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Abstract. Driven many-particle systems with nonlinear interactions are known to often display multi-
stability, i.e. depending on the respective initial condition, there may be different outcomes. Here, we study
this phenomenon for traffic models, some of which show stable and linearly unstable density regimes, but
areas of metastability in between. In these areas, perturbations larger than a certain critical amplitude will
cause a lasting breakdown of traffic, while smaller ones will fade away. While there are common methods to
study linear instability, non-linear instability had to be studied numerically in the past. Here, we present
an analytical study for the optimal velocity model with a stepwise specification of the optimal velocity
function and a simple kind of perturbation. Despite various approximations, the analytical results are
shown to reproduce numerical results very well.

PACS. 89.40.Bb Land transportation – 45.70.Vn Granular models of complex systems; traffic flow –
83.60.Wc Flow instabilities

1 Introduction

While the field of traffic modeling and traffic simulation
has a long history [1], in the 1990s [2–4], it has also be-
come interesting for a large community of physicists. Since
then, various physical methods have been applied, ranging
from fluid-dynamic and gas-kinetic approaches [5–7] over
many-particle models [10] up to cellular automata [9]. An
overview of the respective literature has been given by
various reviews [10–12].

Besides computer-based studies, physicists have par-
ticularly contributed with systematic (e.g. gas-kinetic)
derivations [6] and analytical investigations [13] (see
Ref. [10] for an overview). This includes the study of insta-
bilities leading to a breakdown of free traffic flow [14–19],
which has been studied experimentally only recently [21].
(Of course, empirical studies [22,23] have been already car-
ried out for a longer time).

While there are also models, where the instability of
traffic flow depends on noise [2], we will focus here on
models with a deterministic instability mechanism. Many
traffic models become unstable in a certain density range,
because of delays in the adaptation to changing traffic con-
ditions. To avoid accidents, these delays are compensated
for by over-reactions, which can increase a small initial
perturbation and finally cause a breakdown of traffic flow.
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This kind of dynamics usually occurs in the medium den-
sity range, where the change of the “desired”, “optimal”,
or “equilibrium” velocity with a change in the distance or
density is larger than a certain instability threshold [20].

To characterize the behavior of traffic flows more sys-
tematically, Kerner and Konhäuser have applied the no-
tion of critical densities and critical perturbation ampli-
tudes. Primarily based on numerical studies [24], they
found the following for a macroscopic, Navier-Stokes-like
traffic model [10]: altogether, there are four critical densi-
ties ρck with k ∈ {1, 2, 3, 4}. Below some density ρc1 > 0,
any kind of disturbance eventually disappears. Between
the densities ρc1 and ρc2, one wide traffic jam builds up,
given a large enough perturbation. A series of traffic jams
may appear in a density range between ρc2 and some
density ρc3. Finally, a so-called “anticluster” can be trig-
gered [24], if the average density ρ is between ρc3 and some
critical density ρc4, while any disturbance disappears in
stable traffic above ρc4. Similar observations have been
made for other macroscopic traffic models [25], but also
microscopic ones of the car-following or cellular automata
type [25–27]. The critical densities ρck depend mainly on
the choice of the model parameters, in particular the re-
laxation time and the velocity-distance or velocity-density
relation.

If the average density ρ falls into the density ranges
[ρc1, ρc2] or [ρc3, ρc4], traffic flow is predicted to be
metastable, i.e. characterized by a critical amplitude
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Fig. 1. (Color Online) Formation of a traffic jam in case of
overcritical perturbations (blue lines) and relaxation to free
traffic flow in case of undercritical perturbations (red lines)
for a low vehicle density. The plot shows 10 trajectories repre-
senting each 10th vehicle. Altogether, the simulation was per-
formed with N = 100 vehicles on a circular road of length
L = N/ρ. Time is measured in units of the relaxation time τ ,
vehicle locations in units of the safe distance d0. The slope of
the lines corresponds to the vehicle speeds in units of d0/τ , and
their vertical separation reflects the vehicle distances in units
of d0. Therefore, the blue lines correspond to stop-and-go traf-
fic, where the vehicle distances in the stop regime are small,
i.e. vehicle density is large. The red trajectories show that the
same number of vehicles can constantly move at the free speed
v0, if the initial perturbation is small enough.

Δρcr(ρ) for the formation of traffic jams. This amplitude
is zero for ρ = ρc2 and ρ = ρc3, i.e. at the boundaries
of the linearly unstable regime, while the critical ampli-
tude grows towards the boundaries ρc1 and ρc4 of sta-
ble traffic and does not exist beyond these values. Per-
turbations with subcritical amplitudes Δρ < Δρcr(ρ) are
eventually damped out (analogous to the stable density
ranges), while perturbations with supercritical amplitudes
Δρ > Δρcr(ρ) grow and form traffic jams (similar to
the linearly unstable density ranges). The situation in
metastable traffic is, therefore, similar to supersaturated
vapor [24], where an overcritical nucleus is required for
condensation (“nucleation effect”).

