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Abstract. We propose a new multiscale image segmentation model, based on the active contour/snake model and
the Polyakov action. The concept of scale, general issue in physics and signal processing, is introduced in the active
contour model, which is a well-known image segmentation model that consists of evolving a contour in images
toward the boundaries of objects. The Polyakov action, introduced in image processing by Sochen-Kimmel-Malladi
in Sochen et al. (1998), provides an efficient mathematical framework to define a multiscale segmentation model
because it generalizes the concept of harmonic maps embedded in higher-dimensional Riemannian manifolds such
as multiscale images. Our multiscale segmentation model, unlike classical multiscale segmentations which work
scale by scale to speed up the segmentation process, uses all scales simultaneously, i.e. the whole scale space, to
introduce the geometry of multiscale images in the segmentation process. The extracted multiscale structures will
be useful to efficiently improve the robustness and the performance of standard shape analysis techniques such as
shape recognition and shape registration. Another advantage of our method is to use not only the Gaussian scale
space but also many other multiscale spaces such as the Perona-Malik scale space, the curvature scale space or the
Beltrami scale space. Finally, this multiscale segmentation technique is coupled with a multiscale edge detecting
function based on the gradient vector flow model, which is able to extract convex and concave object boundaries
independent of the initial condition. We apply our multiscale segmentation model on a synthetic image and a medical
image.

Keywords: active contour; scale space; multiscale segmentation; PDE; Polyakov action; Riemannian manifolds;
gradient vector flow

1. Introduction and Motivations

This paper defines a new multiscale image segmen-
tation model in order to extract in images structures
at different scales of observation/resolution simultane-
ously.

The idea of multiscale/multi-resolution images is
well-known since the original works of Iijima (Weick-
ert et al., 1999) , Witkin (1983) and Koenderink (1984)
and this idea is obviously related to the fundamen-

tal concept of scale, lying everywhere in the physics
world. It is easy to be convinced of the importance of
this concept when we look at real-world images be-
cause images are naturally composed of objects which
are meaningful only at a given scale of observation. As
example (Lindeberg, 1994), let us consider the forest
picture on Figure 1.

At very fine scales of observation (centimeter), the
leaves are the significant objects, at intermediate scales
of observation (meter), the trees are the meaningful
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Figure 1. Illustration of a multiscale image. At fine scales (little

white circle), leaves are significant, at intermediate scales, trees are

relevant (large white circle) and finally at large scales, the whole

forest is significant.

objects and at the large scales of observation (kilome-
ter), this is the whole forest which is significant. In
other words, the way we perceive the world depends
on the scale of observation we use, inspired by the
scale principle of Morse, 1994. This observation has a
deep impact in physics because different theories have
been developed to observe the very small and the very
large scales of the physics world leading to quantum
mechanics and relativity theory. Even the human visual
system has integrated the concept of scale in its way
to capture the real-world images since psychophysical
and electro-physiological studies (Hubel and Wiesel,
1979; Hubel, 1988; Zeki, 1993) have shown that the
retina receives the image signal with a wide range of
sampling apertures/scales (Romeny, 1997).

Since natural images are composed of structures at
different scales of observation, it is then natural to de-
fine a multiscale representation of an image in order
to observe it at different scales. Another motivation
to develop such a representation is to design methods
for automatically analyzing information and deriving
specific applications in computer vision. How can we
design a multiscale image representation or how can
we decompose an image at different scales of obser-
vation/resolution? The answer of these questions are
scale spaces. The main principle of scale spaces is
to decrease the amount of information in images by
simplifying/smoothing objects lying in them, starting
from fine scales and ending to coarse scales. Mathe-
matically speaking, scale spaces are hierarchical de-
compositions/representations at a continuum of scales,
embedding the original image I0 : RN → R into a fam-
ily I : RN × [0, ∞[ → R of gradually more simplified
versions.

The mathematical methods that generate scale
spaces are generally based on partial differential equa-
tions coming from diffusion processes in physics and
special mathematical properties and invariances. For
instance, the first scale space that has been discovered
by Iijima, Witkin, Koenderink (1999, 1983, 1984) is
the linear/Gaussian scale space produced by the lin-
ear diffusion equation: ∂t I = �I, I (t = 0) = I0,
which satisfies the conditions of linearity, causality,
semi-group property, maximum principle, non-creation
of local extrema at larger scales (this holds only for
1-dimensional signals), translation, rotation and scale
invariances. Many other scale spaces can be defined
from (non-linear) PDEs, satisfying different proper-
ties, such as the scale spaces produced by the Perona-
Malik model (Perona and Malik, 1990), the mean cur-
vature flow (Osher and Sethian, 1988; Alvarez et al.,
1993; Sapiro and Tannenbaum, 1993), the total varia-
tion functional (Rudin et al., 1992), the Beltrami flow
(Sochen et al., 1998) and others.

