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Abstract Anti-inflammatory activities of statins in athero-
sclerosis have been well documented by both basic
research and clinical studies. Statins have been introduced
in the 1980s as 3-hydroxy-3-methylglutaryl coenzyme A
reductase inhibitors to block cholesterol synthesis and
lower cholesterol serum levels. In the last three decades,
statins have been shown to possess several anti-
inflammatory and antioxidant activities resulting in the
beneficial reduction of atherosclerotic processes and
cardiovascular risk in both humans and animal models.
Inflammatory intracellular pathways involving kinase
phosphorylation and protein prenylation are modulated
by statins. The same intracellular mechanisms might also
cause statin-induced myotoxicity. In the present review, we
will update evidence on statin-mediated regulation of
inflammatory pathways in atherogenesis.
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Introduction

Cardiovascular diseases are the leading cause of death and
disability in the adult population of developed and developing

countries [1–3]. In the majority of patients, clinical
cardiovascular disease is the final step of the inflammatory
state characterizing atheroprogression. Stable advanced
atherosclerotic plaques mainly induce chronic arterial
lumen stenosis and ischemia in peripheral tissues. This
condition causes chronic organ remodeling and alters their
functions. In the heart, chronic hypoxia can induce
congestive heart failure (CHF). On the other hand,
unstable plaques frequently progress to rupture with the
consequent exposure to the blood lumen of intraplaque
prothrombotic material. In that case, thrombus causes the
sudden complete occlusion of the arterial lumen, and
peripheral tissues are exposed to acute ischemia. If
collateral arteries are not present and acute ischemia is
prolonged, tissue necrosis can occur with dramatic con-
sequences in the heart and brain. Several cardiovascular
risk factors have been associated with CVD. More than
50 years ago, this concept was introduced by the
Framingham Heart Study, with the identification of major
coronary heart disease (CHD) risk factors, such as
hypertension, hyperlipidemia, smoking, and diabetes [4].
However, although highly sensitive, these traditional
factors showed a very low specificity [5–7]. Therefore,
inflammatory soluble mediators, which have been shown to
play a central role in all phases of atherosclerosis, have been
investigated [8–10] with some preliminary encouraging
results. In particular, the American Heart Association
(AHA/CDC) has recently suggested that the high sensitivity
dosage of the acute phase reactant C-reactive protein (CRP)
might be useful when physicians are undecided about
indications of a more intensive treatment for patients who
are considered at intermediate cardiovascular risk [11, 12].
At present, the most promising therapeutic strategies to
reduce cardiovascular diseases are represented by the
selective blockade of both “classical” and new emerging
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factors promoting atherogenesis. Statins (3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) reductase
inhibitors) should be considered as anti-atherosclerotic
drugs capable of modulating different factors. Basic
research and clinical studies have shown that statins
lower LDL cholesterol levels and inhibit atherosclerotic
inflammatory processes. Little is known on the possible
statin-mediated molecular mechanisms to reduce cardio-
vascular risk. In the present review, we will focus on
selective anti-inflammatory activities of members of
statin family and the statin-mediated modulation of
intracellular pathways in both immune and vascular
cells, which play a crucial role in atherosclerosis.

Statins in cardiovascular diseases

The first identification of a fungal metabolite (compac-
tin) blocking cholesterol synthesis has been performed
in 1971 by Endo and coworkers [13]. In 1976, the
“Compactin Development Project” composed by several
experts started. Starting from 1978, a new statin (called
lovastatin) has been discovered and developed. In 1980s,
statins have been shown to lower LDL cholesterol levels
in patients with hypercholesterolemia [14–18]. These first
impressive results induced the US Food and Drug
Administration to approve the commercial us of statins
in 1986 [19]. After lovastatin, three generations of statins
have been commercially introduced: pravastatin and
fluvastatin (first generation), atorvastatin and simvastatin
(second generation), and rosuvastatin and pitavastatin
(third generation). Cerivastatin was also approved for the
marketplace but was eventually discontinued for its
myotoxic effects [13]. Statins have been tested in primary
prevention for acute cardiovascular events in both high
cardiovascular risk patients (diabetes, hypertension, and
dyslipidemia) and subjects with low or no CVD risk [20–
25]. For instance, aggressive treatment of diabetic sub-
jects with statins has been shown to reduce coronary
events and stroke [21–23]. This was also observed in
diabetic patients with dyslipidemia [26]. The principal
primary prevention study in hypertensive patients (Anglo-
Scandinavian Cardiac Outcomes Trial-Lipid Lowering
Arm (ASCOT-LLA)) showed that atorvastatin reduces
the relative risk of primary CHD [27]. On the other hand,
The Intervention Trial Evaluating Rosuvastatin (JUPITER, a
large multinational, long-term, double blind, and randomized
clinical trial) showed that treatment with rosuvastatin signif-
icantly reduces the incidence of major cardiovascular events
in healthy subjects without hyperlipemia but with elevated
high-sensitivity CRP levels [28]. Statins have been also
investigated in secondary prevention of cardiovascular
diseases. Results have been reported in patients with stable