In order to gain analytical insights into the mecha-
nisms of nonlinear instability, we will proceed as follows:
in Section 2, we will introduce the optimal velocity model
we will work with. Afterwards, in Section 3, we will dis-
cuss how perturbation sizes can be measured and what are
necessary preconditions for the existence of traffic jams.
We will then determine sufficient conditions by calculat-
ing critical densities and critical perturbation amplitudes
for a simple kind of perturbations: in Section 4, all ve-
hicles on a circular road but one are assumed to be in
a big traffic jam, while in Section 5, all vehicles but one
are assumed to experience free flow conditions. Finally,
Section 6 will summarize our results and present an out-
look. Supplementary, and for comparison with our results,
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Fig. 2. (Color Online) Formation of stop-and-go traffic from an
initial perturbation in linearly unstable traffic flow. For details
see the main text and the caption of Figure 1.
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Fig. 3. (Color Online) Formation of a traffic jam in case of an
overcritical perturbation (blue lines) and drop of the vehicle
flow to zero in case of undercritical perturbations (blue lines)
for a large vehicle density. For details see the main text and
the caption of Figure 1.

the Appendix gives a short derivation of the characteristic
constants of the car-following model studied in this paper.

2 Introduction of the applied car-following
model

In the past, a large number of papers has addressed the
instability of traffic models in an analytical way, and
our discussion naturally needs to restrict itself to a few
of them. For example, Kerner et al. [28] have presented
an asymptotic theory of traffic jams for a Navier-Stokes-
like, macroscopic traffic model, while instability analy-
ses for car-following models were carried out by Herman
et al. [14], Bando et al. [15], and others (see citations in
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Ref. [10]). Some recent analyses of traffic instabilities are
by Mitarai and Nakanishi [16] and by Wilson [17–19]. The
most relevant references on which this paper builds on are
references [27,29]. For a car-following model and a related
cellular automaton, respectively, these have presented an-
alytical calculations of the characteristic constants of traf-
fic flows such as the dissolution speed c of traffic conges-
tion (which agrees with the propagation speed of traffic
jams), the outflow Qout from congested traffic, or the ve-
hicle density ρjam in congested traffic for a car-following
model and a related cellular automaton, respectively.

The success in determining the self-organized con-
stants of traffic flow analytically is based on boiling down
vehicle dynamics to its essence. That is, we will work with
a very simple model (a “toy model”), that is not aiming
to be fully realistic, but instead at performing analyti-
cal calculations and deriving stylized facts that would not
be analytically accessible for a more realistic model with
a reasonable amount of effort. The model we will focus
on is the car-following model by Bando et al. [15] with
a stepwise optimal velocity function. It is defined by the
equation of motion dxj/dt = vj(t) relating the change of
location xj(t) of a vehicle j in time t with its speed vj(t)
and the acceleration equation

dvj

dt
=

vo

(
dj(t)

) − vj(t)
τ

. (1)

The parameter τ > 0 corresponds to a small “relaxation
time”. The “optimal velocity function” vo(d) depends on
the vehicle distance dj(t) = xj−1(t)− xj(t) of a vehicle to
its predecessor (“leader”) j − 1, and it is specified here as

vo(d) =
{

v0 if d > d0,

0 otherwise.
(2)

d0 � v0τ is a safe vehicle distance and v0 the free speed
(or speed limit) of the vehicles, which are assumed to be
identical, here. Defining the local vehicle density ρ as the
inverse of the vehicle distance and the stationary and ho-
mogeneous equilibrium flow as Qe(ρ) = ρvo(1/ρ), we find

Qe(ρ) =
{

ρv0 if ρ < 1/d0,

0 otherwise.
(3)

It is obvious that this flow-density relationship (“funda-
mental diagram”) is not realistic. However, when the traf-
fic flow is unstable with respect to perturbations in the
flow, stop-and-go waves with characteristic dependencies
develop after a short time (see Fig. 4). As a consequence,
a much more realistic, self-organized flow-density relation
results, namely the so-called “jam line” [28]

J(ρ) =
1

ρjamT
(ρjam − ρ) (4)

(see Fig. 5). The jam density ρjam and the delay T between
the acceleration of successive vehicles at the jam front can
even be calculated (see Ref. [29] and the Appendix of this
paper). The corresponding implicit relations are

1
ρjam

= d0 − v0τ
(
1 − e−T/τ

)
(5)
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Fig. 4. Illustration of the approximate periodic change of dis-
tance and speed (“hysteresis loop”) for fully developed traffic
jams (solid lines with arrows), after reference [29]. Phase 1 is
characterized by the acceleration of a considered vehicle j and
its leader j − 1. In phase 2, the leading vehicle decelerates al-
ready, while vehicle j still accelerates. Then, in phase 3, both
vehicles decelerate, and in phase 4, the leading vehicle j − 1
accelerates, while vehicle j continues braking. For details see
the Appendix. The dashed line indicates the underlying opti-
mal velocity function vo(d), which is obviously very different
from the speed-distance relationship resulting in fully devel-
oped stop-and-go waves.
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Fig. 5. Schematic illustration of the traffic flow as a function of
the vehicle density ρ. The density ranges between ρc1 and ρc2

and between ρc3 and ρc4 correspond to metastable traffic flow
(see main text). The quantities Qck = Q(ρck) denote the flows
belonging to the critical densities ρck, which will be analyti-
cally calculated in this paper. The thin solid line corresponds
to the jam line J(ρ). Its intersection point with the free branch
of the fundamental diagram defines the value of the character-
istic outflow Qout and the density ρout, while its intersection
point with Q = 0 defines the jam density ρjam. The fundamen-
tal diagram, i.e. the flow-density relation Qe(ρ) in the station-
ary and homogeneous case, is represented by thick solid lines.
The difference between the maximum flow Qmax = maxρ Qe(ρ)
and the characteristic outflow Qout is called the capacity drop
ΔQdrop.
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and
T = 2τ

