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Abstract In a recent paper (Grosan et al. in Heat Mass

Transf 45:503–509, 2009) a mostly numerical approach to

the title problem has been reported. In the present paper the

full analytical solution is given. Several new features

emerging from this approach are discussed in detail.

1 Introduction

Thermophoresis is the phenomenon by which submicron

sized particles (as soot particles, aerosols, etc.) suspended

in a nonisothermal gas migrate in the direction of

decreasing temperature with a velocity which is propor-

tional to the local temperature gradient. According to this

basic feature, thermophoresis is a widely spread phenom-

enon in nature and technical processes, causing both

desirable effects (e.g., cleaning of gas streams in thermal

precipitators, enhanced mass transfer in the modified

chemical vapor deposition processes, etc.), as well as

undesirable ones (staining of surfaces of heat exchangers,

dirt patterns on the facades of buildings, on the ceilings of

kitchens and dining rooms, etc.).

The fundamental physical processes responsible for the

thermophoresis were investigated already in the nineteenth

century by Maxwell. Since then, on this phenomenon and

its applications a vast and widely ramified literature has

been accumulated. Concerning the thermophoretic trans-

port involved in viscous flow and in flow in porous media

for various geometries and boundary conditions, a com-

prehensive review of the pertinent literature has recently

been given by Grosan et al. [1], Selim et al. [2], Postelnicu

[3] and Chamkha and Pop [4]. As emphasized in [2], the

first studies in this respect were conducted on simple one-

dimensional flows. In a laser-Doppler velocimeter study of

velocity profiles in the laminar boundary layer adjacent to a

heated flat plate, Talbot et al. [5] have shown that the seed

particles used for the measurements were driven away from

the plate surface by thermophoretic forces, causing a par-

ticle-free region within the boundary layer of approxi-

mately one half the boundary-layer thickness. It has been

evidenced that the theory of Brock [6], with an improved

value for the thermal slip coefficient, gives the best

agreement with experiment for low Knudsen numbers. The

first analysis of thermophoretic deposition in a geometry of

engineering interest appears to be that of Hales et al. [7].

They solved the laminar boundary layer equations for

simultaneous aerosol and steam transport to an isothermal

vertical surface. Thermophoresis in laminar flow over a

horizontal flat plate for both cold and hot surface condi-

tions has been studied theoretically by Goren [8]. In the

paper of Epstein et al. [9], the thermophoretic transport of

small particles through a free convection boundary layer

adjacent to a cold, vertical deposition surface was ana-

lyzed. Considerations concerning the rate of thermopho-

retic deposition which is as general as possible in its

application to different flow fields were presented by

Batchelor and Shen [10]. The thermophoretic deposition of

the laminar slot jet on an inclined plate for hot, cold and

adiabatic surface conditions with viscous dissipation effect

was examined by Garg and Jayaraj [11]. The thermopho-

retic transport of aerosol particles through a forced con-

vection laminar boundary layer in cross flow over a

cylinder for hot, cold and adiabatic wall conditions has also

been investigated by Garg and Jayaraj [12]. More recently,

Chein and Liao [13] have presented a numerical model
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including both the particle molecular diffusion and ther-

mophoretic effects to study nanoparticle deposition in a 2D

channel flow. The combined effect of inertia, diffusion and

thermophoresis on particle deposition from a stagnation

point flow onto an axisymmetric wavy wafer, has been

examined by Wang [14]. A mathematical model for the

coupled transport mechanisms of diffusion, convection and

thermophoresis was developed by Wang and Chen [15] to

describe the particle deposition onto a continuous moving

wavy surface.

The present paper is closely related to a recent article of

Grosan et al. [1] in which a study of thermophoretic

transport in the steady fully developed mixed convection

flow in a parallel-plate vertical channel with differentially

heated isothermal walls has been presented. In this case the

temperature distribution between the walls is described by

a simple linear function of the transverse coordinate, such

that the main task of the paper [1] was the solution of the

pertinent boundary value problems for the concentration

and velocity fields. These (simply coupled) two-point

boundary value problems were solved in [1] numerically

by using finite differences. However, bearing in mind that

the governing dimensionless differential equations of the

concentration and velocity fields involve, in addition to the

unknown pressure gradient a, further six dimensionless

parameters (Nt, Nc, k, B, k and Sc, [1]) a comprehensive

numerical study of the basic velocity, concentration and

pressure characteristics is extremely laborious. This para-

metric-complexity gave the motivation for the present

paper, to report the full analytical solution of the problem

examined numerically in [1]. The main benefit resulting

from the analytical approach is a transparent dependence of

the quantities of engineering interest on the governing

parameters. Several new features emerging from this

approach will be discussed in detail.