coronary artery disease, acute coronary syndrome, stroke,
or transient ischemic attack [29–36]. The Scandinavian
Simvastatin Survival Study (4S), performed in patients
with angina pectoris or previous myocardial infarction and
high-serum cholesterol levels, demonstrated that long-
term treatment with simvastatin improves survival and
decreases cardiovascular events [37]. The Heart Protection
Study (HPS; a primary and secondary prevention study)
showed that simvastatin significantly reduced cardiovas-
cular mortality and vascular acute events in 20,000
patients with coronary or peripheral vascular disease
without hyperlipidemia [38]. The Greek Atorvastatin and
Coronary Heart Disease Evaluation, Treating to New
Targets (TNT), Aggressive Lipid-Lowering Initiation
Abates New Cardiac Events, and Incremental Decrease in
Endpoints Through Aggressive Lipid Lowering (IDEAL)
studies confirmed a significant decrease of acute cardio-
vascular events in patients with stable CHD [39, 40]. The
Pravastatin or Atorvastatin Evaluation and Infection
Therapy, Myocardial Ischemia Reduction with Aggressive
Cholesterol Lowering (MIRACL), and IDEAL-Acute
Coronary Syndromes studies demonstrated the benefits
of high-dose-dosage atorvastatin therapy in patients with
acute coronary syndromes [40]. In patients with heart
failure, the efficacy of statins is still a matter of dispute
[41, 42]. In the GISSI-HF trial, rosuvastatin did not reduce
death or admission to hospital for cardiovascular reasons
in patients with chronic heart failure [42]. The CORONA
study partially confirmed these results showing only a
reduction of the number of cardiovascular hospitalizations
[43]. Statins also improved survival and cardiovascular
events in patients after heart transplantation or percutane-
ous coronary interventions [41] promoting coronary
collateral circulation, a modest antihypertensive effect
and improving glucose metabolism and insulin sensitivity
[44–46]. Although few controversies remain, these clinical
studies indicate that: (1) statins should be considered as
very promising anti-atherosclerotic drugs (also indepen-
dently on lowering cholesterol) for secondary prevention
in all patients and for primary prevention in high risk
individuals (Fig. 1). (2) In persons without traditional
cardiovascular risk factors, but with elevated hs-CRP
levels, the use of statins might be indicated in the near
future. (3) The marked cardiovascular risk reduction might
be also related to the direct anti-inflammatory and
pleiotropic properties of statins [47–59]. The National
Cholesterol Education Program (NCEP) Adult Treatment
Panel (ATP) III recommended the use of statins for
the secondary prevention of cardiovascular diseases as
the first-line choice drug for lowering LDL-cholesterol in
the high-risk patients [60]. This group includes individuals
with established coronary heart disease and diabetes
mellitus or with a Framingham 10-year CHD risk greater

128 Semin Immunopathol (2009) 31:127–142



than 20%. For primary prevention, the NCEP ATP III
recommended to treat individuals with metabolic syn-
drome and diabetic patients with moderate cardiovascular
risk (Framingham 10-year CHD risk of 10–20%) [61].
Treatment with any of the statin family has been
associated with transaminase elevations in comparison to
placebo [62]. Despite the low frequency (1–2%) of raised
asparatate or alanine aminotransferase, these adverse
effects are completely reversible and almost never prog-
ress to hepatitis or liver failure [63]. A very low risk of
neuropathy and gastrointestinal discomfort has been also
reported. However, the main risk of statin treatment
derives from myotoxicity which ranges from myalgias,
creatine kinase elevation to the more serious rhabdomyol-
ysis. This adverse effect has been reported in 1–7% of
patients under statin therapy [64]. Itagaki and coworkers
recently suggested that myotoxicity could be induced by
the same mechanisms governing statin beneficial anti-
inflammatory activities. In particular, RhoA dysfunction
due to loss of lipid modification with the mevalonate
product geranylgeranylpyrophosphate (GGPP) has been
observed in statin-induced skeletal muscle toxicity [65].
Further investigations are needed to better clarify the role
of intracellular signaling pathways in myotoxicity. Despite
these few adverse effects, statins are generally well
tolerated. Both second and third generations of statins have
been shown to reduce LDL cholesterol more effectively

than first generation without increasing toxicity [66]. In the
following, we will discuss on the selective immunomod-
ulatory properties of different statins (Table 1) [67].