(
1 − e−T/τ

)
. (6)

It is also worth stating that the characteristic outflow

Qout = ρoutv
0 =

1
d0/v0 + T/2

(7)

from congested traffic is smaller than the maximum flow

Qmax =
v0

d0
, (8)

that is, there must be a density region in which two differ-
ent flows are possible. Hence, the actually assumed density
value depends on the history. This is called a hysteresis ef-
fect. Once a traffic jam forms, there is an effective capacity
drop of size

ΔQdrop = Qmax − Qout =
v0

d0
− 1

d0/v0 + T/2

=
v0T/2

d0(d0/v0 + T/2)
> 0 (9)

(see Fig. 5).

3 Definition of critical amplitudes and critical
densities

It is very encouraging that characteristic constants of
traffic flows such as the jam density ρjam, the outflow
Qout from congested traffic, and the propagation speed
c = −1/(ρjamT ) of jam fronts can be analytically derived
from the optimal velocity model. This just requires a sim-
ple enough specification (2) of the function vo(d), see ref-
erence [29] and the Appendix of this paper. Therefore, we
will try in the following to derive the critical densities and
critical amplitudes for this model as well. For this, let us
study a circular one-lane system of length L with N vehi-
cles and an average vehicle density ρ = N/L. In order to
avoid finite size effects, we will assume a large system with
many vehicles. According to equations (1) and (2), if all
vehicles have a distance greater than d0 to their leader, all
of them will accelerate and reach the maximum speed v0,
while we expect congested, standing traffic, if all vehicles
have a distance smaller than d0, since this forces them to
decelerate.

Therefore, an interesting dynamics will only occur if
some vehicles have distances larger than d0, while others
have distances smaller than d0. In the following, we will
focus on this case. One first observation is that linearly un-
stable traffic should be possible only for ρ = N/L = 1/d0,
so that, for the stepwise specification (2) of the optimal
velocity function vo(d), we have the special case

ρc2 = ρc3 =
1
d0

. (10)

But what is the value of the critical density ρc1 at which
non-linear instability starts to be possible, and is there a

critical density ρc4, beyond which even arbitrarily large
perturbations will fade away? And can we approximately
determine the critical amplitudes Δρcr(ρ)?

Let us in the following focus on a special kind of per-
turbation (see Figs. 6 and 8): we will assume that (N −1)
vehicles have an identical distance d(0) to their respective
predecessor, while the distance d1(0) of the first vehicle to
its predecessor is

d1(0) = L − (N − 1)d(0). (11)

Accordingly, we define the perturbation size as

Δρ =
∣
∣∣
∣

1
d(0)

− 1
d1(0)

∣
∣∣
∣ =

∣
∣∣
∣

1
d(0)

− 1
L − (N − 1)d(0)

∣
∣∣
∣

=
∣
∣
∣
∣

L − Nd(0)

d(0)[L − (N − 1)d(0)]

∣
∣
∣
∣ . (12)

In order to avoid finite-size effects, we will assume a very
large system of length L = N/ρ with N � 1 vehicles.
Then, we have

d(0) =
L − d1(0)

N − 1
→ L

N
=

1
ρ
, (13)

which implies

Δρ ≈
∣
∣
∣∣ρ − 1

d1(0)

∣
∣
∣∣ . (14)

The critical amplitudes Δρcr are basically defined by not
changing in time (neither growing nor shrinking), i.e. by
marginal stability. Moreover, the critical density ρc1 is
characterized by the fact that the critical amplitude ceases
to exist for lower densities, and the same applies for den-
sities greater than the critical density ρc4.

Remember that the propagation of perturbations re-
quires at least one vehicle distance (either d(0) ≈ 1/ρ or
d1(0)) to be above and another one below d0. This allows
us to estimate a lower bound for the critical perturbation
amplitudes Δρcr(ρ). Two cases my be distinguished:

1. If the density ρ ≈ 1/d(0) is greater than 1/d0, we must
have d1(0) > d0, which implies [ρ−1/d1(0)] > ρ−1/d0.

2. If the density ρ ≈ 1/d(0) is smaller than 1/d0, we must
have d1(0) < d0, which implies [1/d1(0)−ρ] > 1/d0−ρ.

Consequently, the critical amplitude can become zero only
for ρ = 1/d0 = ρc2 = ρc3, and altogether we must have

Δρcr(ρ) ≥
∣
∣
∣
∣ρ − 1

d0

∣
∣
∣
∣ . (15)

However, this is only a necessary condition, while we will
determine sufficient conditions for the existence of stop-
and-go waves in the following sections. In our further anal-
ysis, we will treat the case of large densities separately
from the case of small densities.
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Fig. 6. Illustration of the initial distribution of vehicles on a
ring road assumed in the high-density case (ρ > 1/d0). Vehicles
j ∈ {2, . . . , N} are standing in a traffic jam with speed vj = 0
and a distance d(0) < d0 to the predecessor. Vehicle j = 1 starts
with zero velocity as well, but can accelerate, if its distance
d1(0) to the next vehicle is greater than d0.

