest case of a Poisson process results in an exponential distribution:

Eruption  VEI 3

Eruption = VEI3 P [M(x,y)  threshold | eruption VEI3]

Eruption = VEI4 P [M(x,y)  threshold | eruption VEI4]

Eruption = VEI5 P [M(x,y)  threshold | eruption VEI5]

Probability of mass accumulationProbability of eruption (magnitude)

P(1) P(2|1) P(3|2)

Fig. 5 Event tree used in this study considering that an eruption of a given intensity is occurring (node 3),
and considering a long-term probability where the return period of eruptions of VEIs 3, 4 and 5 is evaluated
in a given time window
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FexpðtÞ ¼ 1� e�kt ð2Þ

where t is the forecasting time window and k is the yearly eruption rate.

In order to satisfy the conditions of a Poisson process, we investigated the independence

of our time series with auto-correlation functions, concluding that there was not enough

statistical evidence to discard the null hypothesis that events are uncorrelated (using a

Student t test at the 5 % level of confidence). Second, to avoid the occurrence of two or

more events at the same time, we used equation 2 to calculate the probability of occurrence

of an eruption of VEI C3 for the next 10 and 100 years (Table 2), which are 0.362 and

0.989, respectively. The probability of occurrence of each separate VEI was then calcu-

lated as the relative proportion of events of each VEI class to the entire interpolated

eruption catalogue (Table 2).

4.2 Modelling framework

Following Bonadonna (2006), we adopted here a probabilistic approach using the advec-

tion-diffusion model TEPHRA2 (Bonadonna et al. 2005). The model was used on a cluster

of computers, comprising a total of 32 CPUs and manually parallelized. Resulting prob-

ability maps contour the probability of reaching a given hazardous threshold of tephra

accumulation for a defined eruptive scenario. The compilation of such maps consists in

running the model a sufficient amount of times, stochastically sampling at each run a wind

profile within a relevant population of wind profiles, and/or a set of physical parameters

(i.e. plume height, erupted mass, median grainsize) within a predefined range, through the

use of Monte-Carlo techniques (e.g. Hurst and Smith 2004). Best values of the number of

runs and size of the wind population can be inferred from plots similar to Fig. 6 and will be

discussed below.

The analytical model TEPHRA2 requires several empirical input parameters that cannot

be derived from field observations, namely the diffusion coefficient and the fall-time

threshold for change in diffusive behaviour. These parameters were inferred using ana-

lytical inversion techniques (Biass and Bonadonna 2011).

Table 2 Probabilities of occurrence of eruptions of given VEI classes for the next 10 and 100 years (P10y

and P100y, respectively)

Completeness (year) Nb. events % tot. k (erup./year) P10y P100y

VEI C3 4,000 178a 0.045 100 0.362 0.989

VEI = 3 312 11 0.035 79 0.286 0.781

VEI = 4 660 6 0.009 20.4 0.074 0.202

VEI = 5 4,000 1 0.00025 0.6 0.002 0.006

The probability of occurrence of each VEI class is calculated as the ratio of number of eruptions of each
single VEI with respect to the total number of eruptions of VEI C3. The completeness represents the period
in which the eruptive activity is representative of the entire period of interest at a given volcano and was
defined from Fig. 2. The number of events corresponds to the number of eruptions within the complete
period. k is the eruption rate and is assumed to be constant over the period of interest. The total percentage is
the relative proportion of occurrence of each VEI class (interpolated to the longest period of completeness,
i.e. 4,000 years) over the number of VEI C3
a Result of the sum of the interpolations of each VEI to the longest period of completeness, that is,
4,000 years
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4.2.1 Eruption scenarios

Two types of eruption scenarios were considered in this study, both contouring the

probability of reaching a given tephra accumulation around the volcano:

P½Mðx; yÞ� thresholdjeruption� ð3Þ

where M(x, y) is the mass of tephra accumulation (kg/m2) at a given location (x, y).

One Eruption Scenario (OES) The OES is a semi-probabilistic approach that compiles

the probability of reaching a given hazardous threshold of tephra accumulation with a

varying wind, where eruptive parameters are deterministically defined. This method is

useful to evaluate the possible impacts of a known studied eruption. We used two reference

eruptions of Cotopaxi for the OES runs: Layer 3 and Layer 5, defined by Barberi et al.

(1995) and fully characterized by Biass and Bonadonna (2011). Physical eruptive

parameters are summarized in Table 3.