2 Governing equations

Following Grosan et al. [1], we consider the steady mixed

convection flow of a gas containing suspended aerosol

particles in a vertical parallel plane channel of width L. The

walls at x = 0 and x = L are kept at the constant temper-

atures Th (hot wall) and Tc \ Th (cold wall) as well as at

the uniform concentrations Ch and Cc, respectively. It is

assumed that, in addition to the pressure forces, the

buoyancy forces are significant and that the Boussinesq

approximation holds. In the fully developed regime the

velocity, temperature and concentration fields (u, 0, 0),

T and C depend only on the transverse coordinate y and

are governed by the equations [1]

l
d2u

dy2
þ q0g bT T � T0ð Þ þ bC C � C0ð Þ½ � � op

ox
¼ 0 ð1Þ

d2T

dy2
¼ 0 ð2Þ

D
d2C

dy2
¼ d

dy
vT Cð Þ ð3Þ

subject to the boundary conditions

u 0ð Þ ¼ 0; T 0ð Þ ¼ Th; C 0ð Þ ¼ Ch;

u Lð Þ ¼ 0; T Lð Þ ¼ Tc; C Lð Þ ¼ Cc

ð4Þ

The thermophoretic deposition velocity vT is related to

the temperature field by the well known relationship

vT ¼ �k
l

q0T

dT

dy
ð5Þ

and in Eq. 1 the reference temperature T0 and the reference

concentration C0 of the Boussinesq approximation have

been chosen equal to the average values of the

corresponding wall quantities, T0 = (Th ? Tc)/2 and

C0 = (Ch ? Cc)/2, respectively. Furthermore (in the fully

developed flow regime) the gradient qp/qx of the

hydrodynamic pressure is a constant quantity and thus,

besides the six integration constants occurring in the

solutions of Eqs. 1–3, it represents the seventh unknown

constant of the problem. On this reason, in addition to the

six boundary conditions (4) a further condition is necessary

in order to have a mathematically well-posed problem.

With this aim, in the mixed convection duct flow problems

it is usual to prescribe also the value of the volumetric flow

rate in a transversal section of the channel

Q ¼
ZL

0

udy ð6Þ

which in flow experiments is a directly accessible quantity.

Introducing the dimensionless quantities [1]

Y ¼ y

L
; U ¼ u

U0

; U0 ¼
Q

L
; h ¼ T � T0

Th � Tc

;

/ ¼ C � C0

Ch � Cc

; a ¼ L

lU0

op

ox
;

Gr ¼ gbT Th � Tcð ÞL3

l=q0ð Þ2
; Re ¼ U0L

l=q0ð Þ; k ¼ Gr

Re
;

b ¼ bc Ch � Ccð Þ
bT Th � Tcð Þ;

Nt ¼
1

2

Th þ Tc

Th � Tc

; Nc ¼
1

2

Ch þ Cc

Ch � Cc

; Sc ¼ l
q0D

ð7Þ

the boundary value problem (1)–(6) goes over in the

form [1]
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d2U

dY2
þ k hþ b/ð Þ � a ¼ 0 ð8Þ

d2h
dY2
¼ 0 ð9Þ

d2/
dY2
¼ �kSc

d

dY

Nc þ /
Nt þ h

dh
dY

� �
ð10Þ

U 0ð Þ ¼ 0; h 0ð Þ ¼ / 0ð Þ ¼ 1

2
;

U 1ð Þ ¼ 0; h 1ð Þ ¼ / 1ð Þ ¼ �1

2

ð11Þ

Z1

0

UdY ¼ 1 ð12Þ

In the above equations, everywhere the notations of [1]

have been used, except for the buoyancy ratio b which in

[1] has been denoted by B.

3 The analytical solution

The solution for the dimensionless temperature h is imme-

diate, [1],

h ¼ 1

2
� Y ð13Þ

Now, it is seen that the key problem consists of the

solution of the / Eq. 10 since (in addition to h), / is

involved in the velocity Eq. 8 explicitly. In the numerical

approach reported in [1], the full second order Eq. 10, with

h given by Eq. 13, has been solved numerically for

different values of the parameters involved. The present

analytical approach avoids this way by noticing that Eq. 10

admits the first integral

d/
dY
¼ �kSc

Nc þ /
Nt þ h

dh
dY
þ K1 ¼ kSc

Nc þ /

Nt þ 1
2

� �
� Y
þ K1

ð14Þ

where K1 is a constant of integration. Introducing the new

independent variable Z as well as the notation a specified

by equations

Z ¼ Nt þ
1

2

� �
� Y ; a ¼ kSc ð15Þ

Equation 14 becomes

d/
dZ
¼ �a Nc þ /ð Þ

Z
� K1 ð16Þ

It is worth noticing here that a = kSc is not only a

convenient short notation, but it emphasizes the physically

important feature that the boundary value problem (8)–(12)

does not depend on the (dimensionless) thermophoretic

coefficient k and the Schmidt number Sc separately, but on

their product kSc only. In other words, the concentration

distributions / of the fully developed channel flow

associated with different values of k and Sc, but with the

same value of the effective thermophoretic coefficient

a = kSc (as well as of Nt and Nc), are physically

equivalent. Obviously, this principle of equivalent states

is a consequence of the interplay between thermophoresis

(driven by temperature gradients) and diffusion (driven by

concentration gradients).

Fortunately, Eq. 16 can be integrated once more,

yielding the explicit analytical solution

/ ¼ �Nc �
K1

1þ a
Z þ K2

Za
ð17Þ

where K2 is the second constant of integration of Eq. 10.