Finally, let us mention that the theory of scale spaces
is a young theory that is constantly under development
with strong mathematical bases. First applications of
this theory have been to develop primitive differential
operators which can change their scales of resolution to
fit different unknown scales of real-world objects lying
in images and thus extract specific local information
from images such as edges, ridges and corners (Rudin
et al., 1992; Romeny, 1994; Florack, 1993). In the fol-
lowing work, we propose a multiscale image segmen-
tation model to extract multiscale structures in scale
spaces. Let us directly emphasize that our multiscale
segmentation model has a different purpose than clas-
sical multiscale models, which basically work scale by
scale in order to speed up the segmentation process to-
ward a global optimal solution at the inner scale, the
scale of the given image. Our approach is different. We
want to take into account in the segmentation process
the multiscale nature of real-world images that contain
objects/structures meaningful at given scales of obser-
vation and which are linked through scale because fine
structures are included into coarser structures in a se-
mantic way such as leaves are a part of trees, which are
also a part of forests, see Figure 1. Thus we will use in
the segmentation process all scales at the same time,
i.e. the whole scale space, which is where our technique
is basically different from the standard view of multi-
scale segmentations. The goal of this new approach is
to introduce the concept of scale in most shape anal-
ysis techniques, such as segmentation, recognition or
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registration, in order to improve their robustness and
their performance.

Another important motivation to design an image
segmentation model at all scales simultaneously is to
choose a posteriori the segmentation result at a scale
which can depend on the current application and which
is often unknown before the analysis process. This
problem often arises with the active contour model,
which will be the segmentation process used in our
approach.

The active contour/snake method, defined in Kass
et al., Caselles et al., Kichenassamy et al. (1987,
1997, 1996), consists of finding the planar closed
curve C which minimizes the intrinsic energy func-
tional FG AC (C) = ∫

C f (I0(C(s)))ds, where ds is
the Euclidean arc length element and f is an edge
detecting function. The standard deviation σ of the
Gaussian function Gσ in the edge detecting function
f (I0) := 1

1+γ |∇(I0∗Gσ )|2 is the scale parameter of this
model. The active contour model needs to use an ap-
propriate scale to work well. However, it is impossi-
ble to know a priori which is the proper scale to get
satisfactory results. The appropriate scale can depend
on many parameters such as the given image, the spe-
cific application, etc. Indeed, let us observe Figure 2.
If the scale parameter σ is too small, the active con-
tour gets stuck in noise (Figure 2(b)) and if the scale
is too large, the snake approximately capture corners
(Figure 2(d)). However, an appropriate scale can give
satisfactory result as shown on Figure 2(c). The prob-

Figure 2. Illustration of the scale issue in the active contour model.

If the scale parameter is too small, the contour gets stuck in noise,

Figure 2(b) and if the scale is too large, the snake approximately

captures the corners , Figure 2(d). However, there exits a correct
scale for this problem that gives us a satisfactory result, Figure 2(c).

lem is that the proper scale is a priori unknown before
the segmentation process. Hence, different results with
different values of σ have to be tested to determine
the correct scale. One solution to handle this issue is
to work at different scales, which is possible with an
image segmentation model working in the whole scale
space, and pick up a posteriori the scale (or several
scales) that looks like the most interesting for the given
application.

Hence, the goal of this work is to define a multiscale
image segmentation model based on the active contour
model and scale spaces. We will call this new model
multiscale active contours. Thus we will introduce the
concept of scale in the active contour formalism (Kass
et al., 1987; Caselles et al., 1997; Kichenassamy et al.,
1996) to combine information from fine scales to co-
arse ones in order to capture fine characteristics at low
scales and extract global shape at large scales. The
main question is how to mathematically design such
a model, i.e. how to define an evolution equation for
the active contours in scale spaces which are basically
non-Euclidean/Riemannian spaces?