Lovastatin

Together with pravastatin and fluvastatin, lovastatin is
included in the first generation of statins. Lovastatin repre-
sents the drug with the lowest potency and is necessary to use
high doses to observe a significant reduction of LDL
cholesterol levels [68]. However, lovastatin (together with
simvastatin and pravastatin) is less expensive, and it is
available in generic formulation. Clinical studies have also
confirmed the efficacy of lovastatin in both primary and
secondary prevention of cardiovascular diseases. The
AFCAPS/TexCAPS study showed that daily treatment with
20–40 mg lovastatin-reduced incidence of acute major
cardiac events in comparison with placebo. The study was
performed in a middle-aged or elderly population (n=6,605)
without symptomatic cardiovascular disease [69]. The
beneficial effects of lovastatin were confirmed by the
ACAPS study that enrolled 919 subjects asymptomatic for
clinical cardiovascular disease but with evidence of early
carotid atherosclerosis [70]. On the other hand, secondary
prevention studies showed that 2–2.5-year therapy with
lovastatin-reduced progression of atherosclerosis in dyslipi-
demic patients with CHD [71–73]. Lovastatin has been also

Normal Artery Post-ischemic
diseases

Acute ischemic
events

Stable Plaque

Unstable Plaque

STATINS STATINS

?

Mechanical
reperfusion procedures

Primary prevention Secondary prevention

Fig. 1 Statin treatment reduces the risk of acute cardiovascular
events. Several studies support that statins inhibit atherosclerotic
plaque progression and the risk of rupture (primary prevention). These
beneficial effects are mediated by statin-induced cholesterol reduction
and statin-mediated “pleiotropic” activities. In secondary prevention,
the use of statins has been suggested by promising results. However,
the prompt restoration of antegrade flow in the infarct-related coronary

artery, whether accomplished pharmacologically or mechanically,
remain the mean therapy for improving both left ventricular systolic
function and survival during the subsequent hours after the acute
myocardial infarction. Further investigations are needed to investigate
the possible use of statins to prevent post-ischemic diseases (such as
CHF)

Semin Immunopathol (2009) 31:127–142 129



shown to induce in vitro anti-inflammatory activities in
different cell types at lower doses. Lovastatin is a potent
immunomodulatory and neuroprotective drug. It strongly
reduces the migration of monocytes and lymphocytes across
in vitro-cultured human blood–brain barrier endothelial cells
[74]. Lovastatin also reduces apoptosis and downregulates
CD40 expression in TNF-alpha-treated cerebral vascular
endothelial cells and in IFN-gamma-treated microglial cells
[75, 76]. Lovastatin-induced reduction of transendothelial T
cell migration is dependent on the inhibition of rho pathway
[77]. Lovastatin directly modulates immune cell functions by
both disrupting or upregulating chemokine and chemokine
receptor expression [78, 79]. Furthermore, lovastatin inhibits
maturation and functional changes of bone marrow-derived
dendritic cells [80]. Lovastatin also increases macrophage
apoptosis involving the Rac1/Cdc42/JNK pathways [81].
Taken together, these studies support lovastatin as an
immunomodulatory therapeutic agent in atherosclerosis and
its cerebral complications.