Bearing in mind the / boundary conditions (11), we obtain

for the constants K1 and K2 the expressions

K1 ¼
1þ a

2

2Nc þ 1ð ÞZa
0 � 2Nc � 1ð ÞZa

1

Z1þa
1 � Z1þa

0

;

K2 ¼
Nt � Ncð Þ Z0Z1ð Þa

Z1þa
1 � Z1þa

0

ð18Þ

where

Z0 � /jY¼0¼ Nt þ
1

2
¼ Th

Th � Tc

;

Z1 � /jY¼1¼ Nt �
1

2
¼ Tc

Th � Tc

ð19Þ

Thus, the explicit expressions for K1 and K2 in terms of

Nt, Nc and a are

K1 ¼ � 1þ að Þ 2Nc þ 1ð Þ 2Nt þ 1ð Þa� 2Nc � 1ð Þ 2Nt � 1ð Þa

2Nt þ 1ð Þ1þa� 2Nt � 1ð Þ1þa
;

K2 ¼ �
21�a Nt � Ncð Þ 4N2

t � 1
� �a

2Nt þ 1ð Þ1þa� 2Nt � 1ð Þ1þa
ð20Þ

Accordingly,

/ ¼ �Nc þ
2Nc þ 1ð Þ 2Nt þ 1ð Þa� 2Nc � 1ð Þ 2Nt � 1ð Þa

2Nt þ 1ð Þ1þa� 2Nt � 1ð Þ1þa
Z

�
21�a Nt � Ncð Þ 4N2

t � 1
� �a

2Nt þ 1ð Þ1þa� 2Nt � 1ð Þ1þa

1

Za
ð21Þ

In this way, the analytical solution of the /-problem is also

available in an explicit form. Notice that, in view of the

respective Eq. 7, for the allowed values of Nt and Nc the

inequalities Nt [ 1/2 and Nc [ 1/2 hold. Thus, in Eqs. 20 and

21, no singularities and no imaginary quantities can occur.

Let us now turn to the velocity problem. Substituting

Eqs. 13, 15 and 17 in Eq. 10, we obtain

d2U

dZ2
¼ aþ k Nt þ bNcð Þ � k 1� bK1

1þ a

� �
Z � kbK2

Za
ð22Þ
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Two subsequent integrations of Eq. 22 lead for the

dimensionless velocity to the explicit solution

U ¼ K4 þ K3Z þ 1

2
aþ k Nt þ bNcð Þ½ �Z2

� k
6

1� bK1

1þ a

� �
Z3 � kbK2

1� að Þ 2� að ÞZ
2�a ð23Þ

where K3 and K4 are the two constants of integration of

Eq. 22, for which the U-boundary conditions give the

relationships

K3 ¼ �
1

2
aþ k Nt þ bNcð Þ½ � Z2

0 � Z2
1

� �
þ k

6
1� bK1

1þ a

� �

� Z3
0 � Z3

1

� �
þ kbK2

1� að Þ 2� að Þ Z2�a
0 � Z2�a

1

� �
;

K4 ¼ �
1

2
aþ k Nt þ bNcð Þ½ � Z0Z2

1 � Z1Z2
0

� �

þ k
6

1� bK1

1þ a

� �
Z0Z3

1 � Z1Z3
0

� �

þ kbK2

1� að Þ 2� að Þ Z0Z2�a
1 � Z1Z2�a

0

� �
ð24Þ

Furthermore, the integral condition Eq. 12 yields

1¼�
ZZ1

Z0

UdZ¼K4 Z0�Z1ð Þþ1

2
K3 Z2

0�Z2
1

� �

þ1

6
aþk NtþbNcð Þ½ � Z3

0�Z3
1

� �
� k

24
1� bK1

1þa

� �

� Z4
0�Z4

1

� �
� kbK2

1�að Þ 2�að Þ 3�að Þ Z3�a
0 �Z3�a

1

� �
ð25Þ

The explicit solution of Eq. 25 with respect to the

dimensionless pressure gradient a is

a¼�12þ
3kb Nt�Ncð Þ 4N2

t � 1
� �a

2Ntþ 1ð Þ1þa� 2Nt� 1ð Þ1þa

� 2Ntþ 1ð Þaþ 2Nt� 1ð Þa

3 4N2
t � 1

� �a

"
þ

þ 2Ntþ a� 2ð Þ 2Ntþ 1ð Þ2�a� 2Nt� aþ 2ð Þ 2Nt� 1ð Þ2�a

1� að Þ 2� að Þ 3� að Þ

#

ð26Þ

4 Discussion

Equations 13, 21, 23 and 26 give the explicit analytical

solutions of the title problem for the dimensionless tem-

perature h, concentration / velocity U and pressure gra-

dient a, respectively. The aim of the present section is to

discuss some basic features of these solutions.

4.1 The temperature field

The linear temperature distribution (13) between the iso-

thermal walls of the channel is a simple textbook issue and

does not require any additional comment.