The answer to the previous question is given by the
framework proposed by the Polyakov action that was
firstly defined in high energy physics for the string the-
ory (Polyakov, 1981), which basically tries to unify
the four fundamental forces of nature. Then, Sochen-
Kimmel-Malladi introduced this physics-based frame-
work in image processing to efficiently denoise multi-
dimensional images such as color and texture images
(Sochen et al., 1998; Kimmel et al., 2000). The math-
ematical field of the Polyakov action is the differential
geometry which intrinsically describes the scale spaces
such as the linear/Gaussian scale space, the Perona-
Malik scale space (Perona and Malik, 1990), the mean
curvature scale space (Osher and Sethian, 1988; Al-
varez et al., 1993; Sapiro and Tannenbaum, 1993),
the total variation scale space (Rudin et al., 1992) or the
Beltrami scale space (Sochen et al., 1998), etc. Thus the
geometry of scale spaces, with their intrinsic relation
between space and scale/time, will be naturally intro-
duced in the evolution process of the active contours in
the Polyakov framework.

To summarize, the main contributions of this paper
are:
(1) a general evolution equation for the active con-

tours, which can be curve, surface or hypersurface,
embedded in any general Riemannian manifold,

(2) a multiscale image segmentation model, called
multiscale active contours, which uses the
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geometry of the multiscale images in the segmen-
tation process,

(3) and a generalization of the gradient vector flow
model to Riemannian manifolds to capture multi-
scale image edges.

The next section will define a general evolution equa-
tion for the active contours embedded in any general
Riemannian manifold. Section 3 will present the scale
spaces used in our approach. Then, we will apply in
Section 4.1 the general model defined in Section 2 to
embed the snake in scale spaces to define a new multi-
scale segmentation process. Section 4.2 will present
the model of multiscale active contours in the lin-
ear/Gaussian scale space. Then, Section 5 will intro-
duce the edge function we will use in our snake model
to detect multiscale edges. Section 6 will generalize
the gradient vector flow model to scale spaces in or-
der to increase the performances of our segmentation
model. Finally, we will present two multiscale results
on a synthetic and a medical image in Section 7 and we
will discuss our model in Section 8.

2. Weighted Polyakov Action

In (Sochen et al., 1996, 1998), Sochen-Kimmel-
Malladi proposed a new general framework, based on
the Polyakov action, to deal with low level processing
in vision. Their new point of view considers images
as surfaces embedded in higher-dimensional space.
They observed that the Polyakov action is able to re-
cover/generalize most of the existing scale spaces, from
the linear scale space to the curvature scale space. This
justifies the title of their paper (Sochen et al., 1998)
since the Polyakov functional provides a single equa-
tion to generalize most of scale spaces fundamental in
low level vision. Moreover, they derived from this ap-
proach, the Beltrami flow to efficiently denoise multi-
dimensional images such as color and texture images
(Kimmel et al., 2000).

Mathematically speaking, the Polyakov action is ba-
sically a functional that measures the weight of a map-
ping X between an embedded manifold (e.g. the im-
age manifold) � and the embedding manifold M (see
Figure 3).

It is defined as follows:{
P(X, �, M) = ∫

dn� ς g1/2gμν∂μ Xi∂ν X j hi j

X : (�, [gμν]) → (M, [hi j ])
(1)

Figure 3. The manifold � embedded in M , reproduced from

(Sochen et al., 1998).

where [gμν] is the metric tensor/first fundamental form
(Kreyszig, 1991) of the manifold �, dn� ς is the inte-
gration element with respect to (w.r.t.) the local coordi-
nates on �, [hi j ] is the metric tensor of the embedding
space M , n� is the dimension of �, nM the dimension
of M , [gμν] is the inverse metric of [gμν], g is the deter-
minant of [gμν], μ, ν = 1, . . . , n� , i, j = 1, . . . , nM

and ∂μ Xi = ∂ Xi/∂ςμ. Finally, when identical indices
appear one up and one down, they are summed over
according to the Einstein summation convention.

The Polyakov action, defined in (1), is related with
harmonic maps which are more known as geodesics
or minimal surfaces for curves and surfaces. Indeed,
if the metric tensor [gμν] of the embedded manifold
� is chosen to be the induced metric tensor: [gμν] =
∂μ Xi∂ν X j hi j then the maps X which minimizes the
Polyakov action are called harmonic maps and the
Polyakov functional is reduced to the Euler func-
tional/Nambu action that describes the length/(hyper-)
area of a curve/(hyper-)surface �: S = ∫

dn� ς g1/2,
where g1/2 is the square root of the determinant of [gμν]
which corresponds to the infinitesimal invariant-area on
�. Harmonic maps are important in geometric prob-
lems because e.g. geodesics give the path of minimal
distance between two points on non-flat surfaces such
as a sphere. Harmonic maps are often used in image
processing problems such as in image segmentation
with the well-known geodesic active contour model,
introduced in Section 1, which consists of finding the
geodesic in a Riemannian manifold defined from the
given image. This geodesic represents the boundaries
of objects lying in images.