Eruption Range Scenario (ERS) The ERS describes the probability of reaching a given

tephra accumulation based on the statistical distribution of both wind profiles and eruptive

parameters. Based on the VEI frequency distribution of Cotopaxi volcano (Fig. 2a), we
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Bonadonna et al. (2002). Variability of a the probability of exceeding an accumulation of 10 kg/m2;
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decided to focus on VEI 3, 4 and 5. The VEI scale (Newhall and Self 1982) is mainly

constrained by values of erupted tephra but is also related to specific ranges of plume

height. We used these boundary values of plume height and erupted tephra to run ERS for

each VEI (see Table 3).

4.2.2 Accuracy of Monte-Carlo techniques

Probabilistic hazard assessments are computationally expensive and are ideally performed

using parallel processing on a cluster of computers. It is necessary to assess the variability

of Monte-Carlo techniques with varying number of runs and wind profiles, in order to find

the best compromise between the number of runs to consider and accuracy of the output.

Figure 6a shows the probability calculation of reaching 10 kg/m2 at a given point located

20 km downwind from the vent, with different number of wind profiles and number of

runs. The total wind population (1997–2008) was divided in smaller subsets of 1, 3, 6 and

12 years. For each wind subset, 10 series of simulations were performed, varying the

number of runs between 10 to 5,000. In order to avoid the duplicate patterns of random

numbers, every set of run was performed based on a different probability seed. Figure 6b

shows the decreasing trend of the standard deviation with the number of runs, with the

smallest discrepancy amongst wind subsets around 1,000 runs. Figure 6c shows the vari-

ability of the mean probability value amongst wind subsets with the number of runs

performed. From Fig. 6c, we could conclude that (i) a stability of values of mean prob-

ability can be observed above 1,000 runs and (ii) the mean probability using a wind

population of 12 years is the most constant throughout the number of runs. As a result, we

have chosen to perform 1,000 runs with the whole population of wind (12 years) for each

eruptive scenario in order to obtain the best compromise between computation time and

output accuracy.

5 Results

The resulting hazard assessment was compiled using three complementary techniques:

probability maps based on hazardous accumulation thresholds, isomass maps based on

critical probability thresholds and hazard curves.

Probability maps based on an eruption scenario contour the probability of reaching a

given tephra accumulation. Critical values of tephra accumulation can be based on the

Table 3 Source term parameters for each eruptive scenario used in the modelling

Ht (km a.s.l.) Mass (kg) Md/ r/

OES Layer 3 29 1.7 9 1012 -0.5 1.7

OES Layer 5 29 4.5 9 1011 0.6 2.5

ERS VEI 3 10–20 1-10 9 1010 -1 to 3 2.5

ERS VEI 4 15–30 1-10 9 1011 -1 to 3 2.5

ERS VEI 5 25–35 1-10 9 1012 -1 to 3 2.5

Values of plume height and erupted mass used for ERS modelling are based on the VEI scale of Newhall
and Self (1982). / is a measure of the grainsize, which is log2(diameter [mm]). Md/ and r/ are the median
and the standard deviation of the grainsize respectively (Inman 1952). Minimum and maximum grainsize
values deterministically fixed (8/ and -4/, respectively)
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effects of fallout observed for a number of eruptive events and volcanoes. In this study, two

values of 10 and 100 kg/m2 were used, which are critical for light damage to crops and the

onset of structural damages of the weakest roofs, respectively (Blong 1984; Wilson et al.

2011a). As an example, OES for Layer 5 and ERS of VEI 4 have been used as an

illustration for two medium intensity explosive eruptions (Fig. 7a, b). These maps show

how Quito has a\10 % probability to reach an accumulation of 10 kg/m2 of tephra for the

ERS of VEI 4, whereas Latacunga has a probability of about 50 % for the same tephra

threshold and scenario (Fig. 7b). The multi-VEI ERS probability maps are compiled by

summing the products of the probability matrix of ERS for each separate VEI class with

their respective probability of occurrence (Table 2). Figure 7c illustrates this concept using

ERS of VEI 3, 4 and 5 in a time window of 100 years (Table 2) and shows that Quito and

Latacunga have probabilities of reaching a total accumulation of tephra of 10 kg/m2 in the

next 100 years of about \10 and 30 %, respectively.