4.2 The concentration field

Concerning the expression (21) of the concentration field

/, we first notice that it depends on the transformed

transverse coordinate Z (specified by Eq. 15) in a pure

algebraic way, including in addition to the linear term in Z

also a strongly nonlinear term proportional to 1/Za. It is

also worth emphasizing here explicitly, that / depends

neither on the mixed convection parameter k, nor on the

buoyancy ratio b. Its explicit expression (21) involves only

the parameters Nt, Nc and a = kSc.

Bearing in mind the first integral (14) of the concen-

tration Eq. 10 as well as the boundary conditions (11), the

values of Sherwood number (i.e., of the negative concen-

tration gradients at the walls of the channel)

Sh0;1 ¼ �
d/
dY

����
Y¼0;1

ð27Þ

can also be calculated easily. The result is.

Sh0 ¼�a
2Ncþ 1

2Nt þ 1

þ 1þ að Þ 2Ncþ 1ð Þ 2Nt þ 1ð Þa� 2Nc� 1ð Þ 2Nt � 1ð Þa

2Nt þ 1ð Þ1þa� 2Nt � 1ð Þ1þa
;

Sh1 ¼�a
2Nc� 1

2Nt � 1

þ 1þ að Þ 2Ncþ 1ð Þ 2Nt þ 1ð Þa� 2Nc� 1ð Þ 2Nt � 1ð Þa

2Nt þ 1ð Þ1þa� 2Nt � 1ð Þ1þa

ð28Þ

The two Sherwood numbers are related to each other by

the relationship

Sh1 ¼ Sh0 þ 4a
Nt � Nc

4N2
t � 1

ð29Þ

The second term on the right hand side of Eq. 29

represents the thermophoretic deposition flux of the

particles on the cold wall when Nt [ Nc and the ablation

flux from the same wall when Nt \ Nc. We mention that,

with respect to the wall conditions, the inequality Nt [ Nc

corresponds to the situation in which Tc/Th [ Cc/Ch and

Nt \ Nc to Tc/Th \ Cc/Ch, respectively. It is also interesting

to notice that for Nt = Nc and arbitrary a on the one hand,

and for a = 0 and arbitrary Nt and Nc on the other hand, the

Sherwood numbers render same value Sh0 = Sh1 = 1.
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Beyond this somewhat surprising feature stands the fact

that, according to Eq. 21, in both of these cases the same

relationship holds.

/ ¼ 1

2
� Y ¼ h ð30Þ

As an illustration, in Fig. 1 the dimensionless

concentration profiles / are plotted for the indicated

values of the parameters a = kSc, Nt and Nc. The four

upper curves correspond to a case with Nt [ Nc and

descend monotonically from the left to the right wall of

the channel, changing sign somewhere in the range 1/2 \
Y \ 1. The four lower curves correspond to an opposite

case, Nt \ Nc. The two families of curves reduce for

a = 0 to the same straight line which represents Eq. 30.

The lower curves change sign somewhere in the range

0 \ Y \ 1/2, and then descend monotonically either to the

right-wall value / = -1/2, or to a minimum value

/min \ -1/2 reached at some Y = Y*. In the latter case

the concentration curves ascend then from the minimum to

the wall value / = -1/2 as Y ? 1. It can be shown that

Y� ¼Ntþ
1

2
� �a 1það ÞK2

K1

� � 1
1þa

;

/min¼�Nc�
K1

1þa
�a 1það ÞK2

K1

� � 1
1þa

þK2 �a 1það ÞK2

K1

� � �a
1þa

ð31Þ

The necessary and sufficient conditions for existence of

the minimum (31) are

Nt\Nc;

2Nc � 1

2Nc þ 1

2Nt � 1

2Nt þ 1

� �a

þ 4a Nc � Ntð Þ
2Nt � 1ð Þ 2Nc � 1ð Þ

� �
[ 1

ð32Þ

4.3 The velocity field

Let us now turn to the more complex problem of the

velocity field U, described by the explicit analytical solu-

tion (23). In general, the velocity U depends via K1, K2; K3,

K4 and a, given by Eqs. 20, 24 and Eq. 26, on all five

dimensionless parameters Nt, Nc, a, b and k of the problem.

We start the discussion of this intricate dependence with

four special cases, which are:

(i) k = 0, whereas Nt, Nc, a and b are arbitrary,

(ii) b = 0, whereas Nt, Nc, a and k are arbitrary,

(iii) a = 0, whereas Nt, Nc, b and k are arbitrary,

(iv) Nt = Nc, whereas a, b and k are arbitrary.

All these four cases share the property that the dimen-

sionless pressure gradient a takes the same constant value

a ¼ �12 in all cases ið Þ � ivð Þð Þ ð33Þ

Case (i) corresponds to the forced convection flow.

Accordingly, in Eq. 23 one recovers the classical Poiseuille

law U = 6Y(1 - Y) for the plane-parallel channel flow.

The concentration field / due to mass diffusion and

thermophoresis is independent of k and b, and thus it

coexists in its general form (21) with the velocity field

U = 6Y(1 - Y) of the Poiseuille flow.