In our approach, we extend the Polyakov action in
order to define a new multiscale image segmentation
model. The extension is based on the introduction of a
weighting function, called f , in the Polyakov functional
(1) leading to the weighted Polyakov action:

Pf (X, �, M) =∫
dn� ς f (X, gμν, hi j ) g1/2gμν∂μ Xi∂ν X j hi j , (2)
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The weighted Polyakov action (2) can be minimized
w.r.t. the l-th embedding coordinate Xl using the Euler-
Lagrange equations technique, gμν and hi j being fixed.
The flow acting on Xl is then as follows:

∂ Xl

∂t

= g−1/2∂μ( f g1/2gμν∂ν Xl ) + f 	l
jk∂μ X j∂ν Xk gμν

− n�

2
hlk∂k f g1/2gμν∂μ Xi∂ν X j hi j ,

= f ·(g−1/2∂μ(g1/2gμν∂ν Xl )+	l
jk∂μ X j∂ν Xk gμν

)
+∂k f gμν∂μ Xk∂ν Xl− n�

2
hlk∂k f g1/2gμν∂μ Xi∂ν X j hi j ,

for 1 ≤ l ≤ nM ,

(3)

where g−1/2∂μ(g1/2gμν∂ν Xl) is the Laplace-Beltrami
operator which generalizes the Laplace operator to
non-flat manifolds, g−1/2∂μ( f g1/2gμν∂ν Xl) is the
anisotropic Beltrami operator and 	l

jk = 1
2
gli (∂ j gik +

∂k g ji −∂i g jk) is the Levi-Civita connection coefficients
(Kreyszig, 1991).

Naturally, the metric tensor [gμν] of the embedded
manifold � is chosen to be the induced metric tensor
in order to work with harmonic maps and the weighted
Polyakov action is then reduced to the weighted Euler
functional/Nambu action that describes the weighted
length/(hyper-)area of a curve/(hyper-)surface �:

S f =
∫

dn� ς f g1/2. (4)

As we previously said, it is consistent to work with
harmonic maps when we try to recover the model of
geodesic active contours (Caselles et al., 1997). The
induced metric tensor is introduced in the flow (3),
which yields to:⎧⎪⎪⎨⎪⎪⎩

∂ Xl

∂t = f Hl + ∂k f gμν∂μ Xk∂ν Xl − nM ·n�

2
∂k f hkl ,

Hl =
(

g−1/2∂μ(g1/2gμν∂ν Xl)

+ 	l
jk∂μ X j∂ν Xk gμν

)
gμν=∂μ Xi ∂ν X j hi j

(5)

for 1 ≤ l ≤ nM and H is the mean curvature vector
generalized to any embedding manifold M .

Functional (4) and its minimization flow (5) repre-
sent the general equations of an active contour (curve/
surface/hypersurface) embedded in any Riemannian
manifold. These general equations can be used to re-
cover the classical model of geodesic/geometric active
contours (Caselles et al., 1997; Kichenassamy et al.,
1996) and to derive a new model for the active con-
tours propagating in multiscale images. This new snake
model will be developed in Section 4.1 and will be

called multiscale active contours. Let us start by recov-
ering the model of geodesic/geometric active contours
and its level set version.

Application 1: The geodesic/geometric active con-
tours model (Caselles et al., 1997; Kichenassamy et al.,
1996) evolving in a 2-D Euclidean space is recovered
by choosing the following mapping and metric tensor
of the embedding space M :{

X := C : q → (x(q), y(q))[
hi j

] = [
δi j

] (5)

Introducing (5) in (4) and (5), we obtain:{
S f = FG AC = ∫

C f ds
∂t C = ( f κ − 〈∇ f,N 〉)N ,

which exactly corresponds to the energy and the
evolution equation of the geodesic/geometric active
contours model studied in Caselles et al., Kichenas-
samy et al. (1997, 1996).

