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Abstract LP-type problems is a successful axiomatic framework for optimization
problems capturing, e.g., linear programming and the smallest enclosing ball of a
point set. In Matoušek and Škovroň (Theory Comput. 3:159–177, 2007), it is proved
that in order to remove degeneracies of an LP-type problem, we sometimes have to
increase its combinatorial dimension by a multiplicative factor of at least 1 + ε with
a certain small positive constant ε. The proof goes by checking the unsolvability of a
system of linear inequalities, with several pages of calculations.

Here by a short topological argument we prove that the dimension sometimes has
to increase at least twice. We also construct 2-dimensional LP-type problems with
−∞ for which removing degeneracies forces arbitrarily large dimension increase.

1 Introduction

Degeneracies, such as three points lying on a common line or four co-circular points,
constitute a serious issue in geometric computations, and often it would be desirable
to have a simple and general tool for removing them. In [7], we obtained a result indi-
cating that the problem of removing degeneracies has no simple “abstract” solution.

We considered LP-type problems, a successful axiomatic framework for optimiza-
tion problems due to Sharir and Welzl [11], capturing, e.g., linear programming and
the smallest enclosing ball of a point set. Loosely speaking, for a fixed ε > 0 and
for infinitely many values of D, we constructed an LP-type problem of combinato-
rial dimension D such that removing degeneracies from it enforces increasing the
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combinatorial dimension to at least (1 + ε)D (the undefined terms will be explained
below).

In the proof, we first reduced the problem to showing that a certain poset (partially
ordered set) cannot be partitioned into Boolean algebras in a certain way. This com-
binatorial statement was then proved by setting up a system of linear inequalities and
showing its inconsistence by several pages of calculations and asymptotic estimates.

In the present paper, we provide a different and quite short proof of that combi-
natorial statement by a topological method. More precisely, we prove a stronger (and
actually tight) lower bound for the partitioning problem, namely, increase from D

to 1.5D, but under stronger assumptions. As a consequence, the proof given here ap-
plies to LP-type problems but, unlike the proof in [7], it does not apply to the more
general framework of violator spaces [3]. Thus, at present the method given here
and the method of [7] can be regarded as complementary to each other, neither one
completely superseding the other.

Next, we present a different LP-type problem, where removing degeneracy forces
dimension increase from D to 2D. Finally, if we allow for the so-called LP-type
problems with −∞, we prove the necessity of dimension increase from 2 to arbitrarily
large.

2 LP-Type Problems

Here we formally introduce LP-type problems. We state only the definitions directly
relevant to our results; for more background on LP-type problems, we refer, e.g.,
to [7] or [3]. Then we state our results in the language of LP-type problems. Fa-
miliarity with LP-type problems is not really necessary for understanding the pa-
per, though, since in Sect. 3, we reformulate the results in a combinatorial language,
speaking about a poset partitioning problem, and we prove them in that form.

2.1 LP-Type Problems and Their Dimension

Formally, an LP-type problem is a pair (H,w), where H is a finite set of constraints
and w: 2H → R ∪ {−∞} is a function, obeying the two axioms below, that for every
subset G ⊆ H , specifies its value w(G) ∈ R ∪ {−∞}. Intuitively, w(G) is the min-
imum value of a solution that satisfies all constraints in G. The value can be a real
number or a special element −∞, which is considered to be smaller than all real
numbers. The axioms are:

Monotonicity: For all F ⊆ G ⊆ H, we have w(F) ≤ w(G).

Locality: For all F ⊆ G ⊆ H and all h ∈ H

with w(F) = w(G) = w(F ∪ {h}) �= −∞,

we have w(G ∪ {h}) = w(G).

We say that (H,w) is an LP-type problem without −∞ if w(G) �= −∞ for all
G ⊆ H . (We note that for sets with value −∞, we permit an “exception to local-
ity” in the definition, and so in LP-type problems without −∞, locality must hold
without exceptions.)
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Fig. 1 The square example
(left) and its top poset (right)

Let G ⊆ H . A basis of G is any inclusion-minimal subset B ⊆ G with w(B) =
w(G). A set B ⊆ H is a basis if it is a basis of some G ⊆ H , and the combinatorial
dimension dim(H,w) of an LP-type problem (H,w) is the maximum cardinality of
a basis.

