
Assays for mitotic chromosome condensation in live yeast
and mammalian cells

Gabriel Neurohr & Daniel W. Gerlich

Published online: 20 March 2009
# Springer Science + Business Media B.V. 2009

Abstract The dynamic reorganization of chromatin
into rigid and compact mitotic chromosomes is of
fundamental importance for faithful chromosome seg-
regation. Owing to the difficulty of investigating this
process under physiological conditions, the exact
morphological transitions and the molecular machinery
driving chromosome condensation remain poorly
defined. Here, we review how imaging-based methods
can be used to quantitate chromosome condensation in
vivo, focusing on yeast and animal tissue culture cells
as widely used model systems. We discuss approaches
how to address structural dynamics of condensing
chromosomes and chromosome segments, as well as to
probe for mechanical properties of mitotic chromo-
somes. Application of such methods to systematic
perturbation studies will provide a means to reveal the
molecular networks underlying the regulation of
mitotic chromosome condensation.
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Abbreviations
DAPI 4′,6-diamidino-2-phenylindole

dihydrochloride
EGFP enhanced green fluorescent protein
GFP green fluorescent protein
Sir2 silent information regulator 2
Yku 70 70 kDa subunit of the DNA-end binding

Ku complex

Introduction

Chromosomes, the physical building blocks of the
genome, are spatially confined to discrete territories
that fill the space of the interphase cell nucleus. When a
cell divides, chromosomes need to reorganize into
compact rod-shaped bodies to permit the segregation
of their replicated sister chromatids to opposite spindle
poles. The structural chromatin dynamics underlying
the formation of mitotic chromosomes have been
defined as mitotic chromosome condensation.

Mitotic chromosomes need to meet a number of
criteria. First, they require significant compaction to
provide sufficient space for their individualized
movements on the mitotic spindle. It is essential that
their DNAs are completely disentangled from each
other, and that their surfaces are non-adherent to
neighboring chromosomes. The replicated sister chro-
matids need to be aligned in parallel compact rods to
support bipolar attachment to the mitotic spindle.
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Mitotic chromosome arms need to be shorter than half
of the spindle length to permit complete segregation
to opposite spindle poles prior to cytokinesis. Finally,
chromosomes need to mechanically withstand the
spindle forces, which act mostly on confined chro-
mosomal sub-regions, the kinetochores. Neither the
precise structure of interphase chromatin, nor its
spatial arrangement in mitotic chromosomes is under-
stood in much detail. Thus, it is not surprising that the
process of mitotic chromosome condensation remains
poorly defined.

Mitotic chromosomes are structured along their
axis by a defined pattern of chromosomal bands, and
they enrich specific protein components at the core
of their axis. This initially led to a model for mitotic
condensation based on the assembly of radial
chromatin loops along a central axis. However,
micromanipulation experiments suggested that this
axis may not provide any mechanical or structural
contribution to mitotic chromosomes (Poirier and
Marko 2002). Furthermore, recent studies found
higher-order chromatin fibers of various sizes within
mitotic chromosomes, which favors a model of
hierarchical folding of chromatin into fibers of
different scales (discussed in Swedlow and Hirano
2003; Kireeva et al. 2004; Belmont 2006).

Molecular dissection of the machinery driving
mitotic chromosome condensation has been limited
by the difficulty of experimentally assaying this
process. Many traditional approaches relied on
fixed cell preparations, which can strongly perturb
native chromatin organization (e.g., as discussed in
Belmont 2006 and Gassmann et al. 2004). Moreover,
the synchronization or staging methods used in such
fixed-cell approaches provide insufficient detail on
the exact kinetics of chromosome condensation.
These limitations can be overcome by appropriate
methods for assaying chromosome condensation in
live cells. Here, we review methods for measuring
chromosome condensation in vivo. We focus on three
main aspects of chromosome condensation: general
morphological dynamics of uniformly labeled chro-
matin, intra-chromosomal restructuring visualized by
labeled chromosomal segments, and mechanical
integrity of condensed chromosomes. We discuss
how such methods have been implemented in
different model systems, including animal tissue
culture cells, and budding yeast.