Pravastatin

Pravastatin is the most rigorous tested drug in the “first
generation” of statins. Two important primary prevention
studies (WOSCOPS and PROSPER) indicated that pravas-
tatin treatement (40 mg/daily) reduced LDL-cholesterol
levels, cardiac mortality, and coronary events in comparison
with placebo [82, 83]. ALLHAT-LLT study (enrolling
10,355 patients) did not confirm pravastatin-induced reduc-
tion in coronary events or mortality [84]. These different
results in primary prevention were probably due to the
lower reduction of LDL cholesterol levels (−28%) in
ALLHAT-LLT study. Furthermore, a strong limitation was
represented by the populations, which was exclusively
enrolled in developed west countries. To investigate the
efficacy of pravastatin in primary cardiovascular prevention
in another population, the MEGA study was planned in
Japan. Treatment with a low dose (10–20 mg) of pravas-
tatin reduced the risk of coronary heart disease in Japan
similarly to that observed in Europe and the USA in the
presence of higher doses [85]. Differently from fluvastatin
or simvastatin (that are “lipophilic”), pravastatin is a
“hydrophilic” compound as the new rosuvastatin and
almost not metabolized by the cytochrome P450 complex
[86]. Probably for this property, treatment with pravastatin
induced different effects in vascular cells. Wiesbauer and
coworkers showed that among six different statins, only
pravastatin does not decrease PAI-I production in human
endothelial cells and smooth muscle cells [87]. Further-
more, pravastatin increases E-selectin and vascular cell
adhesion molecule (VCAM)-1-induced expression on vas-
cular endothelial cells stimulated with TNF-alpha or LPS
[88]. This study also showed that treatments with simvas-T
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tatin or fluvastatin increase adhesion molecule expression
in TNF-alpha-stimulated endothelial cells [88]. Therefore,
statins might increase TNF-alpha-mediated proinflamma-
tory activities in endothelial cells. Conversely, pravastatin
has been shown to protect mouse cerebral endothelial cells
against ceramide-mediated cytotoxicity through vascular
endothelial growth factor upregulation and the activation of
hypoxia-inducible factor-1 [89]. Furthermore, pravastatin
inhibits the production of monocyte chemoattractant protein
1 (MCP-1), interleukin (IL)-6, and IL-8 in irradiated
microvascular endothelial cells [90]. These beneficial
effects were persistent up to 14 days after irradiation,
suggesting that pravastatin could be considered a very
promising agent against endothelial dysfunction in patients
treated with radiation therapy. These controversial data
suggest a still unclear immunomodulatory role of pravas-
tatin on vascular cells. Recent evidence also showed a
possible role of pravastatin in vascular endothelial cell
protection from oxidative stress. In a rat model of
myocardial infarction, Abe and coworkers showed that
pravastatin prevented cardiac dysfunction. The suggested
mechanism for pravastatin-induced beneficial effects was
represented by the inhibition of H2O2-mediated caspase-3
activation and endothelial nitric oxide synthase (eNOS)
reduction that was observed in cultured vascular endothelial
cells [91]. More recently, Suzuki and coauthors showed that
pravastatin also improves dysfunctional hibernating myo-
cardium in a swine model of chronic left anterior descend-
ing artery (LAD stenosis) [92]. These investigations clearly
indicate that improvement after pravastatin administration
was exclusively related to mobilization of CD133(+)/cKit(+)
bone marrow progenitor cells, without involving endothelial
cell function. Controversial immunomodulatory properties of
pravastatin have been also shown in immune cells [93].
Pravastatin increases inflammation by activating human
peripheral blood mononuclear cells to produce IL-18,
TNF-alpha, and IFN-gamma [94]. Furthermore, it
increases the phagocytic index of mouse peritoneal
macrophages [95]. Conversely, pravastatin induces impor-
tant immunosuppressive effects by prolonging lung graft
survival and inhibiting chronic rejection in renal allograft
in rats [96, 97]. Pravastatin treatment also inhibits
circulating dendritic cell activation in patients with
coronary artery disease [98].

Fluvastatin

Fluvastatin is a lipophilic statin. Differently from other
statins that are metabolized by the cytochrome P450
3A4 complex (CYP3A4), fluvastatin is metabolized by
another P450 complex [99]. This aspect reduces the risk
of pharmacological interactions between fluvastatin and
other drugs. Furthermore, it suggests the possible use of

