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Abstract. We revisit a recently proposed agent-based model of active biological motion and compare
its predictions with own experimental findings for the speed distribution of bacterial cells, Salmonella
typhimurium. Agents move according to a stochastic dynamics and use energy stored in an internal depot
for metabolism and active motion. We discuss different assumptions of how the conversion from internal to
kinetic energy d(v) may depend on the actual speed, to conclude that d2v

ξ with either ξ = 2 or 1 < ξ < 2
are promising hypotheses. To test these, we compare the model’s prediction with the speed distribution
of bacteria which were obtained in media of different nutrient concentration and at different times. We
find that both hypotheses are in line with the experimental observations, with ξ between 1.67 and 2.0.
Regarding the influence of a higher nutrient concentration, we conclude that the take-up of energy by
bacterial cells is indeed increased. But this energy is not used to increase the speed, with 40 μm/s as the
most probable value of the speed distribution, but is rather spend on metabolism and growth.

1 Introduction

Among the many contributions Werner Ebeling made to
the interdisciplinary applications of statistical physics, his
concept of active motion stands out as the most prolifer-
ate. More than 35 of his own publications deal, directly
or indirecly, with such dynamic phenomena that rely on
the influx of energy. A citation analysis by now mentions
415 citations, lead by a paper published in Biosystems in
1999 [1] which also forms the basis of the current publi-
cation. But already an earlier publication in 1994 [2] con-
tained in a nutshell the main idea of negative friction to
accelerate the motion of a Brownian particle.

The concept of active motion, as proposed by Ebeling,
relies on very few, but reasonable assumptions: particles,
which we call agents in the following, have the ability (i)
to take up energy from the environment, (ii) to store it in
an internal energy depot, and (iii) to use this internal en-
ergy to accelerate their motion. Without additional energy
take-up, the agent’s motion is described by a stochastic
dynamics in terms of a Langevin equation, which denotes
the limit case of Brownian motion. A Brownian particle
moves passively because the friction which would lead to
rest, asymptotically, is compensated by a stochastic force.
The fluctuation-dissipation theorem in the special form
given by Einstein tells us how the mean squared displace-
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ment of such a Brownian particle is related to fundamental
properties of the medium it is placed in, such as viscos-
ity or temperature. This well known scenario is changed
if such particles are turned into “agents” by getting ad-
ditional internal degrees of freedom, such as the internal
energy depot discussed in the following. Then the pas-
sive and random motion can, under certain conditions, be
turned into an active and directed motion, which is al-
ready found on the level of micro organisms and cells [3].

The theory developed from the above assumptions
makes a number of predictions about the active motion
of agents with an internal energy depot which have, how-
ever, not been tested experimentally. So, it is worth to find
out to what extent living organisms, such as cells or bacte-
ria, can be described by “active Brownian particles”. The
current paper wants to contribute to this discussion. In
addition to the theoretical framework already developed,
it can build on a parallel strand of investigations about
the motility of cells [4].

The paper is organized as follows: in Section 2, we re-
call the analytical framework of active Brownian particles,
by deriving the equation of motion in the presence of an
internal energy depot. Then, different assumptions for the
conversion of internal into kinetic energy are developed,
which lead to three hypotheses to be tested experimen-
tally. Section 3 describes the experimental observations in
detail. A comparison between theory and experiment is
carried out in Section 4 at the level of the speed distribu-
tion, which is derived from a Fokker-Planck equation and
compared with empirical densities. Details of the results
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are presented in the Appendix. A conclusion summarizes
our findings and points out the limitations of their inter-
pretation.

2 Agent-based model of biological motion

2.1 Internal energy depot

Our approach to model the biological motion of bacte-
ria is based on active Brownian particles or Brownian
agents [5]. Each of these agents i is described by three
continuous variables: spatial position ri, velocity vi and
internal energy depot ei. Whereas the spatial position and
the velocity of an agent describe its movement and can be
observed by an external observer, the agent’s energy de-
pot, however, represents an internal variable that can only
be deduced indirectly from the agent’s motion.

For the internal energy depot we assume, in most gen-
eral terms, the following balance equation:

dei

dt
= q(ri, t) − w(ri, t) (1)

q(ri, t) describes the “influx” of energy into the depot, for
example through the take-up of nutrients, which therefore
may depend on the agent’s position and on time. The spa-
tially inhomogeneous distribution of energy was modelled
e.g. in [1,6]. In the following, we assume both for sim-
plicity and in accordance with the experiments described
below that nutrients are abundant, hence the take-up of
energy is homogeneous, i.e. constant in time and space,
q = q0(k). But, dependent on the experimental condition,
q0 varies dependent on the concentration k of nutrients,
but not across agents.