Application 2: The evolution equation of the level
set (Osher and Sethian, 1988; Osher, 2003) version of
the geodesic/geometric active contours model can also
be revisited by choosing{

X : (x1, . . . , xn) → (x1, . . . , xn, φ)
[hi j ] = [δi j ]

(6)

Introducing (6) in (4) and (5), we obtain:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S f = ∫
f
√

1 + |∇φ|2 ∏
1≤ i ≤n

dxi

∂tφ = 1√
1+|∇φ|2 ∇.

(
f ∇φ√

1+|∇φ|2

)
= 1√

1+|∇φ|2

(
f KE S + 〈∇ f, ∇φ√

1+|∇φ|2 〉
)

,

(7)

whereKE S = ∇.

(
∇φ√

1+|∇φ|2

)
corresponds to the mean

curvature of the surface � embedded in an Euclidean
space (ES). For 2-D surfaces �, it is equal to:

KE S = (1 + φ2
x )φyy − 2φxφyφxy + (1 + φ2

y)φxx

(1 + φ2
x + φ2

y)3/2
, (8)

It is important to notice that the mean curvature KE S

is different to the mean curvature κ = ∇ ·
(

∇φ

|∇φ|
)

of

the level sets of φ in the classical model (Osher and
Sethian, 1988; Alvarez et al., 1993; Caselles et al.,
1997; Kichenassamy et al., 1996). We also observe
that equations (7) are not exactly the corresponding
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formula of the level set version of the active contours
model which are as follows:⎧⎨⎩

F = ∫
f |∇φ| ∏

1≤ i ≤n
dxi

∂tφ = ∇.
(

f ∇φ

|∇φ|
)

|∇φ| =
(

f κ + 〈∇ f, ∇φ

|∇φ| 〉
)

|∇φ|.
(9)

The level set flow defined in Equation (7) is equiva-
lent to the following flow:

∂tφ = (
f KE S + g−1/2

E S 〈∇ f, ∇φ〉)|∇φ|, (10)

=
(

f KE S + g−1/2
E S |∇φ|︸ ︷︷ ︸

=:r (φ)

〈∇ f,
∇φ

|∇φ| 〉
)

|∇φ|, (11)

since the solution of an Euler-Lagrange equation is not
changed when the Euler-Lagrange equation is multi-
plied by a strictly positive function such as g1/2

E S ·|∇φ| =
(1 + |∇φ|)1/2 · |∇φ|. According to the general formula
∂tφ = F |∇φ| ⇒ ∂t C = FN , Equation (11) implies
that the level sets of φ move according to the equation:

∂t C = ( f KE S − r (φ)〈∇ f,N 〉) N , (12)

where N = −∇φ/|∇φ| is the unit normal to the
level sets. Thus, Equation (12) is close to the evolu-
tion equation of the geodesic/geometric active contours
∂t C = ( f κ − 〈∇ f,N 〉)N up to the surface mean cur-
vature KE S and the function r . However both evolution
equations have the same behavior, i.e. smoothing and
attraction toward edges. Function r can be interpreted
as an indicator of the height variation on the surface
� (see Aubert and Kornprobst, 2001). Indeed, g−1/2

E S
is the ratio between the area of an infinitesimal sur-
face in the domain (x, y) and the corresponding area
on the surface �. For flat surfaces, r is goes to 0 and
it is close 1 near edges. Finally, the function r is con-
stant almost everywhere when φ is a signed distance
function.

Equations (4) and (5) allowed us to recover the model
of active contours/snakes in the explicit and the implicit
representations. Both representations, the contour C
and the level set function φ, were embedded/evolved
in Euclidean spaces defined by the Euclidean metric
tensor [hi j ] = [δi j ]. However, Equations (4) and (5)
were established for general embedding Riemannian
manifolds. Hence, it is possible to change the embed-
ding space for the active contours and consider the scale
spaces. The natural next question is which scale spaces

can be used in our framework? The question was an-
swered by Eberly in 1994a who defined a family of
scale spaces that includes the linear scale space, the
Perona-Malik scale space, the curvature scale space
and the Beltrami scale space.