4 The case of large densities

The situation for densities ρ > 1/d0 is illustrated in Fig-
ure 6. We assume that all vehicles j start at time t = 0
with speed vj(0) = 0. Moreover, all vehicles but one are
assumed to have the initial distance d(0) < d0, while
the remaining vehicle j = 1 has the distance d1(0) =
L − (N − 1)d(0) > d0, where L is the length of the as-
sumed circular road. It will turn out that the simplicity of
this initial perturbation is the reason for the feasibility of
our calculations. Without loss of generality, vehicle j = 1
starts to accelerate at x = 0 and t = 0.

We will now have to identify the possible reason for
a disappearance of the initial perturbation in the course
of time. In the case of large densities ρ > ρc3 = 1/d0, an
initial perturbation will fade away if the maximum vehicle
distance does not allow to reach a sufficiently high speed in
the acceleration process to reach a vehicle distance equal
to or smaller than d(0) after its successive braking maneu-
ver. While the speed in the vehicle queue is approximately
zero (despite for, maybe, the last few vehicles in the queue
which may still decelerate), the maximum speed v(0) is
reached at the time t(0) when the vehicle under consider-
ation starts to decelerate. Focussing on vehicle j = 1, we
find

v(0) = v1(t(0)) = v0
(
1 − e−t(0)/τ

)
, (16)

because equations (1) and (2) imply v1(t) = v0(1−e−t/τ ),
which can be easily checked by differentiation with respect
to t.

As the first vehicle’s position at time t = 0 is assumed
to be x1(0) = 0, the time-dependent location of vehicle 1
is given by

x1(t) =

t∫

0

dt′v1(t′) =

t∫

0

dt′ (v0 − v0e−t′/τ )

= v0t + v0τ
(
e−t/τ − 1

)
. (17)

The time t(0) at which vehicle j = 1 starts to decelerate is
the time t at which its distance to vehicle j = N , i.e. the
last vehicle in the queue, becomes d0. Since vehicle j = N
is located at xN = L − (N − 1)d(0), this implies

L − (N − 1)d(0) − x1(t(0)) = d0 (18)

or

L − (N − 1)d(0) − d0 = v0
(
t(0) − τ + τe−t(0)/τ

)
, (19)

which is an implicit equation determining the acceleration
time period t(0). At the end of its deceleration process, the
previously first vehicle of the queue, which has then joined
the end of the queue, will have a distance d(1), which de-
pends on the maximum speed v(0). Since the deceleration
process according to equations (1) and (2) obeys an expo-
nential velocity decay

v1(t) = v(0)e−(t−t(0))/τ , (20)

the resulting minimum distance can be determined as

d(1) = d0 −
∞∫

t(0)

dt v(0)e−(t−t(0))/τ = d0 − v(0)τ. (21)

The other vehicles in the queue are expected to have the
same distance to their respective predecessor after one cy-
cle of acceleration and deceleration. That is, while their
distance was d(0) in the beginning, their distance after one
cycle will be d(1), after two cycles it will be d(2), and so on.
The iterative equations to determine the decisive quanti-
ties can be derived analogously to equations (21) and (16):

d(n+1) = d0 − v(n)τ = d0 − v0τ
(
1 − e−t(n)/τ

)
, (22)

where t(n) as a function of d(n) is determined from

L − (N − 1)d(n) − d0 = v0
(
t(n) − τ + τe−t(n)/τ

)
(23)

similarly to equation (19). Equation (23) allows us to re-
place the right-hand side of equation (22), which yields an
equation for d(n+1) as a function of d(n):

d(n+1) = L − (N − 1)d(n) − v0t(n)(d(n)). (24)

It is, therefore, interesting to ask, whether the series d(n)

converges and, if yes, to what value. If the values d(n) stay
the same for different values of n, the initial perturbation
is stable over time. If the distances go down, then the
perturbation grows. However, if the values of d(n) grow
with n, the initial perturbation fades away (which is ex-
pected to happen, when the perturbation is too small).
Therefore, the critical amplitude is given by the condition
d(n+1) = d(n) of marginal stability, which together with
equation (24) implies d(n) = L − (N − 1)d(n) − v0t(n) or

v0t(n) = L − Nd(n). (25)
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Multiplying equation (22) with (N − 1), we obtain for the
marginally stable case d(n+1) = d(n):

(N − 1)d(n) = (N − 1)
[
d0 − v0τ

(
1 − e−t(n)/τ

)]
. (26)

Inserting equation (23) finally yields

v0t(n) = L − Nd0 + Nv0τ
(
1 − e−t(n)/τ

)
. (27)

Dividing equation (27) by N , considering L/N = 1/ρ, and
performing the limit N → ∞ gives

v0τ
(
1 − e−t(n)/τ

)
= d0 − 1

ρ
, (28)

i.e. one solution with a finite value of t(n):

t(n) = −τ ln
(

1 − d0 − 1/ρ

τv0

)
≈ 1

v0

(
d0 − 1

ρ

)
. (29)

Here, our approximation is based on the first-order Taylor
expansion ln(1 − x) ≈ −x. Together with equation (25),
we have

d0 − 1
ρ
≈ v0t(n) = L − Nd(n), (30)

and considering d(n+1) = d(n) = · · · = d(0) finally gives

L − Nd(0) ≈ d0 − 1
ρ
. (31)

This can now be inserted into equation (12) to obtain the
critical amplitudes:

Δρcr(ρ) =
∣
∣∣
∣

L − Nd(0)

d(0)[L − (N − 1)d(0)]

∣
∣∣
∣

≈
∣
∣
∣∣

d0 − 1/ρ

d(0)(d0 − 1/ρ + d(0))

∣
∣
∣∣

≈
∣
∣
∣
∣
d0 − 1/ρ

d0/ρ

∣
∣
∣
∣ =

∣
∣
∣
∣ρ − 1

d0

∣
∣
∣
∣ , (32)

where we have applied d(0) ≈ 1/ρ according to equa-
tion (13).

