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Abstract In this paper, the main parameters for the process
design of thermo active deep drawing processes with
metastable steels are specified. As a consequence of the
strain- and temperature-dependent martensitic phase trans-
formation, the CrNi-steels have a very complex forming
and failure behavior. Particularly, the strong heating of the
blank, induced by the hardening increase, influences the
yield properties, the failure and the tribological system.
Hence, a robust process design with FEM is subordinated
to the correct virtual description of these process parame-
ters. Both, experimental methods for an accurate measure-
ment of the forming, friction and failure properties, as well
as numerical models were introduced in this study. Using
these models, temperature dependent parameters like phase
transformation from γ-austenite to α′-martensite, yield
properties, failure or friction can be easily included into
the virtual process modeling. The model was successfully
validated by biaxial stretching tests and rectangular cups,
drawn at different tool temperatures.

Keywords Deep drawing . Stainless steel . AISI304 . Phase
transformation . eMMFC . FLCT. Temperature dependent
friction

Introduction

Austenitic stainless steels, such as AISI304, have a big
potential in forming applications. For example in architec-

ture, food industry or automotive industry, austenitic
stainless steels are used because of the corrosion and heat
resistance or decorative qualities. The metastable forming
behavior of these kinds of steels is a big challenge for the
production and as a consequence also for the numerical
simulations.

As a result of the significant plastic work, induced by
the hardening increase of the deformed material, the
process temperature during cold forming processes,
starting at room temperature, raises up to about 90°C
locally. On the one side, this temperature increase leads
to a smaller amount of martensite in the drawing-in area
between die and binder, which is a positive aspect for the
forming behavior. On the other side, the reduced amount
of martensite in the punch area leads to a decreasing
transmittable drawing force. In addition, the heating has
a strong influence on the lubrication regime. Dependent
on such mechanisms the process shows a strong
temperature sensitivity.

Today, the producing industry takes advantage of the
positive respectively negative aspects of this temperature
increase by temperature controlled tools. Heating the die
and the binder and cooling the punch leads to an optimal
deep drawing behavior. Therefore, a process model for
thermo active deep drawing processes with metastable
stainless steels is needed. As described in [1], this process
model needs to consider solutions for phase transformation,
yield properties, failure and friction, which take into
account the particular thermal behavior.

For the characterization of the phase transformation
(γ-austenite to α′-martensite), the Hänsel model was used.
The nonisothermal Hänsel model is an incremental descrip-
tion of the martensite formation in dependency of temper-
ature, deformation and forming history. The martensite
formation rate is physically defined as a function of
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temperature and actual martensite content. With a new
process set-up for the evaluation of the model parameters,
an accurate determination of the martensite formation and
total hardening is possible. The more accurate and material
specific approach of the Hänsel parameters is one of the
important contribution for a better applicability of the
Hänsel constitutive model.

For the numerical failure prediction of metastable steels,
the enhanced modified maximum force criterion (eMMFC)
needs to be extended by the temperature and the actual
martensite content. The experimental data of standard
tensile tests allow to determinate a temperature dependent
forming limit curve (FLCT). For a continuous temperature
dependent failure criterion, a surface can be laid over the
non isothermal curves allowing interpolations for non-
uniform temperature regimes.

Because of the heating during the process, the tribological
system changes significantly and the use of a constant friction
model, like Amontons law or the shear friction model, is no
longer accurate enough. This effect is pointed out by heated
strip drawing tests. The consideration of temperature is
essential for capturing the friction phenomena in industrial
deep drawing processes using stainless steels.

Materials

Metastable austenitic stainless steel AISI304

The material used in this study is a metastable austenitic steel
(AISI304) with a thickness of 0.72mm. The chemical analysis
of the steel showed a Cr-content of 18.0% and a Ni-content of
8.9%. The mechanical properties are listed in Table 1.

Martensite formation

With the start of a plastic deformation, a large number of
dislocations are typically built. With the increase of the
deformation, the dislocations were concentrated in shear
bands. The shear bands can be made up of an
accumulation of voids, twins or ε-martensite. In those
shear bands, the γ-ε-transformation is taking place.
Martensite is existent in different characteristics. In
alloyed steels we have to distinguish between ε-
martensite with hexagonal and α′-martensite with cubic
body centered lattice. The first α′-martensite-areas, which
are typically built in the ε-zones, appear already by a
marginal increase of the deformation. α′-martensite can
also be built directly from the austenite.

Hardening behavior

The formed strain induced martensite in metastable austen-
itic steels has an important influence on the mechanical
properties such as ductility, strength and hardness of
forming parts.