fluvastatin in patients, which are intolerant to second and
third generation of statins. The ALERT study investigated
the possible reduction of cardiovascular risk in patients
who received renal transplant. Fluvastatin treatment
reduced cardiac deaths and nonfatal MI but not coronary
intervention procedures or mortality in these patients
[100]. In two other secondary prevention studies (BCAPS
and HYRIM) respectively conducted in patients who had
carotid plaque without symptoms of carotid artery disease
[101] and hypertensive men [102], fluvastatin-reduced
acute cardiovascular events. On the other hand, the Lescol
Intervention Prevention Study showed that fluvastatin
treatment significantly reduces the risk of adverse cardiac
events in patients with average cholesterol levels under-
going their first successful percutaneous coronary inter-
vention [103]. Fluvastatin has been shown to induce
cardioprotective effects in both acute and chronic treat-
ments. In a rat model of acute myocardial infarction and
reperfusion, the administration of fluvastatin 20 min
before the onset of ischemia significantly attenuated the
decline of myocardial blood flow, thus, reducing myo-
cardial infarction size [104]. These promising data are in
contrast with in vitro studies showing that fluvastatin
induces cardiac myocyte and vascular endothelial cell
apoptosis [105, 106]. Furthermore, it increases the
expression of adhesion molecules, MCP-1, and tissue
factor in human umbilical vein endothelial cells stimulat-
ed by antiphospholipid antibodies [107]. It is possible that
fluvastatin exerts its activities in endothelial cells through
its uptake into these cells via nonspecific simple diffusion
[108]. These apparent negative effects might be counter-
balanced by other protective activities induced by fluvas-
tatin in vascular cells. In fact, fluvastatin inhibits matrix
metalloproteinase-1 expression and oxidative damage in
vascular endothelial cells, thus, improving endothelial
dysfunction [109–112]. Fluvastatin also increases prosta-
cyclin production and reduces endothelin-1 secretion in
human umbilical vein endothelial cells (HUVEC) con-
tributing to vasodilation and, thus, preventing cardiovas-
cular diseases [113]. At very high concentration (10 μM),
fluvastatin also reduces CRP-induced TNF-alpha secre-
tion in HUVEC [114]. Despite the important limitation
represented by the high dose used, this study supports a
direct activity of fluvastatin in the inhibition of CRP-
mediated proinflammatory effects. Fluvastatin has been
shown to reduce inflammatory cells activation and
functions. Mononuclear leukocytes represent the most
investigated cell population [115–117]. The anti-
inflammatory properties of fluvastatin have been ob-
served in patients with chronic heart failure or allergic
asthma [118, 119]. These studies suggest the potential
therapeutic use of fluvastatin not only in atherosclerosis
but also in other inflammatory diseases.
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Simvastatin

Together with atorvastatin, simvastatin has been actively
investigated [120], and it has been shown to induce
several in vitro and in vivo beneficial effects to reduce
atherosclerotic inflammatory process. Clinical trials in
primary and secondary prevention of cardiovascular risk
demonstrated the beneficial effects of simvastatin. In
primary prevention, the HPS provided direct evidence
that cholesterol-lowering therapy-reduced cardiac mortal-
ity and coronary events mainly in diabetic subjects
without a manifest coronary disease [121]. In secondary
prevention, the 4S showed that treatment with simvastatin
strongly reduced cardiac mortality and coronary events in
comparison to placebo [37]. Simvastatin reduces endothe-
lium dysfunction through a direct benefit on endothelial
cells and their precursors [122]. High concentrations of
simvastatin (25 μM) reduced TNF-alpha-mediated apo-
ptosis of endothelial progenitor cells (EPC) [123]. Fur-
thermore, the treatment with 80 mg/day simvastatin for
5 days increases in vivo EPC mobilization [124]. Then,
simvastatin also promotes endothelial differentiation of bone
marrow stromal cells through the Notch signaling pathway
[125]. On the other hand, simvastatin might prevent
endothelial dysfunction through a direct protective activity
on endothelial cells. Simvastatin inhibits CRP-induced
CD32, VCAM-1 expression as well as monocyte adhesion
to human umbilical vein endothelial cells [126]. Simvastatin
treatment also inhibits TNF-alpha-induced adhesion mole-
cule (selectins) expression on HUVEC [127]. Furthermore,
simvastatin protected the vascular endothelium against
damages induced by LDL or ox-LDL in rats or a cultured
cell line (ECV304 cells) [128]. On the other hand, emerging
evidence shows that simvastatin also increases endothelial
cell apoptosis suggesting that the clinical benefit of
simvastatin in endothelial dysfunction could be due to an
unbalance between positive (endothelial cell and endothelial
progenitor protection) and negative (endothelial cell apopto-
sis) activities [129–131]. Simvastatin has been also shown to
modulate eNOS in humans and animal models, thus,
contributing to reduce endothelial dysfunction [132, 133].
The inflammatory functions of other vascular and immune
cell types involved in atherosclerotic processes have been
modulated by simvastatin. Simvastatin induces the cytopro-
tective molecule heme oxygenase-1 in mouse smooth muscle
cells in vivo and in vitro [134]. Treatment with 1 μM
simvastatin significantly downregulates chemokine and
chemokine receptor expression in human macrophages
[135]. These morphological changes result in a reduced
locomotory response towards CCL2, as shown in vivo by
Han and coworkers [136]. More recently, we showed that
simvastatin at 1 μM reduces CRP-induced chemokine
secretion, ICAM-1 upregulation, and chemotaxis in human

primary monocytes cultured in adherence to polystyrene
[137]. In CD14+ monocytes, simvastatin reduces toll-like
receptor 4 expression suggesting that this drug might directly
modulate innate immunity [138]. Neutrophil migration,
adherence, and membrane integrity have been also modulat-
ed by treatment with simvastatin [139, 140]. Simvastatin also
interferes with inflammatory activities mediated by humoral
and cell-mediated immunity in vivo and in vitro [141].
Simvastatin inhibits both human B- and Th1-lymphocyte
activation [142–144]. On the other hand, simvastatin
promotes Th2-type responses through the direct modulation
of dendritic cell function [145]. Accordingly with these data,
simvastatin treatment in vivo inhibits lymphocyte and NK
cell functions and downregulated angiotensin II type 1
receptor on circulating T lymphocytes and monocytes [146,
147].