Probing chromosome condensation with general
chromatin markers

Quantitating chromatin texture

Mitotic chromosome condensation in animal tissue
culture cells is apparent on phase-contrast microscopy
without specific markers (e.g. Sarkar et al. 2002;
Mikhailov et al. 2004). These morphological dynamics
can in principle be quantitated (Sarkar et al. 2002), but
this requires manual definition of nuclear regions and it
is rather sensitive to the precise image conditions and
general cell morphology.

Chromatin can be efficiently visualized in live cells
by expression of core histones fused to fluorescent
proteins (e.g., histone 2B fused to green fluorescent
protein, H2B-GFP (Kanda et al. 1998)). Overexpressed
fluorescent core histones have been found to be non-
toxic and are very suitable for stable expression in
animal cell lines. This allows one to follow prophase
condensation under the light microscope with high
spatial and temporal resolution, as illustrated in Fig. 1A.

The structural dynamics of fluorescently labeled
chromatin can be quantitated by statistical analysis of
the image texture (Beaudouin et al. 2002; Kaitna et al.
2002). For example, the standard deviation of the
pixel intensities on chromatin regions provides one
such morphometric feature, which increases about
2-fold during condensation (Fig. 1B; for comparison,
the mean intensity measured in the same region
remains constant; Fig. 1C). Texture-based quantitation
of condensation could be refined by using a larger set
of texture features (Conrad et al. 2004; Glory and
Murphy 2007). Quantitative feature extraction allows
one to reliably and automatically annotate the timing
and extent of prophase condensation, and is thus
suitable for high-throughput analysis of systematic
perturbation experiments. However, the statistical
features are often difficult to link with specific aspects
of condensation, e.g., simple chromatin compaction
versus its re-organization into rod-like structures.

In addition to texture analysis, the shape of
individual chromosomes can be measured directly.
For example, changes in the chromosome arm
diameters have been used to assay one specific aspect
of condensation in fixed (Kireeva et al. 2004) and live
cells (Gerlich et al. 2006) (Fig. 1D, E). While arm
width is an informative parameter of chromosome
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condensation, it is difficult to measure automatically
because of the complex orientation of chromosomes.

Volume measurements of chromatin regions

Chromosome condensation can also be assayed by the
nuclear space occupied by chromatin. This requires

three-dimensional time-lapse imaging of the entire
nucleus labeled by fluorescent chromatin. The volume
of chromatin regions can then be determined by
fluorescence intensity thresholding. Volumes detected
by intensity thresholding depend on the threshold
definition, and this method is therefore not suitable
for obtaining precise absolute values for chromatin

Fig. 1 Prophase chromosome condensation visualized in live
cells by fluorescent core histones. a Three-dimensional time-
lapse imaging of a human cervix carcinoma (HeLa) cell stably
expressing H2B-EGFP. Mid- and bottom z-slices of selected
time points are shown; original data is 35 z-slices at 300 nm
step, 26 time points at 2 min time-lapse. Imaging was on a
Delta Vision deconvolution microscope. Bar represents 10 μm.
b Kinetics of the standard deviation (s.d.) of fluorescent pixel
intensities in chromatin regions as a measure of chromosome
condensation of the same cell shown in (A). c Kinetics of mean

fluorescence for the same chromatin region shown in (B). d
Live imaging of a normal rat kidney (NRK) cell stably
expressing H2B-EGFP. Selected z-sections and time points of
a 3D movie recorded on a confocal laser scanning microscope.
Chromosome width can be measured as indicated by the yellow
bar, representing 10 μm. e Kinetics of chromosome width
(mean ± s.d.) shows that condensation is completed before
nuclear envelope breakdown (t=0; defined by the loss of a
defined nuclear boundary). d and e are reprinted from Gerlich
et al. (2006) with permission from Elsevier
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volumes. However, fixed threshold settings for the
analysis of entire time-series can be used to determine
relative volume changes over time without strong bias
by the threshold definition (Gerlich et al. 2001). This
approach was applied to cells that decondensed
chromatin during mitotic exit, because at this stage
chromatin is relatively evenly distributed throughout
the newly reformed nuclei (Gerlich et al. 2001). The
complex pattern of condensing chromatin foci during
prophase makes it more difficult to determine the
exact boundaries of chromatin regions. The reliability
of volume measurements in prophase cells can thus be
improved by the a priori knowledge about the constant
overall amount of chromatin (and thus fluorescence
signal). Based on this, intensity thresholds can be
automatically adjusted for each time point to derive
equal total fluorescence intensity contained in the
detected regions. This allows the establishment of
robust volumetric measurements of chromatin in
movies of cells progressing through all stages of
mitosis (Mora-Bermudez and Ellenberg 2007; Mora-
Bermudez et al. 2007).