Probability maps for a given tephra threshold are reshaped into isomass maps of a given

probability (Fig. 7d), which is important when producing risk maps (Biass et al., this

volume). The choice of a significant probability threshold is, however, complex and could

be regarded as the acceptable losses that authorities would consider for a given exposed

population. As an example, we chose an arbitrary probability threshold of 50 % to illus-

trate the use of this technique. Figure 7d shows the resulting isomass map for the ERS of
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VEI 4 for a probability threshold of 50 %, where Quito and Latacunga display accumu-

lations of 1 and 10 kg/m2, respectively. To illustrate the variability of the resulting maps

due to the choice of the probability threshold, isomass maps for an ERS of VEI 4 with

probability thresholds of 30 and 70 % can be found in Online Resource 1.

All scenarios were also used to produce hazard curves, which describe the probability of

exceeding certain values of tephra accumulation for a given location (Bonadonna 2006).

Figure 8 shows hazard curves for the cities of Quito and Latacunga.

Table 4 shows the area covered by the different isomass lines for all scenarios con-

sidered in this hazard assessment. It also shows the destructiveness index, defined by Pyle

(2000) as the log10 of the area covered by the 100 kg/m2 isomass, value usually related to

roof collapse. Table 5 shows the number of people affected by the same mass loading, as

inferred from the Landscan 2005 dataset.

6 Discussion

The combined use of numerical modelling, probabilistic strategies and detailed field

observations allowed the development of a comprehensive set of possible eruption sce-

narios at Cotopaxi volcano. These were used as a first step to evaluate the impact of future

volcanic activity in the area. The distribution of wind profiles explains why high values of

probabilities and tephra accumulation are concentrated westwards (see Figs. 3, 4, 7). As a

result, the region located west of Cotopaxi volcano and between Quito and Latacunga will

likely be exposed to moderate to heavy tephra accumulation in the case of an eruption,

resulting in possible health issues, blockage of air traffic and roads, damage to crops and

agriculture and structural damage to buildings and roofs. A detailed study of the impact of

tephra fallout in this region can be found in Biass et al. (this volume).
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6.1 Hazard assessment

The past two decades have been characterized by significant improvements in strategies of

volcanic hazard assessment, which are typically made complicated by the fact that volcanoes

are multi-hazard systems. The assessment of the degree of variability of each hazardous

phenomenon is required to define relevant eruption scenario, on the basis of which phe-

nomenon will be tackled with deterministic or stochastic approaches (Bonadonna 2006). As a

result, most recent hazard assessments tend to include a combination of field studies,

numerical modelling and geo-informatic tools (i.e. GIS platforms). Although they are the

starting point of any study, field campaigns are often costly and logistically difficult, espe-

cially in remote areas. Single field seasons usually focus on the study of a single eruption, or a

few eruptions at most. In this context, the GVP continues to compile most published data into

a single database of known eruptions. As a result, the combined use of global databases such

as the GVP as a catalogue of known eruptions and the NOAA Reanalysis 1 for wind profiles

along with the VEI-based ERS method presented here allows for a fast and comprehensive

assessment of the hazard related to tephra fallout, even when a limited number or no field data

is available. The GVP database makes it possible to evaluate the probability of the occurrence

of an eruption of a given size, that can be incorporated in probability trees to assess the long-

term effect of tephra fallout (Fig. 5). Additionally, we also show how the availability of

accurate field investigations can be used in order to calibrate the ERS strategy and to provide

Table 4 Area covered by 1, 10, 100 and 300 kg/m2 for each scenario compiled, assuming a 50 %
probability

Area for isomass (km2) Destructiveness index

1 kg/m2 10 kg/m2 100 kg/m2 300 kg/m2

OES 3 42,234 10,749 1,587 565 3.2

OES 5 28,935 3,957 284 74 2.5

ERS VEI 3 2,094 298 27 – 1.4

ERS VEI 4 13,874 2,305 264 91 2.4

ERS VEI 5 80,639 17,940 2,364 691 3.4

ERS 100 y 7,922 1,225 147 47 2.2

The destructiveness index of Pyle (2000), calculated as the log10 of the area covered by the 100 kg/m2

isomass, is also shown. ERS 100 y stands for the ERS scenarios compiled with a probability of occurrence in
the next 100 years

Table 5 Number of people potentially affected by the different mass loading, inferred from the Landscan
2005 dataset, for a probability threshold of 50 %