An example of a useful LP-type problem (one without −∞) is the problem of
computing the smallest disk containing a given planar point set. Here H is a finite
point set in R

2, and w(G) is the radius of the smallest circular disk that encloses
all points of G. The combinatorial dimension is typically 3, but for some particular
choices of H, it can also be 2, 1, or 0.

2.2 Nondegenerate Refinement

A reasonable notion of degeneracy in LP-type problems is an “overdetermined” so-
lution, that is, a set with several distinct bases. Following [6], we call an LP-type
problem (H,w) nondegenerate if w(B1) �= w(B2) for any two distinct bases B1,B2.
Consequently, in a nondegenerate LP-type problem, every G ⊆ H has exactly one
basis.

For removing degeneracies, we want to break the ties w(B1) = w(B2) by slightly
modifying the values of w while retaining all strict inequalities among the original
values. We say that an LP-type problem (H,w′) is a refinement of an LP-type prob-
lem (H,w) on the same set of constraints if for all F,G ⊆ H with w(F) < w(G),

we have w′(F ) < w′(G). To remove degeneracies of an LP-type problem means to
find a nondegenerate refinement of it.

In order to produce a nondegenerate refinement, we sometimes need to introduce
new bases and sometimes even larger ones than those in the original LP-type prob-
lem. The following LP-type problem (Hsq,wsq), which we call the square example,
was introduced in [6]: We have Hsq = {a, b, c, d}, where a, b, c, d ∈ R

2 are the ver-
tices of a square (Fig. 1 left), and for G ⊆ Hsq, wsq(G) is the radius of the smallest
enclosing disk of G. The set Hsq has two bases B1 = {a, c} and B2 = {b, d}, and
dim(Hsq,wsq) = 2. However, it is not hard to check that any nondegenerate refine-
ment has combinatorial dimension at least 3.

2.3 Top Posets

Let (H,w) be an LP-type problem. The top poset of (H,w) is the set system

Topp(H,w) := {
G ⊆ H : w(G) = w(H)

}

ordered by inclusion. For example, Fig. 1 right shows the Hasse diagram of the top
poset for the square example. As will be stated precisely in the next section, a neces-
sary condition for the existence of a nondegenerate refinement of (H,w) of combi-
natorial dimension at most d is the existence of a certain partition of the top poset.
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Fig. 2 The octagon example

2.4 Joins

In [7], we defined the operation of join of two LP-type problems (H1,w) and
(H2,w2), resulting in another LP-type problem (H,w) = (H1,w1)∗ (H2,w2), where
H is the disjoint union of H1 and H2 (in particular, if H1 = H2, we must take two
“distinct copies” of H1), and for G ⊆ H, we define w(G) = w1(G1) + w2(G2),
where Gi is the part of G contained in Hi , i = 1,2. We have dim(H,w) =
dim(H1,w1) + dim(H2,w2).

2.5 Statement of Results

In [7], we proved the following:

Theorem 2.1 [7] For every m, the m-fold join of (Hsq,wsq) is an LP-type problem
without −∞ of combinatorial dimension 2m such that any nondegenerate refinement
has combinatorial dimension at least (2 + ε)m, where ε is a positive constant (inde-
pendent of m).

In this paper, we give an alternative short proof of Theorem 2.1, which moreover
yields the best possible value of ε, namely, ε = 1 (since there indeed is a nondegen-
erate refinement of combinatorial dimension 3m).

Next, we define an LP-type problem (Hoct,woct), the octagon example, of combi-
natorial dimension 2; see Fig. 2. There are 8 constraints marked by full circles, and
weights of subsets G ⊆ Hoct are defined as follows:

• ∅ has weight −1, and every one-element set has weight 0.
• The bold edges (2-element sets) have weight 4 (the maximum weight), the light

solid edges weight 3, the dashed edges weight 2, and all other 2-element sets
weight 1.

• The weight of any set of G more than 2 elements is given as the maximum weight
of a 2-element subset of G.