Case (ii) occurs when the buoyancy effect related to the

concentration gradients is negligible compared to the

thermal buoyancy, i.e., when in Eq. 1 the relationship

|bC (C - C0)| � |bT (T - T0)| holds. This physical situa-

tion corresponds in the basic dimensionless Eqs. 8–12 to

the limiting case b ? 0 (while Ct = Cc). In this limiting

case of the vanishing buoyancy ratio, the explicit solutions

(13) and (21) for h and / remain unchanged, and Eqs. 23

and 24 give for the flow velocity U the result

U ¼ 6Y 1� Yð Þ 1� k
72

2Y � 1ð Þ
� �

case iið Þð Þ ð34Þ

Therefore, the velocity field is independent of Nt, Nc and

a when b = 0. This result, although at the first sight

physically somewhat surprising, could have been predicted

from the very beginning, since in the velocity Eq. 8 the term

b/ which involves the parameters Nt, Nc and a disappears as

b ? 0. It is also worth mentioning here that Eq. 34 is in fact

equivalent to Eq. 17a of Aung [16], although in [16] no

thermophoretic transport has been assumed at all.

Cases (iii) and (iv) lead to quite surprising results. As

already mentioned in Sect. 4.2, in these cases for the

temperature and concentration fields the same relationship

(30) results, and thus the Sherwood numbers render same

value Sh0 = Sh1 = 1. After some algebra we arrive to the

conclusion that also for the flow velocities in both of these

cases the same relationship holds, namely

U ¼ 6Y 1� Yð Þ 1� k 1þ bð Þ
72

2Y � 1ð Þ
� �

cases iiið Þ and ivð Þð Þ ð35Þ

The coincidence of the velocity fields in cases (iii) and

(iv) could have been predicted already by a simple

φ

Y

8 2

50 30 15 5
t cN , N ;

a , , , 

= =
=

50 30 15 5

3 5t c

a , , , ;

N , N

=
= =

0a =

Fig. 1 Plots of the dimensionless concentration profiles / for the

indicated values of the parameters a, Nt and Nc
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inspection of the basic Eqs. 8–12 and Eq. 30. Indeed,

Eq. 10, which is the only equation containing Nt and Nc,

reduces in the cases (iii) and (iv) to equation d2//dY2 = 0

which does not involve Nt and Nc any more. As a

consequence, in the fully developed flow regime, the case

with thermophoresis a = 0 and Nt = Nc on the one hand,

and the case Nt = Nc without thermophoresis, a = 0, on

the other hand, become undistinguishable. In both of these

cases, the experimentally accessible quantities h, /, U and

a are the same. In other words, between the thermophoretic

effect governed by the parameter a and the temperature and

concentration boundary conditions governed by the

parameters Nt and Nc a remarkable compensation effect

can occur which renders the cases (iii) and (iv) equivalent.

Moreover, for b = 0, Eq. 35 reduces to Eq. 34 which holds

for all values of the parameters Nt, Nc, a and k. We also

mention here that in case (iii), i.e., in the absence of

thermophoresis, the solution (35) has also been reported by

Grosan et al. [1]. However, as we are aware, the surprising

compensation effect occurring in cases (iii) and (iv) has

never been reported in the literature.

A further interesting property of the velocities (34) and

(35) is that in the midplane Y = 1/2 of the channel they

take the same value, regardless the values of the parameters

involved. Indeed, it is easy to show that for Eqs. 34 and 35

the relationship holds

U
1

2

� �
¼ 3

2
cases iiið Þ and ivð Þð Þ: ð36Þ

In addition to the features discussed above, the velocity

solutions (34) and (35) possess a further interesting

property which represents a general characteristic of the

present channel flow (see also below). This consists of a

possible crossover from a unidirectional (upward directed)

flow regime to a bidirectional regime, in which in the

neighborhood of the cold wall a reversed (downward

directed) flow domain can occur. A simple inspection of

the second Eq. 35 shows that this crossover takes place

when the square bracket term becomes negative at Y = 1,

i.e., when b exceeds the critical value bcrit,

b� bcrit ¼
72

k
� 1 cases iiið Þ and ivð Þð Þ ð37Þ

Therefore, Eq. 37 specifies the necessary and sufficient

condition for the occurrence of the bidirectional flow in the

cases (iii) and (iv). This phenomenon is illustrated in

Fig. 2. The intersection point of all the velocity profiles

shown in Fig. 2 corresponds to the property (36).

We now continue to discuss further peculiarities of the

exact velocity solution (23). At the first glance there seems

that in addition to Z, Z2 and Z3, the term involving Z2-a

always contributes to U by a further power of Z, regardless

the value of a. In general this statement is true, except for

a = 1 and a = 2, where the last term of U becomes sin-

gular. However, this is not a genuine, but an apparent

singularity only, since, finally it gets compensated by the

corresponding singularities occurring in the expressions

(24) of K3 and K4, respectively. The result of this com-

pensation is the occurrence in U of a logarithmic term of Z.