People affected by tephra loading

1 kg/m2 10 kg/m2 100 kg/m2 300 kg/m2

OES 3 548,993 68,966 11,646 2,685

OES 5 437,607 38,747 5,724 183

ERS VEI 3 17,695 5,583 19 –

ERS VEI 4 230,942 21,290 4,415 313

ERS VEI 5 824,148 269,746 18,596 2,689

ERS 100 y 69,587 6,001 1,495 95
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hazard scenarios based on reference eruptions (OES). Limitations are inherent to the use of

such global databases, as they provide ‘‘some of our best clues in interpreting Earth’s vol-

canism’’ (Siebert et al. 2010, p. 31), and should be viewed as complementary to detailed field

investigations. Similarly, due to the difficulty of accessing direct measurements of wind

profiles, the NOAA Reanalysis 1 database is a convenient database to statistically infer global

wind patterns over a long period of time. Wind patterns resulting from this database provide

large-scale dispersal trends but fail to describe small-scale wind variations around a volcano,

which can often be important factors in the distribution of ash and lapili.

Given the general difficulty to effectively communicate hazard levels (Newhall 2000;

Haynes et al. 2007), we used three different outputs to describe our hazard assessment.

First, we produced probability maps, which contour the probability of exceeding a given

tephra accumulation for a given eruptive scenario (Fig. 7a–c). This tool helps to identify

the spatial variability of the likelihood of reaching a tephra accumulation of interest for a

given scenario. For example, the dark grey lines of Fig. 7b are the 10, 50 and 80 %

probability of reaching an accumulation of 100 kg/m2 for an ERS of VEI 4 and show that

buildings located about 10 km west of Cotopaxi have a 70 % probability of suffering

structural damage (up to possible roof collapse), in contrast to a 10 % probability for

buildings located 25 km in the same direction. Second, we produced isomass maps for a

given probability threshold, which are helpful for producing rapid exposure-based

assessments of potential damage associated with an eruption (Fig. 7d). Such maps require

the delicate choice of a probability threshold, which is in practice defined by decision-

makers on the basis of cost-benefit analysis (Marzocchi and Woo 2009). The choice of

acceptable losses goes beyond the scope of this paper, and a theoretical probability

threshold of 50 % is considered in this study. Finally, the hazard assessment is displayed

using hazard curves, which are used to evaluate the hazard at a given location. Hazard

curves are more flexible than probability maps, as they do not rely on the choice of

hazardous thresholds of tephra accumulation. Figure 8 shows hazard curves for all eruptive

scenarios for two important urbanized centres, namely Quito and Latacunga. At local

scales, this tool is useful to identify exposed elements independently from fixed thresholds,

which is necessary for both mitigation measures and the development of evacuation routes.

6.2 Importance of probabilistic strategies

Field investigations are a crucial step towards constraining the eruptive style of a volcano,

but they have several limitations. For example, the eruptive history of a given volcano

inferred from the geological record is biased towards large events, as small eruptions will

produce minimal tephra deposits that will be quickly removed by erosion (Fig. 2). Also,

field observations can only provide a sub-sample of the possible range of eruptive

parameters such as plume height, erupted mass and weather conditions. The existing

hazard maps for tephra fallout for Cotopaxi volcano contour the tephra thickness expected

for an eruption of moderate size, using deterministically chosen eruptive parameters and a

typical wind profile (Hall and Hillebrandt 1988). Hazard assessments based on field

observations result in an incomplete picture failing to describe the whole range of possible

impacts of future activity. In contrast to such deterministic methods, probabilistic

approaches based on Monte-Carlo simulations can help to extrapolate the sub-samples of

eruptive parameters and weather conditions inferred from field observation into statisti-

cally representative populations suitable for hazard assessments. The combined use of

weather databases such as the NCEP/NCAR Reanalysis 1 (Kalnay et al. 1996) and sto-

chastic sampling provides a realistic picture of the weather conditions for a given area, based
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on decades of observations. The stochastic sampling of eruptive parameters also helps to

assess a wide range of possible outcomes of an eruption. Any probability density function can

be used to sample eruptive parameters and can be either defined deterministically, when

sufficient field data are available, or using Monte-Carlo simulations based on the few data

available (Hurst and Smith 2004). Probabilistic methods and random processes should not be

used without a solid calibration based on observations. Figure 6 provides an indication of the

critical number of wind profiles required to significantly capture the intrinsic variability of

wind patterns, as well as insights into the number of model runs needed to provide stable

results. From this method, a population of 12 years of wind was proved to provide the most

stable probability values with varying numbers of runs (maximum variability of mean