This LP-type problem was found by a computer search (using a program developed
by P. Škovroň). It is clear that the weight function thus defined satisfies monotonicity
and also that the dimension is 2. Checking locality is more demanding, but it can still
be done by hand (first one can check that if the locality axiom is violated by some
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F,G, and h, then it is also violated by F,G,h with |F | ≤ 2 and |G| ≤ 3, and then
one can distinguish a small number of cases, using the symmetry of the problem).1

Theorem 2.2 For every m, the m-fold join of (Hoct,woct) is an LP-type problem
without −∞ of combinatorial dimension 2m such that any nondegenerate refinement
has combinatorial dimension at least 4m.

Let us remark that our proof of this theorem uses only the structure of the top
poset of the octagon example, while the weights of the subsets not belonging to the
top poset are irrelevant for the proof. However, in order to know that there indeed is
a 2-dimensional LP-type problem with this particular top poset (the “octagon”), we
had to specify values for all subsets.

Finally, we turn to LP-type problems with −∞. We set Ht = {ai, bi : i =
1,2, . . . , t} and for G ⊆ Ht , we define wt(G) = 1 if G contains at least one of the
pairs {ai, bi}, i = 1,2, . . . , t , and wt(G) = −∞ otherwise. Then (Ht ,wt ) is clearly a
2-dimensional LP-type problem with −∞.

Theorem 2.3 For every positive integer t , any nondegenerate refinement of the
2-dimensional LP-type problem (Ht ,wt ) has combinatorial dimension larger than t .

It seems very likely that this theorem can also be proved by the method of [7]; the
calculations should even be easier than those in [7], and similarly to the situation in
Theorem 2.1, they would also yield the nonexistence of nondegenerate refinement of
bounded dimension in the realm of violator spaces.

A natural question is, can we get an analogue of Theorem 2.3 for LP-type problems
without −∞ (whose structure is considerably more restricted)? Or more generally, is
there a function f such that every LP-type problem without −∞ of combinatorial di-
mension d has a nondegenerate refinement of combinatorial dimension at most f (d)?
So far this remains open, and Theorem 2.2 is the strongest result in this direction.

3 Poset Partitioning Problems

3.1 Cube Partitions

Let H be a fixed ground set. For sets B ⊆ C ⊆ H , we define the cube [B,C] as
the set system {G : B ⊆ G ⊆ C} ordered by inclusion. It is isomorphic to the poset
(2C\B,⊆), i.e., to a Boolean algebra with |C \ B| atoms. The bottom dimension of
the cube [B,C] is defined to be |B|.

Let P ⊆ 2H be a set system. A cube partition of P is a partition of P into disjoint
cubes, and the bottom dimension of such a cube partition is the maximum of the
bottom dimensions of the cubes involved in the partition.

1Interestingly, it can be shown that if we want a 2-dimensional LP-type problem where the maximum-
weight bases form exactly the edges of the 8-cycle, there is no way of setting the weights of the remaining
pairs so that they are invariant under all symmetries of the 8-cycle.
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As shown in [7], if an LP-type problem (H,w) has a nondegenerate refinement
(H,w′) of combinatorial dimension at most d , then the top poset Topp(H,w) has a
cube partition of bottom dimension at most d . Each of the cubes in the partition has
the form w′−1(x) for some x ∈ R; that is, it consists of all G ⊆ H with some given
w′-value.

An additional property of these cube partitions, which was not used in [7] but
which we will need here, is acyclicity. For two cubes [B,C] and [B ′,C′], let us
define [B,C] � [B ′,C′] if B ⊆ C′ (equivalently, if G ⊆ G′ for some G ∈ [B,C]
and G′ ∈ [B ′,C′]). A cube partition of some P is called acyclic if the relation � on
its cubes is acyclic. The cube partition of Topp(H,w) induced by a nondegenerate
refinement (H,w′) is acyclic, since each of the cubes corresponds to a particular
w′-value, and the w′-values are linearly ordered.