The “outflux” of energy from the depot w(ri, t) de-
pends on those activities of an agent which require ad-
ditional energy. In [7,8] we have modeled the case that
agents produce chemical information used for communi-
cation, e.g. in chemotaxis. Applying our model to the mo-
tion of bacteria, we simply assume that energy is spent
on two “activities”: (i) metabolism, which is assumed to
be proportional to the level of internal energy, with the
metabolism rate c being constant in time and equal across
agents. Alternatively, one could assume that metabolism
further depends on the size of the bacteria. (ii) Active mo-
tion, i.e. internal energy is converted into kinetic energy
for the bacteria to move at a velocity much higher than
the thermal velocity of Brownian motion. For this conver-
sion we assume that it proportional to the internal energy
and further depends monotonously, but nonlinearly on the
speed v of the agent. v is a scalar quantity, describing how
fast the agent is moving, regardless of direction. Velocity
v, on the other hand, describes the direction as well as
the speed at which the agent is moving. Our assumption
is that the conversion rate d(v) does not further depend
on the position of the agent or on the direction of motion.

w(vi, t) = ei [c + d(vi)] . (2)

This ansatz satisfies the idea that without internal en-
ergy e no metabolism or active motion is possible. We
note that previously the particular ansatz d(v) = d2v

2

was discussed in detail [1,9] , but not yet confirmed by
experiments. Therefore, in this paper we want to find out
whether this or other possible assumptions are supported
by experiments, so we leave d(v) unspecified for the mo-
ment. But it is important to note the proportion between
the two different terms: bacteria spent the vast amount
of their internal energy for metabolism, not for active
motion. Consequently the approximation c → 0, which
was discussed in previous investigations, does not hold for
bacteria.

Assuming that the internal energy depot relaxes fast
into a quasi-stationary equilibrium allows to approximate
the internal energy depot as

est
i (vi) =

q0

c + d(vi)
. (3)

I.e., the level of the internal energy depot follows instan-
taneously adjustments of the speed.

2.2 Equation of motion

The equation of motion for a Brownian agent is given by
a Langevin equation for the velocity vi. However, because
of the conversion of internal into kinetic energy with a
rate d(v), we need to consider an additional driving force
the structure of which can be obtained from a total en-
ergy balance. In the absense of an external potential, the
mechanical energy of the agent is given by the kinetic en-
ergy, Ei = mv2

i /2, which can be changed by two different
processes: (i) it decreases because of friction, with γ be-
ing the friction coefficient (equal for all agents), and (ii)
it increases because of conversion of internal energy into
energy of motion. Hence, with vi = ṙi and v̇i = r̈i the
total balance balance equation gives:

d

dt
Ei = mṙir̈i = ed(vi) − mγv2

i . (4)

Deviding this equation by mṙi results in the deterministic
equation of motion:

v̇i = −vi

[
γ − e

m

d(vi)
v2

i

]
. (5)

Based on this, we propose the Langevin equation for the
Brownian agent by adding to the right-hand side of equa-
tion (5) a stochastic force Fi(t) with the usual properties,
namely that no drift is exerted on average, 〈F i(t)〉 = 0,
and that no correlations exist in time or between agents,
〈F i(t)F j(t′)〉 = 2S δijδ(t − t′). For physical systems
the strength of the stochastic force S is defined by the
fluctuation-dissipation theorem which itself builds on the
equipartition law, but for microbiological objects such as
cells and bacteria the situation has proven to be more in-
tricate, as we will outline later.
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Assuming a quasistationary internal energy depot,
equation (3) and defining γ0 = γm, we arrive at the mod-
ified Langevin equation for the Brownian agent:

v̇i = −γvi

[
1 − q0

γ0

d(vi)
[c + d(vi)] v2

i

]
+
√

2S ξi(t) (6)

where ξi denotes Gaussian white noise. Equation (6) shall
be used as the starting point for the further discussion.

2.3 Hypotheses for d(v)

We now specify the function d(v) for which we assume a
nonlinear dependence on the speed in terms of the follow-
ing power series:

d(v) =
n∑

k=0

dkvk. (7)

Using different orders of this power series, we first evaluate
the stationary velocity estimated from the deterministic
part of equation (6) (omitting the index i for the mo-
ment) and then compare the outcome against data from
experiments with bacteria.

Neglecting the stochastic term of equation (6), we first
notice that v = 0 is always a solution. Caused by fric-
tion, the motion of an agent shall come to rest – but in
a stochastic system agents still passively move thanks to
the impact of the random force F .

Secondly, taking into account the influence of the inter-
nal energy depot, we notice the importance of the rate of
metabolism, c. For c = 0, we always find for the nontrivial
speed

vs =
√

q0

γ0
; (c = 0, γ0 = γm) (8)

independent of further assumptions for d(v). I.e., depen-
dent on the take-up of energy q0 agents move with a con-
stant speed. For c �= 0 and n = 0, i.e. for d(v) = d0, this
nontrivial speed is corrected leading to

vs =
(

q0

γ0

)1/2 (
1

1 + (c/d0)

)1/2

. (9)

That means dependent on the proportion of metabolism
vs active motion, the stationary velocity can be consirably
lowered. For further comparison it is convenient to rewrite
equation (9) in a different way

vs =
(

c

d0

)1/2 (
Q0

1 + (c/d0)

)1/2

; Qn =
q0dn

γ0c
; (n = 0)

(10)
where the reduced parameter Qn combines the relevant
parameters of the model describing take-up energy and
active motion (q0, dn) and external and internal dissipa-
tion (γ0, c).