3. Scale Spaces

In (Eberly, 1994a, 1994b) Eberly studied the geometry
of a large class of scale spaces and defined for them the
general metric tensor:

[
hi j

] = diag

(
1

c2
In,

1

c2ρ2

)
, (13)

where n is the spatial dimension, In is the n×n identity

matrix, c and ρ are two functions that physically cor-
respond to the conductance and the density functions
in the general model of heat diffusion transfer. These
functions can depend on space, scale and image data.
As Eberly said in (Eberly, 1994), the natural diffusion
equation in any space defined by a metric tensor is
obtained as follows: the left-hand side of the diffusion
equation is given by one application of the scale deriva-
tive and the right-hand side by two applications of the
spatial derivative. In the case of scale spaces, defined by
the metric tensor (13), the scale derivative and the spa-
tial derivative are given by the scale space (SS) gradient
defined by the covariant derivative (Kreyszig, 1991):

∇SS :=
√

[hi j ]−T ∇x,σ

=

⎛⎜⎝c∂x1
, . . . , c∂xn︸ ︷︷ ︸

spatial derivative

, ρc∂σ︸ ︷︷ ︸
scale derivative

⎞⎟⎠ = (c∇, ρc∂σ )

(14)

where [hi j ] is the inverse tensor of [hi j ], T means
the transpose operator, [hi j ]−T := ([hi j ]−1)T and
∇x,σ := (∂x1

, . . . , ∂xn , ∂σ ) = (∇, ∂σ ) where ∇ stands
for the Euclidean space gradient. Hence, the natural
diffusion equation is defined by

(ρc∂σ ) I = (c∇) · (c∇) I, (15)

∂σ I = 1

ρ
∇ · (c∇ I ). (16)

Equation (16) is the general model of heat diffusion
transfer that generates different multiscale image
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representations, i.e. scale spaces, by applying a PDE
which is a non-linear anisotropic diffusion equation in
its general expression.

Different choices of the functions c and ρ give dif-
ferent scale spaces with different diffusion equations
(16), which emphasizes well the close relation between
multiscale image analysis/scale space and diffusion
processes that originate from physics. For example, the
most popular scale space can be recovered when c = σ

(the scale parameter) and ρ = 1: ∂σ I = σ�I . Other
well-known scale space can be derived from the metric
tensor (13) and the associated multiscale generation
process (16). For example, the Perona-Malik scale
space (Perona and Malik, 1990) is obtained whenρ = 1
and c = exp(−α|∇ I |2), α > 0: ∂σ I = ∇ · (c∇ I ).
The famous mean curvature flow, which is one of the
fundamental equation in image processing (Osher and
Sethian, 1988; Alvarez et al., 1993; Sapiro and Tan-
nenbaum, 1993), is obtained by setting c = ρ = 1

|∇ I | :
∂σ I = ∇.( ∇ I

|∇ I | )|∇ I | = κ|∇ I , where κ is the mean
curvature of the level sets of I . We can also use the Bel-
trami flow of Sochen-Kimmel-Malladi (Sochen et al.,
1996, 1998) with c = ρ = 1√

1+|∇ I |2 : ∂σ I = �g I ,

where �g is the Laplace-Beltrami operator.

4. Multiscale Active Contours

4.1. The General Case

In this section, we define the general evolution equation
for the active contours in the scale spaces defined in
the previous section. We use the results obtained in
Section 2, the weighted Polyakov action, to determine
the evolution equation of the active contours and the
associated energy in scale spaces. The harmonic map
X , the metric tensor [hi j ] of the embedding scale space
and the metric tensor [gμν] of the level set surface φ

manifold representing the active contour are chosen as
follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X : (x1, . . . , xn, σ ) → (x1, . . . , xn, σ, φ)

[hi j ] = diag
(

1
c2 In,

1
c2ρ2 ,

1
c2

)
=:

[
hSS

i j

]
[gμν] = ∂μ Xi∂ν X j hi j =:

[
gSS

μν

] (17)

where x1, . . . , xn are the n spatial components and σ is
the scale parameter. Then, the previous Equations (17)
are introduced in Functional (4) and its minimization

flow (5) leading to:{
S f =∫

dn� σ f g1/2

∂t Xl= f Hl +∂k f gμν∂μ Xk∂ν Xl − nM ·n�

2
∂k f hkl

(18)

which leads to the energy functional and the evolution
equation for the (n + 2)-th component of X , i.e. the
level set component φ, which embeds the multiscale
active contour (MAC):⎧⎪⎨⎪⎩

EM AC = ∫
f
√

1 + |∇φ|2 + ρ2φ2
σ

∏
1≤ i ≤n

dxi
c

dσ
cρ

∂tφ = g−1/2
SS f KSS + 〈∇x,σ f, ∇x,σ φ〉[gμν

SS ]

(19)

where f = f (x1, . . . , xn, σ ), gSS = 1
c2(n+1)ρ2 (1 +

|∇φ|2 + ρ2φ2
σ ) is the determinant of [gSS

μν ],
∏ dxi

c
dσ
cρ

corresponds to the infinitesimal invariant volume in
the scale spaces defined by the metric tensor (13),
∇x,σ := (∇, ∂σ ), 〈.,.〉[gμν