Visualizing chromosome condensation in yeast

In budding yeast, the visualization of condensing
chromosomes by general chromatin markers is much
more difficult, owing to the small size of the cells and
chromosomes, and potentially also to a lower degree of
mitotic compaction. Also, the closed configuration of
yeast mitosis complicates the identification of individual
chromosome arms, because of the confinement to the
small nuclear space. Direct visualization of condensing
chromosomes in budding yeast has thus been limited to
meiotic preparations (Kuroiwa et al. 1984).

The fission yeast S. pombe has fewer and larger
chromosomes than S. cerevisiae; thus chromosome
condensation can be followed by general chromatin
markers such as DAPI. Changes in the shape of the
nucleus during the cell cycle (Toda et al. 1981), as well
as chromosome morphology (Uemura et al. 1987),
served as quantifiable parameters of chromosome
condensation.

Condensation of labeled chromosomal subregions

The determination of the exact folding path of
mitotic chromosomes and its dynamic assembly

from interphase chromatin is a key open question
of chromosome biology. High-resolution analysis by
a combination of light microscopy and electron
microscopy on fixed samples of cells at different
prophase stages suggested a hierarchical folding model
of mitotic chromosome assembly (Kireeva et al. 2004).
Investigation of the dynamics of chromatin folding at
the subchromosomal scale in vivo requires labeling of
subchromosomal regions, which has been achieved
by a number of different approaches.

Labeling of individual sister chromatids

To improve the spatial discrimination between neigh-
boring chromosomes, single sister chromatids can be
labeled by incorporation of fluorescent nucleotide
analogues in a single round of chromosome replica-
tion preceding live imaging of mitosis (Manders et al.
1999). This labeling method allowed resolution of
individual chromosomes in microscopic images from
early prophase cells, and was used to track the folding
dynamics of heterochromatic foci with higher fluo-
rescence signal. This quantitative study of condensing
chromatin motion suggested that chromosomes
assemble from pre-formed interphase heterochromatin
arrangements.

Visualizing arrays of chromosomal loci

To follow the dynamics of more confined subchro-
mosomal regions, the Belmont laboratory engineered
chromosomes to contain arrays of bacterial lac
operators, which can be visualized by expression of
a GFP-tagged lac repressor (Robinett et al. 1996).
Detailed light microscopy and electron microscopy
showed that the lac arrays assembled into higher-
order chromatin structures and did not perturb
chromosome morphology, and thus provide a valid
marker for native chromatin dynamics. This approach
allowed visualization in live cells of chromatin fibers
of about 100 nm diameter (Robinett et al. 1996),
which had previously been observed only in electron
microscopic images as basic chromosome folding
units (Belmont and Bruce 1994). It is possible to
place the lac operator into specific DNA sequence
context. This approach questioned the relevance of
scaffold associated regions (SARs) in their contribution
to axial positioning of chromatin within mitotic
chromosomes (Strukov et al. 2003). Nevertheless,
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reproducible axial positioning of specific chromatin
regions was observed (Dietzel and Belmont 2001),
indicating that the chromatin context must contribute to
axial organization.

Photo-labeling of chromosome arm regions

An alternative approach to visualization of chromo-
somal subregions is based on photo-labeling. This
method exploits the fact that the photophysical
properties of fluorescent proteins can be altered by
strong laser illumination. Conventional fluorescent
proteins can be irreversibly switched to a dark state
by strong illumination at the normal excitation wave-
length (bleaching), while new variants of fluorescent
proteins have been designed that can be activated
(Patterson and Lippincott-Schwartz 2002; Habuchi et
al. 2005), or altered in their spectral emission
properties (Ando et al. 2002; Chudakov et al. 2004;
Wiedenmann et al. 2004; Matsuda et al. 2008) by
illumination at specific wavelengths. Many chromatin
markers, including fluorescently tagged core histones
like H2B, are very stably associated with the DNA
during all stages of the cell cycle (Gerlich et al. 2003).
This allows establishment of patterns of photo-labeling
as landmarks on chromosomes (Gerlich et al. 2003;
Walter et al. 2003; Mora-Bermudez et al. 2007) for
study of the dynamics of chromosome condensation
in vivo. While this method does not provide sufficient
spatial control to establish marks at distinct axial
chromosome positions, it is particularly suitable for
revealing longitudinal dynamics along the chromosome
axes. This approach contributed to the discovery of a
chromatin compaction step by axial shortening during
anaphase (Mora-Bermudez et al. 2007).