Considering the next higher order of the polynom,
d(v) = d1v for n = 1, the stationary speed follows from
the quadratic equation:

v2
s +

(
c

d1

)
vs − q0

γ0
= 0. (11)

One can verify that these solutions are not consistent with
other physical considerations, in particular the speed vs,
for large c, is biased toward negative values. Testing an-
other first order assumption, d(v) = d0 + d1v, does not
improve the situation, because d0 is additive with c and
thus just rescales the metabolism rate.

Consequently, we have to restrict ourselves to the case
n = 2, i.e. we arrive at d(v) = d2v

2 which is the known
SET model [6,9] with the stationary solution for the speed
v:

vs =
√

q0

γ0
− c

d2
=

(
q0

γ0

)1/2 (
1 − 1

Q2

)1/2

=
(

c

d2

)1/2

(Q2 − 1)1/2
. (12)

Different from the previous cases, for n = 2 we find a
bifurcation dependent on the control parameter Q2. For
Q2 ≤ 1, v = 0 is the only real stationary solution, whereas
for Q2 > 1 a nontrivial solution for the speed exist. The
possible consequences are already discussed in the litera-
ture. In [10,11] the supercritical case, Q2 > 1 was investi-
gated, while in [9,12,13] the subcritical case Q2 ≤ 1 was
considered. Because metabolism consumes the lion share
of the internal energy provided, one would assume that
Q2 � 1 is the most realistic case for the motion of bacte-
rial cells – which remains to be tested.

For the stochastic motion, equation (6), in the su-
percritical case the contribution of the stochastic term is
small compared to the kinetic energy provided by the en-
ergy depot. Hence, the agent should move forward with a
non-trivial velocity (i.e. much above the thermal fluctua-
tions), which has a rather constant speed, but can change
its direction occasionally. In the subcritical case, on the
other hand, the stochastic fluctuations dominate the mo-
tion, but the energy depot still contributes, this way re-
sulting in the first order approximation of the stationary
velocity (in one dimension): v2 = kBT/m(1−Q2) [12]. In
fact, the authors of [12] put forward a nice argument that
in the high dissipation regime – or in environments with
low nutrition concentration – a strong coupling between
the two energy sources (depot and noise) appears that
should help micro organisms to search more efficiently for
a more favorable environment.

We are not going to repeat these theoretical discus-
sions. Instead, we ask a different question not investigated
so far: which of the above cases is consistent with experi-
mental findings? As outlined above, the SET model with
its two regimes, (i) Q2 ≤ 1, i.e. subcritical energy sup-
ply, and (ii) Q2 > 1, i.e. supercritical energy supply, is
the most promising ansatz to be tested for d(v). To com-
pare this with a more general setting, instead of integers
n = 0, 2 we may also consider fractional numbers n = ξ
with 0 < ξ < 2, i.e. d(v) = d2v

ξ, which results in the
following equation for the stationary solutions:

vξ −
(

q0

γ0

)
vξ−2 +

c

d2
= 0. (13)

Reasonable values of ξ should be in the interval between 1
and 2 – for which we expect two nontrivial solutions for the
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stationary velocity, but no bifurcation with respect to the
parameter Q2. In conclusion, our theoretical investigations
provide us with three different hypotheses for the active
motion of biological agents:

1. d(v) = d2v
2 with subcritical take-up of energy, i.e.

Q2 < 1;
2. d(v) = d2v

2 with supercritical take-up of energy, i.e.
Q2 > 1;

3. d(v) = d2v
ξ with 1 ≤ ξ ≤ 2 and Q2 > 1.

3 Experimental observations

3.1 Experimental setup

In order to test which of the above outlined hypothe-
ses regarding active biological motion is compatible with
real biological motion of bacteria, we proceed as follows:
bacterial cells are placed in a shallow medium that can
be approximated as a two-dimensional system. Keeping
all other conditions constant, we vary the nutrition con-
centration in that medium so that three different nutri-
tion levels are maintained: low, medium, and high. We
then measure the velocity distribution of the bacteria (as
described below) in response to these nutrition levels.
Eventually, we do a maximum likelihood estimation of the
parameters describing the velocity distributions and com-
pare these with the hypotheses made. Ideally, we would
expect that the experimental velocity distributions could
be better fitted by one of the hypotheses, while the others
could be rejected.