This new term can be obtained by a careful calculation of

limiting value of U as a ? 1 and a ? 2, respectively. An

alternate way to this limiting procedure is to solve Eq. 22

from the very beginning for the special cases a = 1 and

a = 2, respectively. In this way, it is immediately seen that

for a = 1 the logarithmic term lnZ occurs already by the

first integration and in the case a = 2 only by the second

integration of Eq. 22. Obviously, both procedures lead to

the same result. Thus, the velocity U and the dimensionless

pressure gradient a are given in these cases as follows

Case a = 1:

U ¼ 6Y 1� Yð Þ
�

1þ k
72

1� 2Yð Þ

þ bk
144

�
1� 9Nt þ 36N3

t � 2Y
� �

þNc

Nt
1þ 9Nt � 36N3

t � 2Y
� ��	

þ bk
32

1� Nc

Nt

� �
4N2

t � 1
� �

2Nt � 1ð Þ

� 1þ 6Ntð ÞY � 3 2Nt þ 1ð ÞY2

 �

ln Nt �
1

2

� �

þ bk
32

1� Nc

Nt

� �
4N2

t � 1
� �

�
�

2Nt þ 1ð Þ 2þ 3 2Nt � 1ð ÞY½ �

� Y � 1ð Þln Nt þ
1

2

� �
þ 4Z ln Z

	

ð38Þ

U

Y

100λ =

0 8 0 5

0 28 0 0 1

b . , . ,

. , , .

= − −
−

Fig. 2 Shown are the dimensionless velocity profiles (35) for

k = 100 and the indicated values of b. According to Eq. 37, the

crossover from the unidirectional to the bidirectional flow regime

takes place when b exceeds the critical value bcrit = -0.28 (the third

curve). The intersection point of the velocity curves marked by a dot
corresponds to the property (36)
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a ¼ �12þ kb

4
Nt � Ncð Þ

� 5� 12N2
t þ

3

4Nt
4N2

t � 1
� �2

ln
2Nt þ 1

2Nt � 1

� �� �
ð39Þ

Case a = 2:

U ¼ 6Y 1�Yð Þ 1þ k
72

1� 2Yð Þ
� �

þ bkY 1�Yð Þ
12 1þ 12N2

t

� �
1þ 4Nt Ntþ 2Ncð Þ� 18 Nt�Ncð Þ

� 1� 8N2
t þ 16N4

t

� �
� 2 1þ 8NtNcþ 4N2

t

� �
Y
�

þ
bk Nt�Ncð Þ 1� 4N2

t

� �2

4 1þ 12N2
t

� �
�

1�Yð Þ 1þ 6NtYð Þ

�ln Ntþ
1

2

� �
þ 1� 6Ntþ 6NtYð ÞY ln Nt�

1

2

� �
� lnZ

�

ð40Þ

a ¼ �12þ kb Nt � Ncð Þ
1þ 12N2

t

�
4 1� 5N2

t þ 12N4
t

� �

�3Nt 4N2
t � 1

� �2
ln

2Nt þ 1

2Nt � 1

� ��
ð41Þ

One sees that the logarithmic term lnZ there indeed

occurs in both the velocity expressions (38) and (40)

explicitly.

In the general case, the existence domain of the bidi-

rectional flow is obtained from the condition

dU

dY Y¼1

����� 0 ð42Þ

which requires that the slope of the velocity (23) changes at

right wall of the channel Y = 1 from negative to positive

values. After some algebra, Eq. 42 yields

b� bcrit ¼
72

k
� 1

� �

�
a� 1ð Þ a� 2ð Þ a� 3ð Þ 2Nt þ 1ð Þ1þa� 2Nt � 1ð Þ1þa

h i

2Nt þ 1ð ÞaQ1 � 2Nt � 1ð ÞaQ2

ð43Þ

where

Q1 ¼ 2Nc þ 1ð Þa3 � 6 1þ 2Nt 1þ 2Nc � 2Ntð Þ½ �a2

þ


11� 12Nt 8N2

t þ 2Nt � 3
� �

þ 2Nc 48N2
t þ 12Nt � 7

� ��
aþ 6 Nc � 3Nt � 1ð Þ

þ 36Nt Nt � Ncð Þ 4N2
t þ 2Nt � 1

� �
;

Q2 ¼ 2Nc � 1ð Þa3 � 6 2Nc � 1ð Þa2

� 11� 12Nt 2Nt þ 1ð Þ2þ2Nc 24N2
t þ 24Nt � 5

� �h i
a

þ 6 Nc � 3Nt þ 1ð Þ þ 36Nt Nt � Ncð Þ 4N2
t þ 2Nt � 1

� �
ð44Þ

In the cases (iii) and (iv) one recovers from Eq. 43 the

elementary result (37). It is important to emphasize here

that the critical buoyancy ratio (43) actually does not

become zero as a ? 1, a ? 2 or a ? 3, but approaches

the limiting values

bcrit !
72

k
� 1

� � 8Nt

D1
as a! 1

1þ12N2
t

D2
as a! 2

16Nt 1þ4N2
tð Þ

D3
as a! 3

8>><
>>:

ð45Þ

where the denominators D1,2,3 are specified as follows

D1 ¼ 8 2Nt � Ncð Þ � 3 Nt � Ncð Þ

�
�

4Nt 12N2
t þ 4Nt � 3

� �
� 2Nt þ 1ð Þ2

� 12N2
t � 8Nt þ 1

� �
ln

2Nt þ 1

2Nt � 1

�
;

D2 ¼ 1� 12Nc þ 4Nt 6N2
t � 1

� �
12N2

t þ 2Nt � 3
� �

� 6Nt þ 1ð Þ
�

4NtNc 12N2
t � 5

� �
þ 3 Nt � Ncð Þ

� 4N2
t � 1

� �2
ln

2Nt þ 1

2Nt � 1

�
;

D3 ¼ 16 Nc þ 4N3
t

� �
� 3 Nt � Ncð Þ

�
�

4Nt 48N4
t � 32N2

t þ 5
� �

�3 4N2
t � 1

� �3
ln

2Nt þ 1

2Nt � 1

�

ð46Þ

A simple inspection of Eqs. 43 and 45 shows that

bcrit = 0 when k[ 72. There also can be shown that

bcrit [ 0 when k[ 72 and bcrit \ 0 when k[ 72, for all

(positive) values of the parameters Nt, Nc and a, i.e.,

sgn bcritð Þ ¼ sgn
72

k
� 1

� �
ð47Þ

All these features are illustrated in Fig. 3. Figure 3 also

shows that the function bcrit = bcrit(a) always possesses an

critb

100λ =

50λ =

( )2 8t cN ,N= = ( )8 2t cN ,N= =

a

Fig. 3 Shown are the plots of bcrit as functions of a in two typical

cases with Nt \ Nc and Nt [ Nc, when k = 50 (upper half-plane) and

k = 100 (lower half-plane). The critical values of the buoyancy ratio

b are positive when k\ 72 and negative when k [ 72, in a full

agreement with Eq. 47, no matter whether Nt [ Nc or Nt \ Nc. The

dots mark the points of coordinates (a, bcrit) = (0, 72/k-1)
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absolute extremum (maximum or minimum) at a certain

value of a both for Nt [ Nc and Nt \ Nc.

We mention that at the critical value (43) of the buoy-

ancy ratio b, the crossover of the velocity field from the

unidirectional to bidirectional structure, qualitatively

resembles in all cases the special situation illustrated in

Fig. 2, except for the existence of the intersection point

(36).

4.4 The pressure gradient a

The explicit expression of the dimensionless pressure

gradient a is given by Eq. 26 which involves all the five

parameters k, b, Nt, Nc and a. However, an important

physical feature of a is that it does not depend on the

mixed convection parameter k and the buoyancy ratio b

independently, but only on their product kb. In Fig. 4 a is

plotted as a function of the effective thermophoretic

coefficient a for Nt = 8, Nc = 2 and five different values

of kb (assuming tacitly that k[ 0). One sees that a
decreases monotonically with increasing values of a when

kb \ 0, while for kb = 0 it takes the constant value -12,

in agreement with Eq. 33. For positive values of kb, a
increases monotonically with increasing a and, at a cer-

tain value a0 of a it becomes zero, changing then from

negative to positive values. This happens at a0 = 13.6739

for kb = 100, and at a0 = 6.51972 for kb = 200,

respectively.

The intersection points of the curves a(a) with the

a-axis correspond to the remarkable physical situations

where the driving pressure equals the local hydrostatic

pressure everywhere. The corresponding flows are always

bidirectional. This latter feature is illustrated in Fig. 5

where the two velocity profiles are shown which corre-

spond to the points (a, a) = (a0, 0) marked by dots in

Fig. 4.

5 Summary and conclusions

In the present paper the full analytical solution of the title

problem investigated recently by Grosan et al. [1] by

numerical methods, has been presented and discussed in

detail. The motivation for our work was the high com-

plexity of a comprehensive numerical investigation of this

problem which, in addition to the unknown pressure gra-

dient a, involves further six dimensionless parameters, Nt,

Nc, k, b, k and Sc.

The key point of the present analytical approach is the

use a first integral of the concentration equation, instead to

keep this equation in its initial second order form (see

Eq. 13 of [1]). The first order equation obtained in this way

admits a closed form solution for the dimensionless con-

centration field which depends only on powers of the

transformed transverse coordinate Z = (Nt ? 1/2) - Y.

Subsequently, the velocity equation could also be inte-

grated twice with respect to the variable Z directly. The

new knowledge gained from the analytical approach can be

summarized as follows.

1. The effect of thermophoresis on the concentration and

velocity fields does not depend on the thermophoretic

coefficient k and the Schmidt number Sc separately,

but it is controlled by an effective thermophoretic

coefficient a, which is the dimensionless group

a = kSc. Accordingly, the concentration distributions

/ of the fully developed channel flow associated with

different values of k and Sc, but the same value of a, Nt

and Nc, are physically equivalent (see Eq. 21). This

principle of equivalent states is a consequence of the

interplay between thermophoresis (driven by temper-

ature gradients) and diffusion (driven by concentration

gradients). Owing to this feature, the present problem

involves, instead of six, five effective parameters only.