Labeling ribosomal DNA regions in budding yeast

In budding yeast, a highly repetitive ribosomal DNA
(rDNA) region, which makes up a stretch about half
the size of the largest chromosome, served as a target
region to visualize a subchromosomal structure. A
simple way to stain rDNA is by fluorescent in-situ
hybridization (FISH) (Guacci et al. 1994). However,
this requires harsh fixation and staining conditions
and thus may significantly perturb chromatin organi-
zation. The rDNA region can also be visualized in
live cells by expression of the fluorescently tagged
nucleolar protein Net1 (Machin et al. 2005). rDNA

labeling revealed distinct morphologies at different
stages of the cell cycle. In metaphase, rDNA localized
to a well-defined loop (Guacci et al. 1994; Lavoie et al.
2004), the length of which was used to quantify
condensation in metaphase and anaphase cells (Sullivan
et al. 2004; Machin et al. 2005). As an alternative
quantitation of rDNA condensation, the area of a
minimal circle around the fluorescent signal was
measured (Freeman et al. 2000). Expression of
fluorescently labeled nucleolar proteins has also been
used to analyze nucleolar structure in living fission yeast
cells (Win et al. 2004). Analysis of the rDNA locus has
provided important insights into chromosome conden-
sation in budding yeast. However, this region of DNA
is highly specialized: its sequence is highly repetitive,
and it contains elevated levels of condensin complex
during G2/M (Freeman et al. 2000). Furthermore, it
was reported to undergo hypercondensation during
anaphase (Machin et al. 2005). It therefore remains
unclear to what extent conclusions from the rDNA
apply to non-ribosomal DNA.

Visualizing non-rDNA chromosome regions
in budding yeast

Subchromosomal labeling in budding yeast outside
of rDNA regions can be achieved by FISH probes
to specific genomic loci. Labeling of two distinct
loci on a single chromosome allows measurement
of the axial compaction of intermediate chromatin
(Guacci et al. 1994). Alternatively, FISH probes can
be designed to visualize a continuous region of
chromosomal DNA, which allows quantitation of the
area of the fluorescent signal (Scherthan et al. 1992).
Labeling of non-rDNA chromosomal regions in vivo
has been achieved by integration of bacterial lac- and
tet-operator sequences at specific loci, which can be
visualized by expressing the respective DNA-binding
protein (lac— or tet- repressor) tagged with fluorescent
protein (Straight et al. 1996; Michaelis et al. 1997).
This method has been simplified by a recently
developed toolbox (Rohner et al. 2008). Axial
chromosome compaction can then be determined
by distance measurements between the labeled loci.
This approach revealed that distinct regions on a
single chromosome condense to different extents
(Vas et al. 2007), highlighting the importance of
considering local effects on chromosome condensation.
Even though initially used only in staged cultures of
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living cells, the method is in principle suitable for
real-time imaging.

Measuring mechanical properties of mitotic
chromosomes

Mechanical stability is an essential feature of
mitotic chromosomes, because spindle forces that
act locally at kinetochores need to move the entire
chromosome. It is generally believed that mechanical
resistance of mitotic chromosomes is established
during chromosome condensation, but only few
molecular components that contribute to mechanical
stability have been identified, and the mechanism by
which they stabilize chromosomes remains poorly
defined. Assays to measure mechanical properties of
mitotic chromosomes will be key to a better under-
standing of how chromosome condensation shapes
functional mitotic chromosomes.