When it comes to the specific setup of the experi-
ments, we soon realize that the devil is in the details.
In order to be conform with our hypotheses, we would
need to test bacteria that move like Brownian particles
in the limit of low nutrition, while performing a rather
directed motion for high nutrition concentration, with
arbitrary changes in the direction. Instead, most bacte-
ria, Escherichia coli being a prominent example, move
quite differently, i.e. their movement switches between
tumbling and nontumbling phases [14]. Tumbles denote
temporary erratic movements, whereas during the non-
tumbling phases, called runs, bacteria execute a highly di-
rected, ballistic-like motion. Both of these phases describe
a different form of active motion, but do not differ in the
mechanism or level of energy supply. Precisely, the flagel-
lar propellers responsible for the forward motion [15–18]
rotate with the same efficiency during the tumbling and
non-tumbling phases [19].

In order to avoid an abritary averaging over these dif-
ferent forms of active motion, we have chosen to study
bacteria that do not tumble at all, specifically the non-
tumbling strain M935 of Salmonella typhimurium [20,21].
This type of bacterial cells has another advantage in that it
does not perform chemotaxis, i.e. it does not follow chem-
ical gradients or gradients in the nutrient concentration,
which would bias the motility towards directed motion.
But mutant strain is capable to take up the nutrients at
the same rate as normal S. typhimurium.

For the medium, we have realized an almost two-
dimensional setup, keeping in mind that three-dimensional
motion results in a projection error of the trajectories. Fur-
ther, we need to ensure that both the temperature T and
the viscosity η of the medium is kept constant over time
and across setups with different nutrient concentrations.
These were prepared as follows:
Medium 0 Used as a reference case where no additional

nutrients are available for the bacteria. It consists of
a phosphate-buffered saline working solution (PBS),
with 5 protein.

Medium 2 A nutritionally rich medium which contains of
lysogeny broth (LB), a substance also primarily used
for the growth of bacteria.

Medium 1 A medium with an intermediate concentration
of nutrients. It contains an mixture of medium 0 and 2,
equally.

We assume that the nutrients are equally dissolved in the
whole medium and that nutrient concentration differences
can be neglected. Further, the depletion of nutrients due
to consumption of the bacterial cells can be neglected.
Hence, we assume that the take-up of energy per time
unit, q0 is constant and equal for all bacterial cells, but
may change dependent on the nutient concentration, i.e.
q0 needs to be determined for each of the three different
settings as described below.

3.2 Measuring trajectories and velocities

In order to observe trajectories, bacteria of the same
Salmonella strain were grown (details see Appendix A)
and were put into the three different media. For each
medium, we recorded two movies at different times: (i)
after the bacteria were put into the different media (ini-
tial condition), and (ii) after about one hour, i.e. after a
sufficiently long time of relaxation, which ensures a sta-
tionary velocity distribution. We had to assume that the
cells would adapt rather slowly to the new environment.
Appendix B presents the details of how the trajectories
were recorded.

As the trajectories of Figure 1 verify for both the initial
and the stationary conditions, Salmonella typhimurium
swim in quasi-ballistic manner through the fluid. Their
trajectories are mostly slightly curved. Initially, at least
two trajectories are very strongly curved where bacteria
seem to swim in narrow circles. The videos make clear that
bacteria swim in an isotropic manner and with a mean
velocity. It is remarkable that the bacteria maintain their
quasi-ballistic movement even after more than one hour,
despite not being able to take up energy from the medium.

Given the trajectories measured at a time resolution
of 0.11 s, we are able to calculate the velocity vector in
the two-dimensional space as

vk
tj

=
rk

tj
− rk

tj−1

tj − tj−1
(14)

where k denotes the bacterial cell and j refers to the time
step. The velocity distributions are shown in Figure 2 both
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Fig. 1. (Color online) All bacterial trajectories recorded in
medium 0 (no nutrients) at times t0 = 0 min in (top, 54 tra-
jectories) and tend = 84 min (bottom, 61 trajectories). At both
times, the movie length evaluated was about 17 s with a time
resolution of 0.11 s, i.e. about 700 frames per movie. The points
of the trajectories show 26 of these frames. The rectangular
boundaries are a consequence of the camera calibration.

for the initial situation (blue dots at t0) and after a suffi-
cient long time of relaxation (red dots at tend) and for the
three different media used. Each of the samples contains
about 1.500 data points.

In all cases, we observe the formation of rings of differ-
ent radii, indicating that bacteria swim at comparable ve-
locities in the time intervals of observation and that their
motion is isotropic, i.e. that they do not have a preferrred
direction of motion. Most interesting, compared to the ini-
tial distribution the rings either contract (medium 0) or
expand (medium 1, 2) in diameter, which means that the
bacteria have adjusted their individual velocities accord-
ing to the nutrient concentration available. This will be
systematically investigated in the next section. The avail-
able data do not allow us to predict if the rings completely
contract (medium 0) or further expand (medium 1, 2)
their extension.