According to the formation conditions, the geometrical
structure of the strain induced martensite areas can look
differently (e.g. needles or plates).

The hardening behavior is dependent on the formability
and the temperature (see Fig. 1).

Therefore, the total hardening is:

ktotf ¼ kgf þΔkg!a0
f � VM ð1Þ

ktotf is the total hardening, kgf the austenite hardening,

Δkg!a0
f the hardening increase because of the phase

transformation from γ-austenite to α′-martensite and VM

the actual martensite content.

Experimental procedure

Evaluation of the hardening

Standard tensile tests at room temperature lead to a
martensite amount of about 10 to 15% by volume in the
specimen for the AISI304-material. For a reasonable fitting
of an appropriate theoretical model, a higher amount of
martensite is desired.

Rp0.2 [N/mm2] Rm [N/mm2] Ag [%] R0 [−] R45 [−] R90 [−]

287 653 44.6 0.80 1.35 0.85

Table 1 Mechanical properties
of the AISI304
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Fig. 1 Hardening behavior of a AISI304-steel
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For this study, the tensile tests were done in a climatic
chamber at temperatures from 0°C to 80°C. The martensite
content is measured with a magneto inductive measuring
method. This method allows identifying the content of the
ferromagnetic phase in the material. For the test series a
Fischerscope MMS (Fischer) is used, which allows contin-
uous measuring.

Temperature dependent FLC

For the determination of the temperature influence on the
Forming Limit Curves, Nakajima tests [2] were done at
different temperatures. With a heatable hemispherical punch
it was possible to adjust a homogeneous temperature
distribution. The deformation was monitored with the
optical measurement system ViALUX. Each single test
was done three times for reproducibility reasons.

For the adjustment of the different temperatures, a heatable
hemispherical punch was used. Figure 2 shows a drawing of

the punch. The use of 6 identical heating elements, circularly
arranged, gives a very homogeneous temperature distribu-
tion. A thermal sensor 5 mm below the pole of the punch
allows controlling the temperature. With this punch, it is
possible to conduct Nakajima tests at temperatures from
room temperature (RT) up to 150°C. In this case, tests were
done at RT (≈22°C), 40, 60, 80 and 100°C.

According to the new ISO norm for the determination of
forming limit curves in laboratory [3], Nakajima test
specimens with a parallel shaft (widths: 20, 50, 80, 90,
100, 120 mm) were taken.

Temperature dependent friction coefficient

The friction coefficient was experimentally determined on a
strip drawing test machine. With a newly developed
heatable drawing die, the experimental setup allows to run
experiments at elevated temperatures. In this case, experi-
ments were done at room temperature, 50°C and 80°C.

Fig. 2 Hemispherical heatable
punch with the position of the
six heating elements
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Fig. 3 Evolution of the martensite content (left) and yield curves (right) for different experimental temperatures
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Experimental results

Hardening behavior

The results of the tensile tests in the climatic chamber show
the temperature dependent phase transformation from
austenite to α′-martensite very clearly. For low temperatures
of 0–10°C, 30–35% martensite volume is reached, on the
other hand, for high temperatures, the phase transformation
is negligible (Fig. 3, left). As a consequence of the phase
transformation, it can be observed, that the yield stress rises
with increasing martensite content for lower temperatures
(Fig. 3, right).

Temperature dependent FLC

Figure 4 shows the achieved fracture heights for the
different Nakajima geometries and the different punch
temperatures. It is obvious, that the experiments with
higher temperature fail at an earlier process time. This
tendency can be observed for all geometries, but is not that
distinct for more biaxial formed specimens.

The evaluation of the FLCwas done withMatlab. The used
Matlab-code is based on a method which was first proposed
by Volk at the FLC Zurich’06 [4, 5]. In this time-continuous
evaluation method, the beginning of the localized necking is
determined using the similarity between the regular grid for
the optical measurement and the typical mesh of a finite
element simulation. On this account, the typical FE
approaches and calculation methods can be used.

The beginning of the localized necking has effects on the
strain rate. The instability leads to higher strain rates in the
instability zone - and as consequence to a decrease of the
strain rate outside [4–6].

The resulting forming limit curves for the different
temperatures are depicted in Fig. 5. The diagram shows the
decreasing forming limit with increasing temperature very
clearly. For the specimens with a 50 mm shaft, the major

strain at room temperature is almost 20% higher than for the
same specimen at 100°C, at the plain-strain state about 10%.

Temperature dependent friction coefficient

Figure 6 shows the results of the strip drawing tests.
Experimental tests were done at three different velocities
(0.05, 0.1, 0.5 m/s), two different testing temperatures (23°C,
60°C) and with or without drawing foil. As lubricant, Raziol
CLF260 was used. The prestrain of the specimen was 20%.
The results show very clear, that the friction coefficient is
higher for all conditions at elevated temperatures. Using a
drawing foil reduces the influence of the temperature.