Deformation of chromosomes by mechanical
micromanipulation

Mechanical properties of chromosomes can be deter-
mined from their deformation in response to external
forces applied by glass micropipettes. This chromosome
stretching approach allows one to calculate the
Young’s modulus as a measure of the elasticity of
chromatin. It was applied to chromosomes isolated
from cells (Claussen et al. 1994; Hliscs et al. 1997;
Poirier et al. 2000; Poirier and Marko 2003), as well
as to chromosomes inside live cells (Nicklas 1963;
Nicklas 1983; Li and Nicklas 1995), revealing that
chromosomes consist of soft and highly elastic
chromatin. Interestingly, the local elasticity of mitotic
chromosomes correlates with the chromosome banding
pattern (Hliscs et al. 1997). While the elegant
approach of mechanical micromanipulation has
greatly enhanced our understanding of basic biophysical
properties of mitotic chromosomes, it is technically
challenging and has been established only in cells
with particularly large dimensions. It therefore cannot
be applied to some of the canonical model cell
systems, including yeast, Drosophila, and human
cells. Micromanipulation-based methods for study of
chromosome mechanics have recently been discussed
in detail (Marko 2008).

Measuring axial stiffness of chromosomes
based on thermal bending

Mechanical features of mitotic chromosomes can
also be derived directly from quantitative live
imaging, without the need for mechanical microma-
nipulation. One such parameter is the bending
stiffness of chromosomes along their longitudinal
axis. This method is based on the fact that any type
of elastic rod deforms in solution because of its
thermal excitation. Measuring the length over which
thermally exited bends occur at a given constant
temperature allows direct calculation of the bending
stiffness of a given polymer (Gittes et al. 1993). This
approach has allowed determination of the bending
stiffness of isolated mitotic newt chromosomes (Poirier
et al. 2002), and of in vitro assembled Xenopus
chromosomes (Houchmandzadeh and Dimitrov 1999).
Application of thermal bending measurements to
live cells is complicated by the fact that spindle
forces also contribute to chromosome deformations.
This problem can be solved by disassembling the
mitotic spindle using microtubule poisons, which
allow measurement of the bending stiffness of
mitotic chromosomes visualized inside live Dro-
sophila cells by fluorescent core histones (Marshall
et al. 2001). Thermal bending measurements rely on
precise shape measurements of individual chromo-
somes. In many cell types it is difficult to determine
the precise boundaries of chromosomes based on
general chromatin markers, because of their large
overall number and crowded arrangement in the
metaphase plate. Visualization of individual chromo-
somes in live cells could be improved by using
subchromosomal markers specifically localizing to the
central axis of condensed chromosomes, e.g., tagged
condensin (Gerlich et al. 2006) or topoisomerase II (Mo
et al. 1998).

Spindle force-dependent centromere deformations
for assay of chromatin rigidity

An alternative imaging-based approach to address the
mechanical stability of mitotic chromosomes is
based on deformation measurements of chromatin
in response to mitotic spindle forces. In many cell
types, force-generating spindle attachments at the
kinetochores concentrate on pairs of confined chromo-
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somal regions. Time-lapse recordings of human cells
overexpressing a fluorescently labeled kinetochore
component (CENP-B; Shelby et al. 1996) revealed
that spindle force-dependent stretching fluctuated
over time. Abrogating spindle forces blocked oscilla-
tory interkinetochore motion and lead to compaction
of inner centromeres, which can be quantitated on
the basis of the reduction of interkinetochore
distance. This method is straightforward to imple-
ment, and allows efficient comparison between
different experimental conditions, as has been
shown by addressing the function of distinct
condensin complex subunits (Fig. 2A–D; Gerlich et
al. 2006). Measuring mean interkinetochore distances
both in the presence of an intact mitotic spindle as well
as after drug-induced spindle disassembly, allows
differentiation of pure ‘chromatin compaction’ pheno-
types from ‘mechanically unstable’ phenotypes
(Gerlich et al. 2006; Oliveira et al. 2005). Because
the spindle forces acting on kinetochores are not
directly quantitated, it is not possible to derive the
absolute values for elasticity modules with this
approach. In addition, experimental perturbations
designed to target chromatin condensation factors
could in principle also affect spindle forces, and
thereby potentially bias calculated chromatin elasticity
measures. Finally, this approach investigates only
mechanical properties of centromeric chromatin, which
contains specialized components and therefore might
differ from the general status of chromatin condensation
at other chromosomal regions.