SS ] is the inner product in mani-

folds (�, [gμν

SS ]) such that

〈V1, V2〉[gμν
SS ] := V T

1

[
gμν

SS

]
V2 = V1μgμν

SS V2ν, (20)

and KSS is the (n + 2)-th component of the mean cur-
vature vector (5) (up to g−1/2) generalized to scale
spaces:

KSS = (
∂μ(g1/2gμν∂ν Xl)

(21)
+ g1/2	l

jk∂μ X j∂ν Xk gμν
)

gSS
μν=∂μ Xi ∂ν X j hSS

i j
.

By analogy with Section 2, we look for the evolution
equation of the level sets of φ which zero level set
represents the multiscale active contour. The evolution
equation of the level set function φ defined in Equation
(19) is equivalent to the following flow:

∂tφ=
(

f KSS + g1/2
SS 〈∇x,σ f,∇x,σ φ〉[gμν

SS ]

)
|∇x,σ φ|, (22)

=
(

f KSS + g1/2
SS |∇x,σ φ|︸ ︷︷ ︸

=:rSS (φ)

〈
∇x,σ φ,

∇x,σ φ

|∇x,σ φ|
〉
[gμν

SS ]

)
,

(23)

since the solution of an Euler-Lagrange equation is not
changed when the Euler-Lagrange equation is multi-
plied by a strictly positive function such as g1/2

SS ·
|∇x,σ φ|. According to the general formula ∂tφ =
F |∇φ| ⇒ ∂t C = FN , Equation (23) implies that
the level sets of φ move according to the equation:

∂t C = (
f KSS − rSS(φ)〈∇x,σ f,N 〉) N , (24)
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where N = −∇x,σ φ/|∇x,σ φ| is the unit normal to the
level sets.

In the rest of this section, we develop some equa-
tions for n = 2, i.e. 2-D images, that will be used to
experiment with our multiscale segmentation model.
The harmonic map X and the metric tensor [hSS

i j ] of
embedding scale spaces for n = 2 have the following
form: {

X : (x, y, σ ) → (x, y, σ, φ)[
hSS

i j

] = diag
(

1
c2 ,

1
c2 ,

1
c2ρ2 ,

1
c2

)
(25)

Then, the metric tensor [gSS
μν ], its determinant gSS and

its inverse metric [gμν

SS ] are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
gSS

μν

] = 1
c2

⎛⎝ 1 + φ2
x φxφy φxφσ

φxφy 1 + φ2
y φyφσ

φxφσ φyφσ
1
ρ2 + φ2

σ

⎞⎠
gSS = 1

c6ρ2

(
1 + φ2

x + φ2
y + ρ2φ2

σ

)
[
gμν

SS

] = 1
g

1
c4ρ2 ·⎛⎜⎝1 + φ2

y + ρ2φ2
σ −φxφy −ρ2φxφσ

−φxφy 1 + φ2
x + ρ2φ2

σ −ρ2φyφσ

−ρ2φxφσ −ρ2φyφσ ρ2
(

1 + φ2
x + φ2

y

)
⎞⎟⎠

(26)

The energy functional of the multiscale active contours
for n = 2 is

E SS
M AC =

∫
f
√

1 + φ2
x + φ2

y + ρ2φ2
σ

dxdydσ

c3ρ
(27)

The general evolution equation of multiscale active
contours for n = 2 is very long! Hence, it is easier
to develop the evolution equation of active contours in
specific scale spaces. In this work, we choose to use
the most well-known scale space, i.e. the linear scale
space. Obviously, other scale spaces can be used in our
segmentation framework. In the future, it will be in-
teresting to develop the curvature scale space which
efficiently preserve multiscale edges to carry out the
segmentation and the shape recognition tasks on real-
world applications.

4.2. Active Contours in the Linear Scale Space

The first natural application of the previous multiscale
segmentation model is in the linear scale space, ob-
tained when the conductance function is equal to c = σ

(the scale parameter) and the density function is equal
to ρ = 1. We consider the case n = 2 of 2-D images.