Equation (32) agrees well with our numerical findings
(see Fig. 7). Obviously, the critical perturbation ampli-
tude is zero for ρ = 1/d0 = ρc3, as it should. Moreover,
for the specification (2) of the optimal velocity function,
the critical amplitude does not diverge at a finite den-
sity. Nevertheless, there is a critical density ρc4, which is
given by the fact that d(n+1) ≥ d0 − v0τ according to
equation (22). Considering d(n+1) = d(0) ≈ 1/ρ in the
marginally stable case, a critical amplitude ceases to exist
for densities larger than

ρc4 =
1

d0 − v0τ
. (33)
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Fig. 7. (Color Online) Results of computer simulations of the
car-following model (1) with the optimal velocity function (2)
for a time discretization δt = 0.1 and v0 = d0/τ (where d0 = 1
and τ = 1 has been assumed because of the possibility to scale
space and time). The simulations were run for N = 100 vehi-
cles, with the initial conditions illustrated in Figures 6 and 8.
Given a certain average density ρ, the length L of the simu-
lation stretch was chosen as L = N/ρ, and the perturbation
amplitude Δρcr(ρ) = |1/d(0) − 1/[L− (N − 1)d(0)]| determined
the initial distance d(0) between N−1 of the vehicles. The bold
dashed lines represent the necessary condition (15) for the exis-
tence of stop-and-go waves, while the thin solid lines represent
the approximate critical amplitudes calculated in this paper.
The critical amplitudes according to our numerical simulations
lie between the areas represented by different kinds of symbols
reflecting different traffic states at t = 2000: green plus signs
mean all vehicles move at the desired speed v0, blue circles
mean all vehicles have stopped moving, and red dots mean ve-
hicles have different speed values, corresponding stop-and-go
waves.

5 The case of low densities

The initial condition assumed for low densities is illus-
trated in Figure 8. While at large densities, vehicle j = 1
had a larger distance than the other vehicles, it has now a
smaller distance. In the following, we will focus on vehicle
j = N , of which we assume that it is located at x = 0
and starts to accelerate at time t = 0 with an initial speed
vN (0) = 0, while the following vehicle j = 1 is assumed to
have the initial distance d1(0) = d

(0)
min < d0. As the other

vehicles have, by definition, the same initial distance d(0)

from each other, the distances are related via the equation

d1(0) = d
(0)
min = L − (N − 1)d(0). (34)

Equation (12) determines again the perturbation size. In
the case of small densities ρ ≤ ρc2 = 1/d0, the survival of a
perturbation requires that there is at least one vehicle with
a distance d

(0)
min < d0 for a long enough time period t∗ to

force the successive vehicle to brake. (If this vehicle would
already start to accelerate before the follower reaches a
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j=2

j=N

j=1

Fig. 8. Illustration of the initial distribution of vehicles as-
sumed in the low-density case (ρ < 1/d0). Again, all vehicles
are standing at time t = 0, but vehicle j = 1 has the initial

distance d1(0) = d
(0)
min = L−(N−1)d(0), while all other vehicles

have the initial distance d(0) > d0. The initial vehicle speeds
were set to zero.

distance d0 to it, this would cause the perturbation to fade
away.) Therefore, let us determine t∗ in the following.

5.1 Derivation focused on the trajectory of one vehicle

According to equations (1) and (2), the speed of ve-
hicle j = N evolves in time according to dvN/dt =
[v0 − vN (t)]/τ , which implies

vN (t) =

t∫

0

dt′
dvN (t′)

dt′
= v0(1 − e−t/τ ) ≈ v0, (35)

and the related distance moved is

dN (t) =

t∫

0

dt′ v(t′) = v0t + v0τ(e−t/τ − 1) ≈ v0(t − τ),

(36)
where the approximate equalities hold for t � τ . Let d

(1)
min

denote the distance of the vehicles j ∈ {2, . . . , N−1}, after
they were stopped by vehicle j = 1 or a follower. Then,
the distance moved by vehicle j = N before it starts to
decelerate at time t = t∗ (when it has reached a distance
d0 to its predecessor), is

dN (t∗) = L − d
(0)
min − (N − 2)d(1)

min − d0. (37)

d
(1)
min denotes the minimum distance of a vehicle at the end

of its first deceleration maneuver, d
(2)
min after the second

one, etc. Equations (36) and (37) imply the start of the
deceleration maneuver at time t = t

(1)
∗ with

t
(1)
∗ = τ +

L − d
(0)
min − (N − 2)d(1)

min − d0

v0
. (38)