We also need to see how the join of LP-type problems is reflected in the top posets.
First, we introduce the following general definition: Let V,W be disjoint sets, and
let P ⊆ 2V and Q ⊆ 2W be set systems. The join of P and Q is P ∗ Q = {P ∪
Q : P ∈ P ,Q ∈ Q}. If we want to consider the join P ∗ Q for P = Q (or in other
situations where the ground sets are not disjoint), we first form isomorphic copies of
P and Q with disjoint ground sets, and then we use the previous definition. Now if
(H1,w1) and (H2,w2) are LP-type problems, we have Topp((H1,w1) ∗ (H2,w2)) =
Topp(H1,w1) ∗ Topp(H2,w2).

3.2 Poset Versions of Theorems 2.1–2.3

Let Sm denote the top poset of the join of m copies of the square example as in
Theorem 2.1. Explicitly, we can describe Sm as follows: Let us write the 4m-element
set H of constraints as {ai, bi, ci, di : i = 1,2, . . . ,m}; then a set G ⊆ H belongs
to Sm if, for every i = 1,2, . . . ,m, it contains at least one of the pairs {ai, ci} and
{bi, di}.

Similarly, for the top poset Om of the join of m copies of the octagon example,
we write H = {vij : j = 1,2, . . . ,8, i = 1,2, . . . ,m}, and G ⊆ H belongs to Om

if it contains, for every i = 1,2, . . . ,m, at least one of the edges of the 8-cycle on
{vi1, . . . , vi8}.

Finally, for the top poset Mt of the LP-type problem from Theorem 2.3 with
Ht = {ai, bi : i = 1,2, . . . , t}, a set G ⊆ Ht belongs to Mm if it contains at least one
of the pairs {ai, bi}.

Theorem 3.1

(i) (A combinatorial version of Theorem 2.1) The poset Sm has no acyclic cube
partition of bottom dimension smaller than 3m.

(ii) (A combinatorial version of Theorem 2.2) The poset Om has no acyclic cube
partition of bottom dimension smaller than 4m.

(iii) (A combinatorial version of Theorem 2.3) The poset Mt has no acyclic cube
partition of bottom dimension t or smaller.

This theorem will be proved in Sect. 5 after we develop tools for the proof.
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The case m = 2 in Theorem 3.1(i) was proved by Škovroň [12] by case analysis.
In [7], we have shown that Sm has no cube partition of bottom dimension smaller
than (2 + ε)m, without requiring the partition to be acyclic. The acyclicity require-
ment may indeed make a difference: While S2 does have a cube partition of bottom
dimension 5 (shown in [7]), it has no acyclic one.

4 Topological Conditions for Acyclic Cube Partitions

In this section, we obtain necessary conditions for the existence of an acyclic cube
partition of a given bottom dimension for a given poset in terms of topological con-
nectivity of an associated simplicial complex (Proposition 4.4).

We will recall most of the necessary topological definitions and facts, some of
them here and others in the course of the arguments. However, our presentation is
not fully self-contained in the sense that we do not elaborate on some claims that are
standard exercises in elementary algebraic topology but may be harder to establish
without any topological background. For such a background, we refer, e.g., to the
reference work [1] written for combinatorialists, or to standard textbooks like [4]
or [10].

4.1 Topological Preliminaries

Let V be a finite ground set. A simplicial complex with vertex set V is a hereditary
family K ⊆ 2V (that is, σ ∈ K and σ ′ ⊂ σ implies σ ′ ∈ K). The sets of K are called
simplices or faces of K, and the dimension of a face σ ∈ K is |σ | − 1.

The simplicial complex K is assigned a topological space ‖K‖, the geometric re-
alization of K, in a canonical way (uniquely up to homeomorphism), in which each
k-dimensional face σ ∈ K corresponds to a k-dimensional geometric simplex con-
tained in the space ‖K‖.

The join K∗L of simplicial complexes K and L is a particular case of our definition
of the join of set systems in the previous section.

A topological space X is k-connected if every continuous map f : Sj → X can
be extended to a continuous map f̄ : Bj+1 → X for all j ≤ k, where Bj+1 denotes
the unit ball in R

j+1, and Sj denotes its boundary sphere. A simplicial complex K is
said to be k-connected if its geometric realization ‖K‖ is k-connected. We will use
the fact that Sk is not k-connected, which is a simple consequence of the famous
Borsuk–Ulam antipodality theorem.