These are Nt, Nc, a, k and b.

α

a

8

2
t

c

N ,

N

=
=

200bλ =

0bλ =

100bλ =

50bλ = −

100bλ = −

Fig. 4 Plots of the dimensionless pressure gradient a as a function of

a for the indicated values of the parameters Nt, Nc and kb. All the

curves start at a = 0 in the point a = -12 in agreement with Eq. 33.

The dots mark the zeros of a for kb [ 0

U

Y

8

2
t

c

N ,

N

=
=

200 6 51972b ,  a .λ = =

100 13 6739b ,  a .λ = =

Fig. 5 Shown are the velocity profiles which are associated with the

intersection points of the curves a(a) of Fig. 4 with the a-axis. These

bidirectional flows correspond to a = 0, i.e., to the situations in which

the driving pressure equals the local hydrostatic pressure of the gas

everywhere in the vertical channel
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2. The Sherwood numbers Sh0,1, i.e., the negative con-

centration gradients at the walls Y = 0 and Y = 1 of

the channel, can be calculated explicitly (see Eq. 28).

Their difference, Sh1 - Sh0, represents the thermoph-

oretic deposition flux of the particles on the cold wall

when Nt [ Nc, and the ablation flux from the same

wall when Nt \ Nc. With respect to the wall condi-

tions, the inequality Nt [ Nc corresponds to the

situation in which Tc/Th [ Cc/Ch and Nt \ Nc to Tc/

Th \ Cc/Ch, respectively.

3. The concentration / is always a monotonically

decreasing function of the transverse coordinate Y

when Nt [ Nc. This property holds also for Nt \ Nc

when the effective thermophoretic coefficient a is

small. However, for sufficiently large values of a

(specified by the second condition (32)) the concen-

tration / decreases to a minimum value /min \ -1/2

reached at some Y = Y* (see Eqs. 31), and then

increases to the wall value / = -1/2 as Y ? 1. These

properties of / are illustrated in Fig. 1.

4. The exact velocity solution U given by Eq. 23 involves

in general the powers Z, Z2 and Z3 and Z2-a of the

transformed transverse coordinate Z = (Nt ? 1/2 -

Y), except for the special values a = 1 and a = 2 of

the effective thermophoretic coefficient where the

power Z2-a is missing and, instead, the logarithmic

expressions ZlnZ and lnZ occur (see Eqs. 38 and 40).

Such intrinsic properties cannot be seen in a numerical

approach.

5. The critical value bcrit of the buoyancy ratio where the

velocity field U changes from a unidirectional to a

bidirectional structure can also be calculated exactly

(see Eqs. 43–46 and Fig. 2). The sign of bcrit is

determined by the value of the mixed convection

parameter alone, namely bcrit C 0 when kB72 and

bcrit B 0 when k C 72 (see Eq. 47). There also turns out

that the function bcrit = bcrit(a) always possesses an

absolute extremum (maximum or minimum) at a certain

value of a, both for Nt [ Nc and Nt \ Nc (see Fig. 3).

6. Surprisingly, the special cases (Nt = Nc; a = 0) and

(Nt = Nc; a = 0) with and without thermophoresis,

are physically undistinguishable. In both of these cases

the respective expressions of the experimentally

accessible quantities h, /, U and a are the same (see

Eqs. 30, 35 and 33). In other words, between the

thermophoretic effect governed by the parameter a and

the temperature and concentration boundary conditions

governed by the parameters Nt and Nc, a remarkable

compensation effect can occur which renders the

above cases with (a = 0) and without (a = 0) ther-

mophoresis equivalent. As we are aware, this com-

pensation effect has not been reported before in the

pertinent literature.

7. Similarly to the velocity solution (23), the explicit

solution (26) for the dimensionless pressure gradient a
also includes all the five effective parameters Nt, Nc, a,

k and b of the problem. However, a physically

important property of a is that it does not depend on

the mixed convection parameter k and the buoyancy

ratio b separately, but on their product kb only. Thus,

when either k = 0 or b = 0, a renders the same value

-12 as in the pure forced convection channel flow

(Poiseuille flow). The value a = -12 is also obtained

in the absence of thermophoresis (a = 0) in general, as

well as in the two mutually compensating cases

(Nt = Nc; a = 0) and (Nt = Nc; a = 0) discussed

under Point 6 above. (see also Eq. 33).

8. For Nt [ Nc, the dimensionless pressure gradient a is a

monotonically decreasing or increasing function of the

effective thermophoretic coefficient a depending on

whether kb \ 0 or kb [ 0, respectively (see Fig. 4).

For Nt \ Nc, the converse holds. At a certain value a0

of a, the increasing pressure gradient becomes zero

and changes sign (see Fig. 4). These intersection

points of the curves a(a) with the a-axis correspond

to the remarkable physical situations where the driving

pressure equals the local hydrostatic pressure every-

where in the flow domain of the fully developed

regime. The corresponding flows are always bidirec-

tional (see Fig. 5).
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