Atorvastatin

Atorvastatin is the first statin approved to reduce the risk of
hospitalization in heart failure patients [148]. Large clinical
trials have been performed to assess primary and secondary
prevention of cardiovascular diseases. In primary preven-
tion, the ASCOT-LLA and the Collaborative Atorvastatin
Diabetes Study showed a significant reduction in cardio-
vascular events with 10 mg/day atorvastatin in comparison
to placebo [27, 149]. In secondary prevention, the majority
of clinical studies performed investigated high dose treat-
ments versus low dose. In the TNT and in the IDEAL
studies, intensive atorvastatin treatment (80 mg/day) re-
duced any coronary events in comparison to lower statin
doses (respectively 10 mg/day atrovastatin and 20 mg/day
simvastatin) in patients with stable coronary artery disease
or a history of acute myocardial infarction. In 2001, the
MIRACL study further confirmed the need of high-dose
atorvastatin therapy to prevent recurrent coronary events in
patients with recent acute coronary syndrome. However, in
all these studies, no reduction in mortality was observed
[30–32, 141–149]. The Pravastatin or Atorvastatin Evalu-
ation and Infection Therapy-Thrombolysis in Myocardial
Infarction 22 is the only study showing a reduction in
mortality in the presence of intensive atorvastatin treatment
in secondary prevention of acute cardiovascular events
[150]. Chronic treatments with atorvastatin have been
shown to induce direct beneficial effects in cardiomyocytes
by protecting from hypertrophic cardiomyopathy, cardiac
fibrosis, and remodeling, catecholamine deleterious effects
in several animal models [151–154]. Several studies
investigating the possible effect of atorvastatin in inflam-
matory diseases have been performed with some contro-
versial results [155–157]. For instance, atorvastatin
treatment failed to reduce inflammatory processes in a
mouse model systemic lupus erythematosus [157]. Ator-
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vastatin has been also shown to directly induce neuro-
protection. It reduced neurological deficit by increasing
synaptogenesis, angiogenesis, and neuronal survival in rats
subjected to traumatic brain injury [158]. In the same rat
model, atorvastatin also reduced intravascular thrombosis
and increased cerebral microvascular integrity [159].
Furthermore, atorvastatin inhibited perihematomal cell
death in adult rats after experimental intracerebral hemor-
rhage [160]. As other statins, atorvastatin directly antago-
nized inflammatory processes in human brain endothelial
cells [161]. The direct neuro and endothelial protective
activities of atorvastatin have been shown to reduce stroke
consequences in stroke-prone spontaneously hypertensive
rats and in a rat model of embolic stroke [162, 163]. These
studies strongly suggest that atorvastatin could be a very
promising drug with potent anti-inflammatory activities in
different diseases. The possible use of atorvastatin to inhibit
atherosclerosis represents the best investigated field. Ator-
vastatin reduced in vitro and in vivo endothelial dysfunc-
tion and inflammatory processes in atherogenesis. As
previously indicated for simvastatin, atorvastatin protects
endothelium through the increase of endothelial cell
progenitor proliferation and mobilization and the induction
of vessel wall stabilizing mediators and growth factors in
endothelial cells [111, 164–166]. Atorvastatin has been
shown to inhibit cytokine-inducible nitric oxide synthase,
CD40, CD40L, chemokine, and thrombospondin-1 expres-
sion in endothelial cells [167–172]. Atorvastatin also
regulates immune cell functions and the release of
inflammatory mediators such as CRP. We have recently
shown that atorvastatin inhibit CRP production on IL6-treated
human hepatocytes [173]. Furthermore, this drug reduces
CRP or granulocyte macrophage–colony stimulating
factor-mediated proinflammatory activities in human
monocytes [137, 174]. Atorvastatin also interferes with T
lymphocyte, B lymphocyte, or dendritic cell activation and
differentiation [175–179]. Atorvastatin-mediated anti-
inflammatory effects have been observed also in clinical
studies, investigating inflammatory cardiovascular risk
markers in acute coronary syndromes, and coronary artery
disease [180, 181]. Further investigations are needed to
better assess the role of atorvastatin treatment in the
reduction of inflammatory cardiovascular risk factors. Taken
together, clinical and basic research studies suggest that
high-dose atorvastatin treatments rather than low-dose could
be considered as a promising approach to reduce cardiovas-
cular disease.