In order for the perturbation to persist, this time period
must be shorter than the time period T(0) + (N − 2)T(1),
at which vehicle j = 1 starts to accelerate, where T(n)

is the time shift between the acceleration of two subse-
quent vehicles standing at a distance d

(n)
min. This implies

the threshold condition

τ +
L − (N − 1)d(1)

min − d0

v0
= T(0) + (N − 2)T(1) (39)

for the survival of a perturbation. As the first deceleration
maneuver extends over a time period Δt = t

(1)
∗ − T(0) −

(N − 2)T(1), the evolution vN (t) = v0e−(t−t(1)∗ )/τ of the
vehicle speed for t

(1)
∗ < t ≤ t

(1)
∗ + Δt implies that the

minimum distance d
(1)
min afterwards is

d
(1)
min = d0 −

t(1)∗ +Δt∫

t
(1)
∗

dt′ vN (t′)

= d0 − v0τ(1 − e−Δt/τ ) ≥ d0 − v0τ. (40)

Moreover, let us assume a subsequent increase of the speed
according to v0(1 − e−(t−t′)/τ ), where t′ represents the
starting time of the acceleration maneuver. Then, since
the following vehicle starts to accelerate when that vehicle
has reached a distance d0, the time period T(1) between
successive acceleration maneuvers is determined by the
equation

d0 = d
(1)
min +

t′+T(1)∫

t′

dt v0(1 − e−(t−t′)/τ )

= d
(1)
min + v0

[
T(1) − τ(1 − e−T(1)/τ )

]
. (41)

Consider now that, for the critical amplitude, the condi-
tions d

(1)
min = d

(0)
min and T(1) = T(0) of marginal stability

must hold. Then, equations (39) and (41) imply

(N − 1)T(0) = (N − 1)

(
d0 − d

(0)
min

v0
+ τ(1 − e−T(0)/τ )

)

= τ +
L − (N − 1)d(0)

min − d0

v0
. (42)

Rearranging this and dividing the result by N , in the limit
N � 1 and with L/N = 1/ρ we get

1
ρ
− d0 ≈ v0τ(1 − e−T(0)/τ ). (43)

Furthermore, with d
(1)
min = d

(0)
min and T(1) = T(0), equa-

tion (41) leads to

d
(0)
min − d0 = v0τ(1 − e−T(0)/τ ) − v0T(0) ≈ v0 (T(0))2

2τ
, (44)
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Fig. 9. (Color Online) Exact solution of equation (51) as com-
pared to its approximate solution (45). The approximation

works particularly well in the relevant range of d
(0)
min/d0 ≈ 1.

where the last approximation is based on a Taylor expan-
sion of second order. Therefore, we have

(v0T(0))2 ≈ 2τv0(d0 − d
(0)
min) (45)

(see Fig. 9), while equations (44) and (43) together imply

v0T(0) ≈ 1
ρ
− d

(0)
min. (46)

As a consequence of equations (45) and (46), we have

(
1
ρ
− d

(0)
min

)2

≈ 2τv0(d0 − d
(0)
min). (47)

Solving this with respect to d
(0)
min finally gives

d
(0)
min = −

(
τv0 − 1

ρ

)
±

√
(
τv0 − 1

ρ

)2

−
( 1

ρ2 − 2τv0d0

)
,

(48)
but only the solution with the plus sign meets the require-
ment d

(0)
min > 0 in the relevant density range (see Fig. 10).

Considering equations (12) and (13), we find the following
relationship for the critical amplitude:

Δρcr =
∣
∣
∣
∣

1
d(0)

− 1
d1(0)

∣
∣
∣
∣ ≈

∣∣
∣
∣
∣
ρ − 1

d
(0)
min

∣∣
∣
∣
∣
. (49)

The critical amplitude ceases to be well-defined, when d
(0)
min

assumes complex values, i.e. when the expression in equa-
tion (48) under the root becomes negative. The critical
density corresponds ρc1 to the density for which the root
becomes zero, i.e. both solutions in equation (48) agree.
This leads to

ρc1 =
1

d0 + τv0/2
. (50)
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Fig. 10. Both real-valued solutions of equation (48). It can be
seen that the lower solution would predict negative values of

d
(0)
min for most density values ρ. Therefore, the upper solution

must be chosen. Below ρ = ρc1, the solution of equation (48)
has an imaginary part, which does not have a reasonable in-
terpretation, here.

With this, we have successfully estimated the critical den-
sity and the critical amplitudes, as Figure 7 shows. No-
tably, our results for the low-density regime deviate sig-
nificantly from the lower limit given in equation (15). It
is for the first time that the problem of determining crit-
ical perturbation amplitudes of a traffic model has been
analytically solved.

5.2 Derivation focused on a leader and its follower

While we have based our previous calculations on the
study of vehicle j = N , we may also derive our results
from the consideration of two successive vehicles instead.
Analogously to equation (41), the time T(0) after which
vehicle j = 1 starts to accelerate is given by

d
(0)
min + v0

[
T(0) − τ(1 − e−T(0)/τ )

]
= d0. (51)

At that time, the following vehicle has the distance

d
(1)
min = d(0) − v0t′′

︸ ︷︷ ︸
=d0

−v0τ
(
1 − e−(T(0)−t′′)/τ

)
, (52)

where

t′′ =
d(0) − d0

v0
≈ 1/ρ− d0

v0
(53)

is the time, at which vehicle j = 2 starts to decelerate,
while it moves at speed v0 before. For the survival of the
perturbation we have to demand t′′ ≥ 0 and d

(1)
min ≤ d

(0)
min.