4 Investigating the velocity distribution

4.1 The Fokker-Planck perspective

The experiments described above have clearly shown that
bacteria adjust their velocity dependent on the nutrient

Fig. 2. (Color online) Snapshots of the two-dimensional ve-
locity distributions around times t0 (blue dots) and tend (red
dots), shown for the three different media: (top) medium 0,
(middle) medium 1, (bottom) medium 2. Each of the samples
contains about 1.500 data points.

available in the medium. It remains (i) to quantify this
influence, and (ii) to compare the outcome with the hy-
pothesis made on the velocity dependent transfer of in-
ternal energy. Such a comparison cannot be made on the
level of individual trajectories, but only on the level of the
ensemble average.

Hence, in the following we use the two-dimensional
velocity distribution p(v, t), which follows a Fokker-
Planck equation [10,11] that corresponds to the Langevin
equation (6):

∂p(v, t)
∂t

=∇v

[
γv

(
1 − q0

γ0

d(v)
[c + d(v)] v2

)
v p(v, t)

+S ∇vp(v, t)] . (15)
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This Fokker-Planck equation is based on the assump-
tion that the internal energy depot has reached a
quasistationary equilibrium fast enough. If we assume the
general hypothesis d(v) = d2v

ξ and ṗ = 0, we find for the
stationary velocity distribution

p0(v) = C

(
1 +

d2v
ξ

c

) q0
ξmS

exp
(
− γ

2S
v2

)
, (16)

where the normalization condition C is defined through
the condition 1 =

∫∫
p0(v)dv. For ξ = 2 the SET model

results and the stationary solution, equation (16), can be
written in first-order expansion as:

p0(v) ∼ exp
(
− γ

2S
[1 − Q2] v2 + · · ·

)
. (17)

As has been discussed in detail [10], for Q2 < 1 we find a
unimodal Maxwell-like velocity distribution, whereas for
Q2 > 1 a crater-like velocity distribution results in two-
dimensional systems.

The amount of data measured does not allow us to
reasonably reconstruct the two-dimensional velocity dis-
tribution by means of density approximations. Therefore,
in the following, we restrict ourselves to the distribution
of the speed which contains sufficient information to test
our hypotheses given. To find the speed distribution p0

a(v)
in two dimensions we integrate over a disk B(v′):

P 0(|v| < v′) =
∫∫

B(v′)
p0(v)dvxdvy

= 2π

∫ v′

0

p0(v)dv =
∫ v′

0

p0
a(v)dv (18)

and find

p0
a(v) = Ca2πv

(
1 +

d2v
ξ

c

) q0
ξmS

exp
(
− γ

2S
v2

)
. (19)

When comparing this equation with equation 16, one
should note the additional prefactor v. So, for the max-
imum of p0

a(v), instead of the compact expression (12)
resulting from p0(v), we find a rather intricate expression
which is not reprinted here. Instead, the stationary speed
distribution is plotted in Figure 3 for the SET model and
different values of Q2. Different from the noticable change
between unimodal and crater-like shape of the stationary
velocity distribution p0(v), we observe only a shift in the
maximum of p0

a(v) when Q2 changes from subcritical to
supercritical values. At second view, one notices that the
ascent of p0

a(v) changes from a linear increase for Q2 < 1
to an nonlinear increase vn for Q2 > 1, where n is an
integer.

Specifically, we do not need to explicitely derive the
maximum of the speed distribution (which is also known
as the most probable value and different from, e.g., the
expecation value or the average value), because we want
to compare the theoretical and the experimental distribu-
tions pa(v) rather than their extreme values. These distri-
butions, in addition to their mean value, are further char-
acterized by their width, given by the variance σ2 = S/γ.

Fig. 3. (Color online) p0
a(v), equation (19), for ξ = 2 and

different values of Q2: (blue) Q2 = 0.35, (green) Q2 = 1, (red)
Q2 = 3.5. The speed v is given in abitrary units.

Hence, we need to determine the strength S of the stochas-
tic force in relation to the friction coefficient γ.

4.2 Determining the noise intensity

In statistical physics, the strength of the stochastic force
is related to the thermal velocity of microscopic particles,
e.g. molecules or Brownian particles, via the fluctuation-
dissipation theorem, which yields for ideal gases S/γ =
kBT/m, where kB is the Boltzmann constant. If one
wishes to apply the same relation also to bacteria like
Escherichia coli or Salmonella typhimurium at about
T = 300, with a bacterial mass of m ≈ 10−15, one arrives
at σ = 2000 μm/s, which about two orders of magnitude
larger than the average velocity for such bacteria. Given
the rather complex nature of bacterial motion described
above, this discrepancy is not really surprising.