Rosuvastatin

Rosuvastatin is a synthetic HMG-CoA reductase inhibitor
noncompetitive with the cosubstrate nicotinamide-adnine
dinucleotide phosphate [182]. Compared to other statins,

rosuvastatin is the most effective to reduce total and
LDL-cholesterol levels for mg/dose equivalent. As
atorvastatin, rosuvastatin has been shown to additionally
bind the enzyme complex not only at the HMG-CoA
reductase site [183]. As pravastatin, it is significantly less
lipophilic than other statins. Differently from other statins,
rosuvastatin is metabolized mainly through CYP2C9
[183]. These pharmacologic and pharmacokinetic aspects
support this drug as a very promising candidate to reduce
myotoxicity and interaction with other drugs, and improve
anti-inflammatory properties. Several clinical studies
included in the global GALAXY program have been
performed to assess rosuvastatin’s clinical efficacy in
atherogenic lipid profile, changes in atheroma volume,
and cardiovascular morbidity and mortality in different
subpopulations [184]. As described above, the recent
JUPITER study is the first primary prevention study
demostrating a benefit of statin therapy in individuals
with elevated high-sensitivity C-reactive protein levels,
but without hyperlipidemia [28]. In secondary prevention,
rosuvastatin did not reduce mortality in patients with systolic
heart failure and CAD but only the number of cardiovascular
hospitalizations. Conversely, the ASTEROID trial demon-
strated decrease of percent diameter stenosis and amelioration
of minimum lumen diameter in coronary disease patients
[185]. Although atherosclerotic lesion regression is not
directly related to the reduction of future cardiovascular
outcomes, the ASTEROID study strongly supports the
possible use of rosuvastatin in secondary prevention. High
concentrations of rosuvastatin (100 μM) suppressed mono-
cytic cell adhesion and ICAM-1, MCP-1 IL-8, IL-6, and
COX-2 expression on TNF-alpha-stimulated HUVEC [186].
Furthermore, although mechanisms have not been identified
yet, rosuvastatin treatment protected mice from ischemic
stroke [187] and rats from myocardial reperfusion injury
[188]. Rosuvastatin also exerts favorable anti-atherosclerotic
effects in several animal models [189–192]. These studies
suggest that rosuvastatin-mediated benefits are dependent of
its antioxidant and anti-inflammatory activity on endothelial
cells. A recent study (performed in a small number of
patients (n=48)) further confirmed the endothelial protective
properties of rosuvastatin showing that short-term treatment
increases endothelial cell progenitor mobilization [193].

The effects of statins on inflammatory intracellular
signaling pathways

Statins have been introduced as HMG-CoA reductase
inhibitors to lower LDL-cholesterol synthesis and serum
levels (Fig. 2). However, emerging evidence has shown that
the “classical” cholesterol pathway could also modulate
intracellular signaling pathways involving protein kinases in
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different cell types. Thus, statins could directly influence
vascular and immune cells, hepatocyte, and adipocyte
inflammatory functions through the activation of certain
intracellular mediators or the inhibition of protein kinase
phosphorylation of intracellular second messenger cascades
(Fig. 3).

Statin-mediated activation of intracellular pathways

Recently, statins have been shown to directly activate
anti-inflammatory intracellular pathways. AMP-activated
protein kinase (AMPK) is a serine/threonine protein
kinase involved in the regulation of cellular energy
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In particular, the inhibition of ERK 1/2, rho, JAK/STAT3, or
mevalonate pathways is crucial to reduce inflammation. On the other
hand, statins directly activates AMPK and PI3K/Akt/NFkB pathways,
thus, increasing cell survival, endothelial, and neuronal protection
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metabolism. Emerging evidence showed that AMPK
might be crucial in vascular protection [194]. Statins
directly activates AMPK in different cell types [194, 195].
In particular, statins have been shown to rapidly activate
this protein kinase in vitro (cultured HUVEC) and in vivo
(mouse aorta and myocardium). Such phosphorylation
resulted in eNOS activation that could explain the direct
beneficial effects of statins in cardiovascular diseases
[196]. Interestingly, statin-mediated AMPK activation was
dependent on the upstream activation of PKC-zeta as
shown in endothelial cells and in vivo in mice [197].
AMPK-induced eNOS activation also increased endothe-
lial cell progenitor differentiation in endothelial cells
indicating a possible protective mechanism on endotheli-
um mediated by statins [198].