In first-order Taylor approximation, we have

d0 − d
(1)
min = v0τ

(
1 − e−(T(0)−t′′)/τ

)

≈ v0(T(0) − t′′) ≈ v0T(0) −
(

1
ρ
− d0

)
, (54)
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Fig. 11. Critical amplitude according to equations (49) and
(48). The curve is very well compatible with the numerical
results, as shown in Figure 7.

so that together with equation (52) we get

v0T(0) =
1
ρ
− d

(1)
min. (55)

As pointed out before, for the critical amplitude we can
presuppose marginal stability with d

(1)
min = d

(0)
min. Conse-

quently, the relation (v0T(0))2 ≈ 2τv0(d0 − d
(0)
min) results

again as an approximate solution of (51), see Figure 11.

6 Summary and conclusions

Our findings can be summarized as follows: based on the
car-following model (1) with the stepwise optimal velocity
function (2) and a simple type of initial perturbation, it
is possible to derive critical amplitudes and critical densi-
ties. Linearly unstable behavior, where the breakdown of
free traffic flow is caused by minor perturbations, is found
only between the critical densities ρc2 and ρc3. In case of
the stepwise optimal velocity function (2), both critical
densities agree, and we have ρc2 = ρc3 = 1/d0. Below this
density, the survival of a perturbation needs at least one
vehicle with a distance d

(0)
min < d0 for a long enough time

period to force the successive vehicle to brake. This re-
quires densities between the critical densities ρc1 and ρc2,
where ρc1 is given by equation (50) in good agreement with
numerical results, see Figure 7. Furthermore, the pertur-
bations must have a size greater or equal to the critical
perturbation amplitude Δρcr(ρ). Equation (49) with (48)
represent the related results of our approximate analytical
calculations.

If the average density ρ exceeds the value 1/d0, an ini-
tial perturbation will fade away, if the maximum vehicle
distance does not allow drivers to reach a sufficiently high
speed in the acceleration process to reach a vehicle dis-
tance equal to or smaller than d(0) after the successive
braking maneuver. With equation (33), we have found an
analytical formula for the critical density ρc4, above which

perturbations will necessarily decay. However, for average
densities between ρc3 and ρc4, perturbations larger than
the critical amplitude given by equation (32) will grow
and form moving jams of the kind of “anticlusters”, while
smaller perturbations will fade away, giving rise to home-
gonous, congested traffic (and in the special case of the
stepwise optimal velocity function assumed here, even to
standing traffic). Note that, for other specifications of the
optimal velocity function, homogeneous congested traffic
flows will usually be finite. Furthermore, it should not be
forgotten that the critical perturbation amplitude may de-
pend on the shape of the initial perturbation.

Our analytical findings are summarized by Figure 7.
Note that the self-organized flow-density relation (the
“jam line”) differs significantly from the “fundamental di-
agram” resulting from the optimal velocity function in the
case of stationary and homogeneous traffic flows, which,
however, may be unstable. An interesting observation for
the stepwise specification of the optimal velocity function
is that large perturbations at high vehicle densities can
reach greater average flows than small perturbations, while
the situation at low densities is characterized by a capacity
drop, see equation (9).

The authors would like to thank Peter Felten for the prepara-
tion of illustrations 6 and 8.
Author Contributions: MM produced the other figures and per-
formed the computer simulations, while DH did the analytical
calculations.

Appendix: Derivation of the characteristic
constants of the optimal velocity model

For the stepwise specification (2), the characteristic con-
stants of the optimal velocity model (1) can be analytically
calculated (see Ref. [29]). In the following, we summarize
the calculations in our notation, here. For this, let us as-
sume a number of jammed vehicles with velocity zero and
distance smaller than d0 ρjam shall denote the jam density.

If we assume that a car starts to accelerate out of the
jam only when its leading car has approximately reached
its desired velocity v0, and starts to decelerate when its
predecessor has almost stopped in the traffic jam, we have
the acceleration equation dvj/dt ≈ [v0 − vj(t)]/τ > 0 for
dj > d0 and dvj/dt ≈ [0 − vj(t)]/τ < 0 for dj ≤ d0.
Consequently, we find

vj(t) ≈
{

v0
(
1 − e−(t−t0)/τ

)
if dj(t) > d0,

v0e−(t−t2)/τ otherwise.
(56)

t0 is the time point when the acceleration of vehicle j
starts with dj(t0) = d0 and ddj(t0)/dt > 0, while t2 is the
successive time point with d(t2) = d0 and ddj(t2)/dt < 0,
when the deceleration starts.