Mitotic spindle force-dependent oscillations of
interkinetochore centromeric regions can also be
assayed in budding yeast, using kinetochore
markers, or by visualizing centromere-proximal
DNA regions with the lac operator/GFP-lac repressor
system (Pearson et al. 2001) (Fig. 2E, F). Because of
their attachment to a single microtubule, the spindle
forces on interkinetochore centromeric chromatin are
well defined, which allows calculation of absolute
values of the Young’s modulus (Bouck et al. 2008).
By labeling chromosomal regions at distinct distances
from the centromere in a set of reporter cell lines, it
was also possible to investigate chromosome stretching
at the onset of anaphase (Pearson et al. 2001). This
assay was based on differences in the relative kinetics
of spindle elongation and segregation onset of the
labeled chromosome region.

Spindle force-dependent deformations
of non-centromere chromatin regions

As with the spindle-force assays in animal cells (see
above), these approaches permit only the investiga-
tion of mechanical properties of centromeric chroma-
tin, which localizes between the sister kinetochores.
For analysis of mechanical properties of non-centro-
meric regions, yeast chromosomes can be engineered
to conditionally assemble a second kinetochore on a
single chromosome (dicentric chromosome). This can
be achieved by integration of a second centromere
that can be conditionally inactivated by an adjacent
inducible promoter (Hill and Bloom 1989). Because
the two kinetochores will randomly attach to the two
spindle poles, it is expected to obtain 50% of
dicentric chromosomes with the kinetochores pulled
to opposite poles. In these cells, stretching of the
chromatin between the centromeres can be assayed by
the deformation of a 10 kb lac operator array integrated
between the two centromeres. By this strategy, two
heterochromatin-regulating factors, Sir2 and Yku70,
were found to contribute to the mechanical stability
of chromosomes, apparent from the decondensed
appearance of the lac array in the respective mutants
(Thrower and Bloom 2001).

Conclusions

Fluorescence live cell microscopy and quantitative
image analysis provide efficient means to assay
chromosome condensation in vivo, which, owing to
the difficulty of preparing native chromatin fixations,
can be essential to reveal physiologically relevant
functions of candidate condensation factors.

The key limitation in any of the assays discussed
above is the resolution limit of the light microscope,
typically around 200 nm in the imaging plane, and
about 600–800 nm along the optical axis. This allows
one to monitor only the highest level of chromatin
folding dynamics. The recent development of super-
resolution light microscopy methods (Betzig et al.
2006; Schermelleh et al. 2008; Huang et al. 2008;
Westphal et al. 2008) will boost our understanding of
chromosome condensation at smaller scales.

Another opportunity to improve the resolution of
condensation assays lies in the development of new
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Fig. 2 Elastic deformation of centromeric chromatin in response to
spindle forces. a Centromere dynamics in control metaphase cell.
Time-lapse recording of unperturbed EGFP-CENP-A-expressing
HeLa cell (t=−155 to 0 s). After inhibition of spindle forces by
10 μM Taxol at t=0 s, the interkinetochore distance decreases.
Green and blue arrowheads correspond to quantitative measure-
ments in (C). Bar represents 10 μm. b Spindle force-dependent
increase in centromere dynamics in condensin I-depleted cell.
Time-lapse recording of CAP-D2-depleted cells. After inhibition of
spindle pulling forces by 10 μM Taxol at t=0 s, centromere
oscillations cease and they recompact similar to control cells.
Yellow and blue arrowheads correspond to quantitative measure-

ments in (D). c–d Quantitative analysis of interkinetochore distance
dynamics. Individual plots correspond to the centromeres high-
lighted in (A) and (B) and additional centromeres not highlighted in
the images. a–d are reprinted from Gerlich et al. (2006) with
permission from Elsevier. e, f Dynamic separation and oscillations
of centromere proximal lac operator sites in budding yeast at
preanaphase. e The lac operator marker was integrated 1.1 kb from
CEN11, and visualized by GFP-lac repressor (arrows). In addition,
spindle poles were labeled with Spc72-GFP (arrowheads). Bar
represents 2 μm. f A kymograph sequence of a time-lapse recorded
at 0.9 s intervals. e, f © Pearson et al. (2001). Originally published
in The Journal of Cell Biology. 152:1255–1266
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probes. The rapid progress in the development of in
vivo probes that report on conformational changes,
posttranslational modifications, or protein-protein
interactions will hopefully soon allow monitoring
of chromatin condensation at the molecular scale
in vivo.
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