On the other hand, the activation of phosphoinositide
3 kinase (PI3K)/Akt (protein kinase B) represents a
critical step in inflammatory cell survival, locomotion in
atherosclerosis, and cardiovascular disease [199]. Al-
though, few studies (performed with lovastatin) suggested
a possible inhibition of PI3K-Akt in endothelial cells
[200], there is a general consensus that statins induce
cardiovascular protection through the activation of PI3K/
Akt pathway. Statin-mediated neuroprotection in animal
models of traumatic brain injury and embolic stroke is
dependent on PI3K/Akt pathway activation [163, 201,
202]. This pathway involves also the activation of NF-kB
that suppresses caspase-3 and apoptosis cell death [203].
Neuronal nitric oxide synthase upregulation might repre-
sent the final effector of this protective pathway [204].
Statin-mediated myocardial protection has been also
shown as dependent on PI3K/Akt activation pathway in
both in vitro and in vivo models [205–207]. Atherogenesis
is also regulated by PI3K/Akt pathway. Statins induce
their activation on vascular and immune cells, thus,
reducing atherosclerotic lesions in ApoE knockout mice
[208] and endothelial dysfunction in type 2 diabetic mice
[209]. Controversial results on statin-mediated MAPK
phosphorylation have been showed. Statins induce anti-
inflammatory activities through both activation and inhibition
of these kinases. The statin-induced activation of extracellular
signal-regulated kinase (ERK) 1/2 has been observed mainly
in immune cells [210, 211]. On the other hand, statins
increase macrophage apoptosis through JNK activation [81].

Statin-mediated inhibition of intracellular pathways

As largely discussed, statins have been approved as
HMG-CoA reductase inhibitors. The HMG-CoA/mevalo-
nate pathway is essential for cellular metabolism and the
formation of precursors of bile acids, lipoproteins and
hormones, and nonsterol isoprenoids. These molecules

regulate cell growth and differentiation, gene expression,
protein glycosylation, and cytoskeletal assembly [212].
Thus, by influencing cholesterol synthesis, statins not only
reduce circulating LDL-cholesterol levels but also induce
important cellular modifications which could interfere
with immune and thrombotic response. Furthermore, statin
reduce mevalonate-derived molecules, such as farnesyl-
pyrophosphate (FPP) and GGPP which are essential
players in cell signaling, endocytotic/exocytotic transport,
and cytoskeleton dynamics [213]. Immune cell functions
(including chemotaxis, chemokine secretion, and oxida-
tive metabolism) are regulated by the “classical” meval-
onate pathway. Endothelial and smooth muscle cells
require this pathway for their proinflammatory functions
[213]. Therefore, anti-inflammatory properties of stains
might be due to their “classical” pharmacologic properties.
Small GTP-binding proteins, which include in the Ras,
Rho, Rab, and Ran superfamily, are directly modulated by
the mevalonate pathway. These proteins act as molecular
“on–off” switches regulating actin cytoskeleton changes
in cell adhesion, migration and contraction [214]. They
regulate several downstream intracellular messengers,
such as protein kinase N, p21-activated protein kinase,
and the rho-associated kinases, which control not only
cellular locomotion but also cell growth and apoptosis in
both immune and vascular cells [215]. Recently, it has
been shown that the effects of statins on atherosclerotic
processes in the vessel wall and in the brain are partially
due to the inhibition of the Rho pathway [216, 217].

Conclusion

Due to their beneficial properties in cardiovascular diseases,
statins are among the most widely prescribed medications
in the world. Despite some differences between members of
the statin family, all these drugs have been shown to reduce
cardiovascular events in both primary and secondary
prevention. The recent results of the JUPITER Study seem
to indicate that statin treatment in CRP-elevated primary
prevention markedly reduced cardiovascular events and
total mortality. The safety of statins has been largely
documented. Beside their well-known lipid lowering
effects, statins also affect some immunomodulatory activ-
ities. These so called “pleiotropic” effects induce a decrease
in pro-inflammatory and an increase in anti-inflammatory
molecular pathways. Statin-mediated modulation of molec-
ular intracellular mechanisms in both vascular and immune
cells should be considered as a very promising approach to
further clarify the statin-induced cardiovascular protection.
Beside cardiovascular area, statin therapy is under investi-
gation in other inflammatory diseases, such as rheumatoid
arthritis and multiple sclerosis. Many hypotheses have been
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already proposed to explain statin anti-inflammatory activ-
ities. A strong work is waiting for researchers in the next
years.
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