We will need a few things about homology and cohomology, but it will be
enough to talk about Betti numbers: The kth Betti number βk(X) is the rank of
the k-dimensional reduced homology group of X (with coefficients in Z). By a
theorem of Hurwitz, a k-connected simplicial complex K has βi(K) = 0 for all
i ≤ k. The Künneth formula for the homology of the join implies that βk(K ∗ L) =∑

i+j=k−1 βi(K)βj (L), and consequently, if the join K ∗ K ∗ · · · ∗ K of m copies of K
is (m(k + 1) − 1)-connected, then βi(K) = 0 for all i ≤ k.

We also recall that topological spaces X and Y are homotopy equivalent if there
exist continuous maps f : X → Y and g: Y → X such that the composed map f ◦g is
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homotopic to the identity map of Y , and g ◦ f is homotopic to the identity map of X.
Here two continuous maps h0, h1: S → T of topological spaces are homotopic if
there exists a continuous H : S × [0,1] → T such that h0(x) = H(x,0) and h1(x) =
H(x,1) for all x ∈ S. Homotopy equivalence preserves k-connectivity.

4.2 (≥d)-Collapsibility

Wegner [13] introduced the notion of d-collapsibility of a simplicial complex, in
connection with investigating intersection patterns of convex sets in R

d . We introduce
a variation of his definition, where the parameter d plays a different role:

Definition 4.1 Let d be a given natural number, let K be a simplicial complex, and
let σ ∈ K be a face contained in a unique inclusion-maximal face τ ∈ K (where τ = σ

is also allowed). Let us also assume that |τ | ≥ d . The elementary (≥d)-collapse of σ

transforms K into the simplicial complex K \ {σ ′ ∈ K : σ ⊆ σ ′ ⊆ τ }. We say that K is
(≥d)-collapsible if it can be transformed into the simplicial complex ∅ by a sequence
of elementary (≥d)-collapses.

Now we show how the just introduced notion of (≥d)-collapsibility is related to
acyclic cube partitions. Let P ⊆ 2H be a set system on the ground set H . We say
that P is an up-set (meaning up-set in the poset (2H ,⊆)) if S ∈ P and S ⊆ S′ ⊆ H

implies S′ ∈ P . For an up-set P , we define P c := {H \ S : S ∈ P }; this is a simplicial
complex on vertex set H .

Lemma 4.2 Let H be an n-element set, and let P ⊆ 2H be an up-set. Then the
following are equivalent:

(i) P has an acyclic cube partition of bottom dimension at most d .
(ii) The simplicial complex K = P c is (≥n − d)-collapsible.

Proof First let us assume (i), and let [B1,C1], [B2,C2], . . . , [Bk,Ck] be a linear or-
dering of the cubes in some acyclic cube partition of P that extends the (acyclic)
relation �. In particular, for i < j, we have [Bj ,Cj ] �� [Bi,Ci], and hence no set of
[Bi,Ci] contains any set of [Bj ,Cj ]. It follows that for every i, Pi := ⋃

j≥i[Bj ,Cj ]
is an up-set, and hence Ki := {H \ G : G ∈ Pi} is a simplicial complex.

We now claim that Ki+1 is obtained from Ki by an elementary (≥n − d)-collapse
of the face σi := H \ Ci . The faces of Ki containing σi are the complements of all
sets in Pi contained in Ci , and the latter are precisely the sets in the cube [Bi,Ci].
In particular, τi := H \ Bi is the unique inclusion-maximal face of Ki containing σi .
Moreover, since the considered cube partition has bottom dimension at most d , we
have |τi | = n − |Bi | ≥ n − d . Thus Ki+1 indeed arises from Ki by an elementary
(≥n − d)-collapse of σi , and (ii) follows.

The implication (ii) ⇒ (i), which we actually do not need for the purposes of this
paper, is checked very similarly. �

The next lemma relates the notion of (≥d)-collapsibility to a more common topo-
logical property.
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Lemma 4.3 If K is (≥d)-collapsible, then it is (d − 2)-connected.