Theoretical models

Nonisothermal material model for the martensite content

The nonisothermal Hänsel [7] model is based on the Tsuta
and the Olson-Cohen model [8–10]. The martensite
formation rate is physically defined as a function of the
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temperature and the actual martensite content. The mar-
tensite formation rate according to Hänsel is

dVM

d"
¼ B

A
� e

Q
T � 1� VM

VM

� �1þB
B � Vp

M � 0:5 � 1� tanh C þ D � Tð Þð Þ½ �

ð2Þ
where A, B, C, D, p, Q are the Hänsel parameters which
have to be determined with experiments, VM is the
martensite volume fraction and T is the temperature. VM0

and ε0 are the parameters representing the start of
approximation, which should be taken temperature depen-
dent. For better extrapolation results, an additional
measuring point from a biaxial stretch drawing test is
taken into account (VM=0.266, T=27.1°C, ε=0.59).

Hänsel integrated the martensite formation model into a
hardening model for steels with phase transformation using
the Hockett-Sherby approach:

kgesf ¼ f1 "ð Þ � f2ðTÞ þΔkg!a0
f � VM ð3Þ

with

f1 "ð Þ ¼ BHS � BHS � AHSð Þ � exp �m � "nð Þ½ � ð4Þ
and

f2ðTÞ ¼ 1� K � T � 293ð Þ½ � ð5Þ
BHS, AHS, m and n are the Hockett-Sherby-Parameters;

Δkg!a0
f the hardening difference between austenite and

martensite; f2(T) a temperature function with a constant K.

The approximation of the hardening model was made in
three steps:

1. Determination of the yield stress ➔ AHS

2. Austenite yield curve (353 K-tensile test) with con-
straint @kf

@" ¼ kf➔ BHS, m, n
3. Fitting of the parameters K and Δkg!a0

f using all tests
➔ K, Δkg!a0

f

The resulting parameters for the material used are listed
in Table 2. The comparison of the experimental and the
calculated data for martensite content and yield stress
shows a very good correlation (Fig. 7).

Virtual failure prediction

For the numerical prediction of the Forming Limit Curve,
the enhanced modified maximum force criterion (eMMFC)
according to Hora and Tong [11, 12] was chosen. The
delivered results agree very well with the experimentally
determined forming limit curves [13].

The idea behind the MMFC-Model [14, 15] is to account
for an additional increase in hardening, which is triggered
by the deviation from the initial, homogeneous stress
condition – e.g. uniaxial tension – to the stress condition
of local necking and with this to the point of plane strain.

An extension of the MMFC was proposed by Hora et al.
[11, 12], in which an additional term introduces the
influence of sheet thickness t and also accounts for material
crack propagation. The extended equation is formulated as

A B C D AHS BHS m n

111.02 0.1937 -73.89 0.1440 247.25 991.15 3.08 0.8979

p Q ε0 VM0 K Δkf
7.212 2782 0:01þ T � 0:002 0.0026 0.0028 527.86

Table 2 Hänsel parameters of
the AISI304. Left: martensite
deformation rate, Eq. 2; Right:
hardening, Hockett-Sherby
approach, Eqs. 3, 4 and 5
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1þ t
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þ e E; tð Þ

h i
þ @s11
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@b
@"11

� s11 ð6Þ

with

e E; tð Þ ¼ E0
t

t0

� �p

ð7Þ

E0 is a material constant, exponent p is influenced by the
thickness t, r is the sheet curvature radius and β is the strain
ratio.

In case of metastable austenitic CrNi-steels, E0=0.1 for
the material constant E0, and p=0.6 for the exponent p has
been evaluated as appropriate.

The consideration of the influence of the temperature T
and the actual martensite content VM on the failure is
essential especially for metastable steels. In this case, σ11 is
a function of

s11 ¼ f "11; b; T ;VMð Þ ð8Þ
and Eq. 6 extends to

@s11

@"11
1þ t

2r
þ e E; tð Þ

h i
þ @s11

@b
@b
@"11

þ @s11

@T

@T

@"11
þ @s11

@VM

@VM

@"11
� s11

ð9Þ
The advantage of the eMMFC can be found in its

independence of an inhomogeneity assumption.
The form of the yield locus directly enters the model

trough the additional term. For materials with flattened,
non-quadratic yield loci, local necking will quickly
follow after diffuse necking. On the other hand,
materials with a Hill’48-type and high R-values will
show a much extended diffuse necking with delayed
local necking.