We may distinguish four different phases:

– Phase 1 is characterized by dvj−1(t)/dt > 0 and
dvj(t)/dt > 0, i.e. vehicle j and its leader j−1 both ac-
celerate. According to the travelling wave concept, the
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trajectory of vehicle j is exactly identical with the one
of its predecessor, but shifted by some time period T ,
which corresponds to the delay between the accelera-
tion of two successive vehicles out of the traffic jam, i.e.

vj(t) = vj−1(t − T ). (57)

The speed c of jam resolution is then given by the dis-
tance −1/ρjam between two jammed vehicles, divided
by this time period T :

c = − 1
ρjamT

. (58)

The negative sign is a consequence of the fact that
vehicle j stands upstream of vehicle j − 1, but accel-
erates later, so that the downstream jam front travels
opposite to the direction of vehicle motion.
Considering the delay T , we get

ddj(t)
dt

= vj−1(t) − vj(t)

= vj(t + T )− vj(t), (59)

which by integration over time and with dj(t0) = d0

results in

dj(t) = d0 +
(
1 − e−T/τ

)
v0τ

(
1 − e−(t−t0)/τ

)

= d0 +
(
1 − e−T/τ

)
τvj(t). (60)

This implies a linear increase of distance with speed
(see Fig. 4). Consequently, the desired velocity vj(t) =
v0 is reached at the distance

1
ρout

= d0 + τv0
(
1 − e−T/τ

)
, (61)

which defines the density ρout related with the charac-
teristic outflow Qout = ρoutv

0 from congested traffic.
– Phase 2 is characterized by dvj−1(t)/dt < 0 and

dvj(t)/dt > 0, i.e. vehicle j − 1 already decelerates,
while vehicle j still accelerates. This phase is assumed
to start at time t1 > t0, and we have ddj(t)/dt =
v0e−(t−t1)/τ − v0(1 − e−(t−t0)/τ ) < 0. Therefore, we
get

dj(t) = dj(t1) − v0τ(e−(t−t1)/τ − 1) − v0(t − t1)

− v0τ(e−(t−t0)/τ − e−(t1−t0)/τ )

≈ dj(t1)−v0(t − t1)+v0τ
(
1 − e−(t−t1)/τ

)
,(62)

where the approximation assumes t− t0 ≥ t1− t0 � τ .
That is, the distance dj(t) goes down, while the speed
vj(t) = v0(1 − e−(t−t0)/τ ) is approximately v0. The
distance dj(t) becomes d0 at time t2 with

(t2 − t1) =
dj(t1) − d0

v0
+ τ. (63)

– Phase 3 starts at time t2 > t1 and is characterized by
dvj−1(t)/dt < 0 and dvj(t)/dt < 0, i.e. vehicle j − 1
decelerates, and vehicle j does the same with a time
delay of T . One can say that phase 3 is the inverse
process of phase 1, and we get

dj(t) = d0 − v0
(
1 − e−T/τ

)
τ
(
1 − e−(t−t2)/τ

)

= d0 −
(
1 − e−T/τ

)
τ
[
v0 − vj(t)

]
. (64)

Accordingly, the distance is monotonously decreasing
with time. The minimum distance 1/ρjam is reached at
time t = t3 for the jam density ρjam and obtained by
setting vj(t) = 0:

1
ρjam

= d0 − τv0
(
1 − e−T/τ

)
. (65)

Together with equation (61) we find

1
ρout

− 1
ρjam

= 2τv0
(
1 − e−T/τ

)
. (66)

– Phase 4 starts at time t3 and is characterized by
dvj−1(t)/dt > 0 and dvj(t)/dt < 0, i.e. vehicle j still
decelerates, while its leader j − 1 already accelerates.
Phase 4 is the inverse process of phase 2, and we have
ddj/dt = v0(1 − e−(t−t3)/τ ) − v0e−(t−t2)/τ . Therefore,
we find

dj(t) = dj(t3) + v0(t − t3) + v0τ(e−(t−t3)/τ − 1)

+ v0τ(e−(t−t2)/τ − e−(t3−t2)/τ )

≈ 1
ρjam

+v0(t − t3)−v0τ
(
1 − e−(t−t3)/τ

)
, (67)

where the approximation assumes t− t3 ≥ t3− t2 � τ .
Therefore, the distance grows in time, while the veloc-
ity vj(t) = v0e−(t−t2)/τ of vehicle j is approximately
zero. At time t4, the distance dj(t) becomes d0. The
difference t4 − t3 determines the time delay T between
two successive acceleration maneuvers of cars leaving
the traffic jam. Inserting the definition (65) for ρjam,
we obtain

d0 =
1

ρjam
+ v0T − τv0

(
1 − e−T/τ

)

= d0 + v0T − 2τv0
(
1 − e−T/τ

)
(68)

and the implicit relationship for the time shift

T = 2τ
(
1 − e−T/τ

)
. (69)

Together with equation (61), this yields

1
ρout

= d0 +
v0T

2
. (70)

Therefore, according to equations (65), (61), and (69),
it is possible to express the characteristic constants T ,
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c, ρjam, and ρout through the model parameters d0,
v0, and τ only, without any dependence on the initial
condition. Note that all the characteristic parameters
are no model parameters. They are rather a result of
the self-organization of characteristic jam fronts (see
Fig. 4).
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24. B.S. Kerner, P. Konhäuser, Phys. Rev. E 50, 54 (1994)
25. D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber, Math.

Comp. Model. 35, 517 (2002)
26. M. Herrmann, B.S. Kerner, Physica A 255, 163 (1998)
27. D. Helbing, M. Schreckenberg, Phys. Rev. E 59, R2505

(1999)
28. B.S. Kerner, S.L. Klenov, P. Konhäuser, Phys. Rev. E 56,
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