Proof It suffices to check that if K′ arises from K by an elementary (≥d)-collapse
and is (d − 2)-connected, then K is (d − 2)-connected as well.

Let σ and τ be as in Definition 4.1. First, if σ = τ , then K is obtained from K′
by adding a new face of dimension at least d − 1, and it is well known that such an
operation preserves (d − 2)-connectivity.

Second, if σ is a proper face of τ , then the elementary (≥d)-collapse of σ is an
elementary collapse in the sense of Whitehead (see, e.g., [1]), and hence K and K′ are
homotopy equivalent. The lemma is proved. �

Now we are ready for the main result of this section.

Proposition 4.4 (Necessary conditions for acyclic cube partitions)

(i) Let H be an n-element set, and let P ⊆ 2H be an up-set in the poset (2H ,⊆).
If P has an acyclic cube partition of bottom dimension d , then the simplicial
complex P c is (n − d − 2)-connected.

(ii) Let H and P be as in (i), and let P ∗m be the join of m copies of P . If P ∗m has
an acyclic cube partition of bottom dimension at most mk − 1, k integral, then
βi(P c) = 0 for all i ≤ n − k − 1.

Proof Part (i) is an immediate consequence of Lemmas 4.3 and 4.2. Part (ii) then fol-
lows from (i) and the fact about the connectivity of joins mentioned in the topological
preliminaries. �

For 2-dimensional LP-type problems, nondegenerate refinements can also be re-
lated to the independence complex of a graph, a notion investigated in a number of
papers (e.g., [5], [8], [9], and [2]). We recall that the independence complex Ind(G)

of a graph G = (V ,E) has vertex set V, and its simplices are all independent sets
in G.

Corollary 4.5 Let H be an n-element set, and let P ⊆ 2H be an up-set such that
every inclusion-minimal set in P has size 2. Let G be the graph with vertex set H

and edge set {e ∈ P : |e| = 2}. If P ∗m has acyclic cube partition of bottom dimension
mk − 1, k integral, then βi(Ind(G)) = 0 for all i ≥ k − 2.

Proof We recall that if K is a simplicial complex with vertex set V , the (combi-
natorial) Alexander dual of K is the simplicial complex K∗ = {V \ S : S �∈ K}. The
combinatorial Alexander duality, see, e.g., [1], implies βi(K∗) = βn−3−i (K) for all
i = −1,0,1, . . . , n− 2 (with the convention that β−1(K) = 0 for any nonempty K but
β−1(∅) = 1). It remains to observe that, in the situation of the corollary, the Alexander
dual of the simplicial complex P c is exactly the independence complex of G. �
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5 Proof of Theorem 3.1

Part (i) of the theorem follows from Proposition 4.4(ii) with n = 4 and k = 3, since if
P = S1 is the top poset of the square example, the simplicial complex P c consists of
two disjoint edges, and thus β0(P c) �= 0.

In part (ii), we can use Proposition 4.4(ii) again, with n = 8 and k = 4, and directly
calculate that β3(Oc

1) �= 0. Alternatively, we can use a result of Kozlov [5], stating that
the independence complex of a cycle of length 3q−1 is homotopy equivalent to Sq−1.
So in our case, the independence complex is S2 with nonzero β2, and Corollary 4.5
also shows that no acyclic cube partition of Om of bottom dimension smaller than 4m

exists.
In part (iii), we can again apply Corollary 4.5 conveniently. The inclusion-minimal

sets of Mt are t disjoint pairs, and so the graph G in the corollary is a matching
of t edges. The independence complex is thus the boundary of the t-dimensional
crosspolytope, which is homeomorphic to St−1, and so βt−1(Ind(G)) = 1. Corol-
lary 4.5 with m = 1 yields that Mt has no acyclic cube partition of bottom dimension
t or smaller. (This also gives an alternative proof of part (i), since S1 is isomorphic
to M2.)

Alternatively, it is not hard to show directly that the simplicial complex Mc
t is

homotopy equivalent to St−2 and use Proposition 4.4(i).

Acknowledgement I would like to thank anonymous referees for valuable comments concerning the
presentation.
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