Therefore, in [4] a different method to determine S/γ
was proposed, which is based on the speed autocorrelation
function

gv(τ) =
〈v(t1)v(t2)〉
〈v(t1)v(t1)〉 ; τ = |t2 − t1| . (20)

The calculation of gv(τ) needs a formal solution of the
Langevin equation for the speed v(t). This was provided
in [4] for a different model applied to the migration of
human granulocytes. It postulates a stationary speed vs

and assumes, different from our ansatz of equation (6),

v̇i = −γvi

[
1 − vs

v

]
+
√

2S ξi(t). (21)

It was noted that in this equation an additive Gaussian
random noise is physically and mathematically problem-
atic as it allows in principle negative speed values. As
possible solution, one can consider appriopriate bound-
ary conditions or a different definition of the velocity-
dependent friction term as suggested recently [22].

In the following, we still use equation (21), but point
out that this is only an approximation in the limit of small
noise with respect to the finite stationary speed. The sta-
tionary solution for the speed autocorrelation function is
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reached when the times t1 and t2 are larger than the char-
acteristic time γ−1, which results into

〈v(t1)v(t2)〉 = v2
s +

S

γ
exp {−γ|t2 − t1|} . (22)

In the limit τ → ∞, the speed autocorrelation function
gv(τ) becomes a constant, gv = v2

s/[v2
s + S/γ], which can

be measured experimentally, to obtain:

σ2 =
S

γ
= v2

s

(
1 − gv

gv

)
. (23)

[4] found for human granulocytes, which are much larger
than the bacterial cells investigated here, gv = 0.82 and
from the measured speed distribution the maximum value
vs = 17 μm/min.

As mentioned, our Langevin equation uses a different
ansatz for the velocity-dependent friction function, which
does not allow us to obtain a simple closed form for gv.
However, we can still apply the results of [4] arguing that
the speed of bacteria in the stationary limit reaches values
around vs. Hence, in the vicinity of vs, we linearize the
dependence on v, which is 1/v2, to 1/v and use for vs the
expression given by equation (12) for the SET model, or
by equation (13) for 1 < ξ < 2. This approximation allows
us to use equation (23) to determine S/γ provided we can
obtain vs and gv from our own experiments.

4.3 Parameter estimation

With these considerations, we have all ingredients together
to compare our experimental data with the theoretical
predictions. In detail. we proceed as follows:

1. For the three media described above (Sect. 3.1), we cal-
culate the absolute velocities vk

aj of each cell k tracked
during the time step j. For each medium, two measure-
ments were taken: (a) initially, time t0, (b) after suffi-
ciently long time, about one hour, time tend (see also
Fig. 2 for the two-dimensional velocity distributions).
From these samples, which contain about 1.500 data
points each, we calculate the densities pexp

a (v) using
the Sheather-Jones method of selecting a smoothing
parameter for density estimation [23] in R. The results
are shown by the blue curves in Figure 4 for tend.

2. From the 6 different density plots, we calculate the
maximum vs of the experimental speed distribution
pexp

a (v). The results are given in Appendix C: Ta-
ble C.1. For tend, we also calculate the speed auto-
correlation function gv, which is shown in Table C.1 as
well.

3. Eventually, we apply the maximum-likelihood estima-
tion (MLE) to find out, which of the still underter-
mined parameters fit best the experimental densities
pexp

a (v). The parameter details are presented in Ap-
pendix C: Table C.2, while the resulting density plots
for the hypotheses ξ = 2 and 1 < ξ < 2 are shown by
the red curves in Figure 4, which are to be compared
with the experimental findings (blue curves).

In the following, we further discuss these findings. In Ta-
ble C.1, one notes slight differences in vs(t0) for the differ-
ent media. This indicates that at time t0, right after being
put into the medium, the bacterial cells already started to
adjust to the nutrient concentration in the media. The
higher the concentration, the higher vs. This can be also
confirmed at tend, after about 80 min. The differences be-
tween medium 1 and 2 (middle and high concentration) is
rather small both for at t0 and tend, indicating that there
seems to be a saturation in converting internal into ki-
netic energy. This saturation can be caused by intracellu-
lar processes (e.g. number of receptor proteins available),
but is not further discussed here. Noticable, in medium 0
(no nutrients), vs drops down considerably compared to
the initial value, which also indicates that the bacterial
cells respond to the available energy by adjusting their
speed.

We further find that the speed autocorrelation func-
tion gv returns comparable values for all three media
(0.92–0.98) which are much larger than for granulocytes,
because we have much smaller and more motile cells. The
estimated standard deviations σ =

√
S/γ range between

5.49 μm/s (medium 0) and 5.83 μm/s (medium 2) and are
quite similar for all media, because the temperature and
the viscosity of the media are kept as constant as possible.