Due to its differential form, the eMMFC can be
implemented incrementally. This allows the computation
of non-linear strain paths and also a direct evaluation of the
FLC during incremental FEM simulation [15].

The experimental data allows to determinate a tem-
perature dependent FLC. The numerical evaluation
method for the FLCT is shown in Fig. 8. With the
description of the hardening of the eMMFC (Eq. 10, see
[14, 15]) a forming limit surface (FLS) can be evaluated
under the assumption of linear strain paths. With a
variation of the heat transfer coefficient κ from 0 (quasi-
static state) to 1 (adiabatic state) and the determination of
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Fig. 8 Numerical evaluation
method for the FLCT (cp: heat
capacity, h: hardening, T:
temperature, VM: martensite
content, wpl: plastic work,
β: strain ratio, εeq: equivalent
strain, ρ: density, κ: heat transfer
coefficient)
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Table 3 Parameters for the friction model

a b c f k1 k2 k3

1.7 e-10 36185 1339.7 0.2859 -2.0742 2.3045 0.0891
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the failure point for different β, the FLCT can be
calculated. Because of the slightly biaxial forming behav-
ior at the beginning of the deformation, a small biaxial

pre-strain was considered. For a continuous temperature
dependent failure criterion, a surface can be laid over the
nonisothermal failure curves (Fig. 9) [16, 17].

k
0
f �

f að Þ þ f 0 að Þg bð Þb
b0 að Þ"v

� �
f að Þg bð Þ � k f ð10Þ

Temperature dependent friction model

According to Vogel [18], the temperature dependency of the
viscosity η can be expressed with

h ¼ Ae
B

TþC ð11Þ
where T is the temperature in Kelvin and A, B and C are
constants. The temperature dependency of the friction
coefficient μ can be expressed in a similar way

m ¼ 1� ae
b

Tþc ð12Þ
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Fig. 11 Parts for the validation
of the process model (left:
biaxial stretch drawing part,
right: rectangular cup). The dots
are the measuring points
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In general, the friction in sheet metal forming of stainless
steels takes place in the mixed lubrication regime. For a
physically correct model, a combination of the boundary
friction and the hydrodynamic friction regime needs to be
taken and the real contact area has to be known. But in the
macroscopic finite element simulation, the determination of the
real contact area is not possible, because the surface geometry
with the asperities is not considered. Therefore, Grüebler [19]
proposes a model, which combines the velocity and temper-
ature dependency of the friction coefficient μ

m ¼ f � k1 � vk3rel þ k2
� �

1� a � vk3rel � e
b

Tþc

� �
ð13Þ

vrel is the relative velocity, T the temperature, k1, k2, k3, a, b, c
and f are constants. This model is a macroscopic friction
description. Hence, it is not possible to distinguish between
boundary and hydrodynamic friction. The model needs to be
calibrated with strip drawing tests.

With the parameters in Table 3, the experimental strip
drawing tests at different temperatures (Fig. 6) can be
approximated very well with this model (Fig. 10).

Validation

The validation of the described process model was made
with two different parts (Fig. 11). On the one side, biaxial
stretch drawing parts at different punch temperatures (23°C,
55°C and 90°C) were made, on the other side, rectangu-
lar cups at different tool temperatures (23°C and 75°C)
have been deep drawn. The comparison of the simulated
drawing force as well as the resulting martensite fraction
shows a good accordance with the experimental measure-
ments. The simulations were done with the FE-code
StreckForm. The specific process and simulation param-
eters are listed in [20].

Figures 12, 13 and 14 show the comparison of the
experimental and calculated punch forces for both cases, the
stretch drawing and the rectangular deep drawing part. It is
obvious that the accordance is quite good and themodel reflects
the effects of the different tool temperatures in an accurate way.

In Figs. 13 and 15, the resulting martensite fraction is
pictured. The comparison of the different values for each
punch, respectively tool temperature illustrates the high
temperature dependency of the phase transformation from
austenite to martensite. The figure shows, that the martensit
fraction can be very well predicted by the FE-simulation.

Conclusions

In this paper, theoretical approaches for the description of
the influence of temperature on the hardening behavior, the

failure and the tribological system for austenitic stainless
steels, which was showed by different experimental tests,
are introduced. With an enhanced Hänsel model for the
hardening, the eMMFC for the calculation of the temper-
ature dependent forming limit curves and Grüeblers
equation for the temperature and velocity dependent friction
coefficient, we have approved theoretical models for a
correct description of the thermoactive process behavior of
metastable steels. The accuracy of the process model could
be successfully demonstrated with the comparison of
experimental and calculated results of real deep drawing
parts.
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