probability values of 1.5 %, Fig. 6). Similarly, model 1,000 runs provide a good compromise

between stability of results and computation time (e.g. variability of the standard deviation

within 0.5 %; Fig. 6b), which is consistent with values obtained on Soufriere Hills, Mont-

serrat (Bonadonna et al. 2002). Here, sampling of eruptive parameters was based on the

values of tephra mass and plume height defined by the VEI scale. Plume heights and erupted

masses were stochastically sampled based on a logarithmic distribution in order to give more

importance to small events, whereas grainsize parameters were stochastically sampled on a

linear scale. As a result, we present two extremes in the assessment of the hazard related to

tephra fallout. On one hand, traditional hazard assessments typically use numerical models,

for which input parameters are deterministically defined based on detailed field investiga-

tions. On the other hand, the use of ERS strategies based on VEI classes combined with global

databases allows for a rapid and remote evaluation of the hazard related with tephra fallout.

However, the VEI scale cannot be considered as universal as it relies on a simple and often

unrealistic assumption of a constant relationship between the erupted mass and the plume

height (Pyle 2000). As a result, boundary values of mass and plume height defined by the VEI

scale are not absolute, and field data can be used in ERS methods to adjust the sampling range

of eruptive parameters.

6.3 Eruptive scenarios

Figure 5 serves as a framework for conditional probabilities used in this hazard assess-

ment. As previously discussed, probabilities at nodes 1 and 2 can be assessed using the

GVP database. Node 3 evaluates the expected range of tephra accumulation over a region

of interest, assuming the occurrence of a specific eruption scenario (i.e. probability = 1 at

node 2 for a given magnitude of eruption). Figure 5 in its complete form is useful for VEI-

based ERS strategies. In contrast, OES approaches focus on node 3 as they are based on

studied eruptions, for which it is not possible to assign a probability of occurrence. The

available field investigations for Cotopaxi volcano allowed for probabilistic modelling of

two known eruptions of VEI 4 and 5 (OES, Table 3), whereas three ERS have been defined

using the VEI scale. Table 5 illustrates the difference between scenarios where the eruptive

parameters are set deterministically (Layer 3: low VEI 5; Layer 5: high VEI 4) and using

probability density functions. As an example, the number of people affected by any tephra

accumulation for a Layer 3 OES is lower than considering an ERS of VEI 5. In fact, Layer

3 is a single case of an eruption of VEI 5 of moderate intensity. Similarly, the number of

affected people is always higher when the Layer 5 OES is compared to an ERS of VEI 4,

because Layer 5 is a single occurrence of a strong eruption of VEI 4 at the boundary with

VEI 5. As a result, eruption scenarios defined in Table 3 aim to provide a complete picture

of possible future eruptive patterns, based on both deterministic (i.e. accurate field data)

and stochastic (i.e. Monte-Carlo simulations) strategies.
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7 Conclusions

This study provides a comprehensive hazard assessment of Cotopaxi volcano, in combi-

nation with a new strategy based on global data for the hazard assessment of volcanoes

with only little available information. Two complementary approaches have been used to

produce a comprehensive hazard assessment. First, five eruption scenarios have been

considered: (i) two scenarios based on detailed field data where input eruptive parameters

were deterministically defined (OES for Layer 3 and OES for Layer 5) and (ii) three

scenarios based on ranges of values for erupted volume and plume height defined by the

VEI scale, where VEI 3, 4 and 5 have been recognized as being the most frequent haz-

ardous events at Cotopaxi volcano (GVP; Siebert and Simkin 2002). The stochastic

sampling of 1,000 wind profiles out of 12 years of wind for each scenario was shown to

provide a good compromise between output stability and computation time (within 0.8 %

discrepancy, Fig. 6). Second, the occurrence probability of each VEI class was assessed

based on the GVP database and used to combine the ERS of each VEI class to produce a

long-term assessment of the probability of tephra accumulation at different time windows.

A new way of displaying the resulting hazard assessment is proposed, which consists in

producing isomass maps for a given probability. This method helps to highlight the most

dangerous areas around the vent and facilitates the integration in further risk analysis

(Biass et al. this volume). In the case of Cotopaxi volcano, even eruptions of moderate size

(VEI 3) can potentially affect thousands of people. The two eruptions used as benchmark in

this study would have today a 50 % probability of affecting *550,000 and *440,000

people (Layer 3 and Layer 5 respectively).
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