The actual width of the speed distribution, however,
does not just depend on S/γ but also on the parame-
ters of the internal energy depot and is therefore larger
than σ. In order to calculate the parameter values that
maximize the likelihood, we restrict ourselves to reduced
parameters. Keeping in mind that σ2 = S/γ is given
by equation (23) and the control parameter is defined as
Q2 = (q0d2)/(γmc), we can rewrite the leading terms in
equation (19) as:

(
1 +

d2v
ξ

c

) q0
ξmS

exp
(
− γ

2S
v2

)
=

(
1 +

d2

c
vξ

) Q2
ξσ2

c
d2

× exp
(
− v2

2σ2

)
(24)

which reduces the number of parameters to be deter-
mined to (d2/c) and Q2, while σ2 is given by the exper-
iments. ξ on the other hand is either set to 2, in case of
the SET model, or used as a free parameter. Given the
observations v1, v2, . . . , vn the MLE then determines for
which values Θ of these parameters the likelihood func-
tion L(v1, v2, . . . , vn, Θ) is maximised, i.e. what are the
most likely model parameters that fit the experimental
data best, conditional on the model used.

In order to fully appreciate the MLE, we have to notice
that no further “logical” assumption are made, i.e., each
for experimental distribution the MLE returns that set of
parameter values that fits this particular distribution best.
Precisely, we receive most likely a different set of values
for each of the given distributions. To put it the other way
round, from all the observed distributions we can obtain
a range of parameter values that is compatible with the
experimental findings, rather than a precise value that is
met by all observations.
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Fig. 4. (Color online) (blue curves) estimated densities pexp
a (v) obtained from experimental measurements of the speed (absolute

velocity) v (μm/s) at time tend. (Red curves) calculated densities pa(v), equation (19) using the parameters of the MLE,
Table C.2. (top row) SET model with ξ = 2, (bottom row) 1 < ξ < 2. (Left figures) medium 0, (middle figures) medium 1,
(right figures) medium 2.

With this in mind, we can interpret Table C.2 as fol-
lows: for both hypotheses, the SET model with ξ = 2 and
the general model with 1 < ξ < 2, we find from the ob-
servations a “reasonable” (but different) set of parameters
that supports these hypotheses. This is also confirmed by
the fits shows in Figure 4. I.e., we cannot reject one of
these hypotheses as they both match the experimental
findings. However, we did not observe a subciritical take-
up of energy for the SET model, as we did not find values
Q2 < 1 for the given observations. The latter conclusion
needs a further explanation: in medium 0, we made no
nutrients available, so q0 and Q2 should both be zero.
However, the bacteria were grown in a medium that con-
tained nutrients and thus, at time t0, started their motion
with a filled energy depot est, equation (3), that changes
over time only rather slowly as vs is adjusted. Hence, the
value Q2 for medium 0 at time tend reflects the value of
the internal energy depot at time tend. As the observa-
tions in Figures 2, 4 and Table C.1 show, even after a long
time the bacteria still have energy enough to move with a
non-trivial speed vs despite the fact that no nutrients are
provided. But there is a clear trend toward slowing down
as the values indicate.

As second interesting observation regards the decrease
of the d2/c values with increasing nutrient concentration
(comparing medium 1 and 2), for both the SET and the
ξ model. The ratio M = d2v

2
s/c reflects the proportion

of energy bacteria spend on the two different processes,
active motion and metabolism. If more energy becomes
available (from medium 1 to 2) , this does not necessarily
lead to a speed-up – the speed was kept almost constant,
but the additional energy is likely spent on metabolism
(and growth). Hence M decreases from 1.50 to 0.62 for
the SET model, and from 0.74 to 0.23 for the ξ model,
while the take-up of energy q0/γ0 has increased from 2500
to 4140 for the SET model, and from 5230 to 6800 for the
ξ model. So, in conclusion, our model suggests that bac-
teria indeed take up more energy from the environment if
more nutrients are provided, but the ratio spent on active
motion is decreased, while the ratio spent on metabolism
is increased.

5 Conclusions

The aim of this paper is twofold: (i) we investigate to
what extent a theoretical model of active motion, namely
that of “active Brownian particles”, is compatible with
experimental findings from bacterial cell motility, (ii) we
test the impact of available energy in the environment,
varied by the nutrient concentration in the medium, on
the speed distribution of bacterial cells.

For the discussion one has to keep in mind that
our results have been obtained for a particular strain of
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Salmonella typhimurium (see Sect. 3.1 and Appendix A)
and cannot easily generalized to other bacterial cells. This
is because of the rather complex cellular motion of bac-
teria which, in many cases, is comprised of tumbling and
nontumbling phases (see Sect. 3.1). Hence, for the motion
of other types of bacteria we refer to the extensive litera-
ture [15–17,24–29].

Comparing the experiments with moving S. ty-
phimurium and the theoretical model, we demonstrated
that the measured speed distribution can indeed be
matched by the analytical prediction. This holds for both
tested hypothesis, (a) the SET model with ξ = 2 and (b)
the ξ model, which allows an adjustment of the exponent,
1 < ξ < 2. We further confirmed that, under the give ex-
perimental conditions, bacteria move in the supercritical
regime, Q2 > 1. However, we were not able to observe as
subcritical behavior with Q2 < 1 as predicted for the SET
model [1,12]. This can be probably explained by the fact
that even at the end of our experiments bacterial cells had
still enough internal energy available from their growing
period, to move with a nontrivial speed. But we could no-
tice a considerable slowing down of 25 with no additional
nutrients.

Regarding the impact of available nutrients, we found
that the speed of bacteria did not increase in proportion to
it. Instead, we observed a more or less constant speed, even
if the nutrient concentration was doubled. From calculat-
ing the model parameters for both cases, we conjecture
that indeed more energy was taken up by the cells, but this
was used for other internal processes such as metabolism
and growth.

In conclusion, the experiments carried out with bacte-
rial cells moving in media of three different nutrient con-
centrations could confirm the theoretical predictions and
thus indirectly also support the assumptions made for our
model of active Brownian particles. However, particular
details of the choice of parameters cannot be fully resolved
by our experiments – which is not very surprising. This
regards for example the “correct” value of the exponent ξ
for the speed, vξ. Our findings support values between 1.67
and 2.0 if a take-up of energy from the medium was pos-
sible. The differences between the two assumptions are
not so much in the values of ξ but in the theoretical con-
sequences. In the case of the SET model, there is a clear
bifurcation which allows to distinguish between subcritical
(Brownian motion like) behavior, and supercritical behav-
ior characterized by a directed motion. It would still be
interesting to find microorganisms for which these regimes
could be determined. Our experiments had to restrict to
the conditions explained above and therefore do not sup-
port this distinction.

The authors are deeply indebted to Wolf-Dietrich Hardt for
providing access to, and use of, his laboratory at the Insti-
tute of Microbiology of ETH Zurich, where V.G. could carry
out the experiments. We further gratefully acknowledge sci-
entific discussions with Howard C. Berg, Wolf-Dietrich Hardt
and Markus C. Schlumberger.

Appendix A: Details of bacterial probes

The chemotaxis-deficient Salmonella strain M935
(SL1344; cheY::Tn10, [20,21]) was grown under mild
aeration for 12 h/37 ◦C in LB medium containing 0.3 M
NaCL. The culture was diluted 1:20 into fresh medium
and grown for another 4 h/37 ◦C. Bacteria were pelleted
by centrifugation (8500 rpm, 5 min, 4 ◦C) and resus-
pended in phosphate-buffered saline (PBS). The sample
was centrifuged again and the bacteria were resuspended
either in PBS (probe A) or LB medium (probe B). From
these two probes, samples for live imaging of the bacteria
were prepared as follows:

1. probe A was diluted 1:50 in PBS containing 5 (BSA)
and transferred to a glass-bottom dish for imaging;

2. a glass-bottom dish was rinsed with PBS/5 of bacteria
to the glass surface. PBS/BSA was removed and a 1:50
dilution of probe B in LB was added to the dish for
imaging;

3. probe B was diluted 1:50 in a 1:1 mixture of PBS/5
(final BSA concentration: 2.5.

All solutions for dilution of probes A and B were pre-
warmed to 37 ◦C.

Appendix B: Details of data evaluation

For time lapse microscopy the different samples were
mounted onto a heated specimen holder (37 ◦C) on a Zeiss
Asiovert 200 m inverted microscope. Time series of phase
contrast images were recorded using a Plan Neofluoar 20x
(NA 0.5) objective at a rate of ca. 20 images per second.

Motile bacteria were tracked using Particle tracker
software [30] as plugin on the pure Java image process-
ing program ImageJ [31]. Only trajectories appearing over
more than 30 time frames were considered. Selected trajec-
tories were manually verified for correct tracking (Wrong
tracking occurred in cases of crossings between identified
bacteria and was removed from the trajectories). These
criteria for track evaluation were equally applied on all
detected trajectories. About 3 h of eye selection are nec-
essary to obtain about fifteen to twenty tracks. The eval-
uation of the data was carried out by an R-script written
by the authors.

Appendix C: Details of parameters obtained

Table C.1. Maxima vs (10−6 m/s) of the experimental speed
distribution pexp

a (v) taken initially (t0) and after long time
(tend) for 3 different media (see Sect. 3.1). gv(tend) gives the
value of the speed autocorrelation function measured experi-
mentally at time tend.

Medium vs(t0) (μm/s) vs(tend) (μm/s) gv(tend)

0 24.2 19.8 0.920
1 27.8 38.8 0.979
2 29.3 39.5 0.981
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Table C.2. Parameter values of pa(v), equation (19), as estimated by MLE for the SET model, ξ = 2 (no-starred values) and
for the general model, 1 < ξ < 2 (starred values) at time tend.

Medium d2/c ((s/(μm)2) Q2
�d2/c� ((s/(μm)2) �Q�

2 ξ

0 2.3 × 10−3 1.75 33.3 × 10−4 8.50 1.52
1 1.0 × 10−3 2.63 9.5 × 10−4 4.97 1.82
2 0.4 × 10−3 1.70 5.1 × 10−4 3.47 1.67
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