In this situation, the energy of the multiscale active
contour and the flow applied on the level set function
φ (embedding the active contour) in the linear scale
space are equal to:{

E L SS
M AC =∫

f
√

1 + φ2
x + φ2

y + φ2
σ

dxdydσ

σ 3 ,

∂tφ =g−1/2
L SS f KL SS + g−1

L SS
1
σ 2 〈∇x,σ f, ∇x,σ φ〉L SS,

(28)

where gL SS = 1
σ 6 (1 + φ2

x + φ2
y + φ2

σ ) and KL SS is
the mean curvature in the linear scale space computed
using Equation (22):

KL SS = g−1/2
L SS

φμν

σ 6
gμν

L SS︸ ︷︷ ︸
(1)

− 3g1/2
L SS

φμ

σ
gμσ︸ ︷︷ ︸

(2)

. (29)

The first part of the mean curvature (29.1) in the linear
scale space corresponds to the Euclidean part because
the Euclidean mean curvature is equal to g−1/2

E S φμνgμν

E S
when σ = 1, and the second term (29.2) corresponds
to the Riemannian part. More explicitly, Equation (29)
is equal to:

KL SS = 1
σ

(
1 + φ2

x + φ2
y + φ2

σ

)−3/2·[
φxx

(
1 + φ2

y + φ2
σ

) + φyy
(
1 + φ2

x + φ2
σ

)
+ φσσ

(
1 + φ2

x + φ2
y

) − 2φxyφxφy − 2φxσφxφσ

− 2φyσφyφσ

] − 3 1
σ 2

(
1 + φ2

x + φ2
y + φ2

σ

)−3/2 · φσ

(30)

Finally, 〈·, ·〉L SS in Equation (28) is the inner prod-
uct in the linear scale space defined by 〈V1, V2〉L SS =
1
σ 2 〈V1, V2〉 such that:

1
σ 2

1
gL SS

〈∇x,σ f, ∇x,σ φ〉L SS

= σ 2

1+φ2
x +φ2

y+φ2
σ

( fxφx + fyφy + fσφσ ).
(31)

5. Multiscale Image Features

The previous sections introduced the segmentation
model of multiscale active contours which is able to
extract multiscale objects in multiscale images. The
extraction process is based on a PDE (19) defining an
evolution equation for hyper-surfaces in non-Euclidean
manifolds, the scale spaces, which capture multiscale
image features represented by the function f in the
flow ∂tφ = g−1/2

SS f KSS + 〈∇x,σ f, ∇x,σ φ〉[gμν
SS ]. Which

are the possible functions f to capture local multiscale
edges?
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5.1. Classical Multiscale Edge Detecting Function

By analogy with the classical model of geomet-
ric/geodesic active contours (Kass et al., 1987; Caselles
et al., 1997; Kichenassamy et al., 1996), the most com-
mon multiscale edge detecting function to capture mul-
tiscale structures is based on the norm of the image
gradient:

f = 1

1 + β|∇SS I (x1, . . . , xn, σ )|2 , (32)

where β is an arbitrary positive parameter, ∇SS is the
scale space gradient defined in Equation (14) such as
|∇SS I | = (c2 I 2

x1
+ · · · + c2 I 2

xn
+ c2ρ2 I 2

σ )1/2 and I is
a multiscale image obtained by applying a PDE such
as Equation (16) on a given image I0. The definition
of the edge detecting function (32) is easy to establish
without technical particularities. However, it is possi-
ble to define an enhanced multiscale edge detecting
function with the work of Eberly (1994a) who studied
many image features in a strong mathematical frame-
work based on differential geometry. In our approach,
we will consider special image features called ridges.

5.2. Multiscale Edge Detecting Function
Based on Ridges

In (Eberly, 1994a), Eberly explored various ways
to detect local image features, called ridges, in n-
dimensional spaces. Ridges play an important role in
the characterization of semantic local features. Gener-
ally speaking, ridges are image features of a function
which have local maximum in f along the direction of
the greatest concavity (Morse, 1994). Thus, at a ridge
point the direction of greatest curvature is the cross-
ridge direction and the value of the function is greater
than the neighboring points on either side of it. Figure
4 illustrates a line of ridge points.

Figure 4. Ridges as maxima in the direction of the greatest curva-

ture, reproduced from (Morse, 1994).

Ridges can be defined by different ways (Eberly,
1994a). In our approach, we use the definition devel-
oped in Section 2.3 of (Eberly, 1994a). A point in an
n-D space is an m-D ridge (m < n) of a function F if:{

λi < 0
〈ei , ∇F〉 = 0

for all i < n − m, (33)

where (λ1, . . . , λn) with |λ1| ≤ · · · ≤ |λn| and
(e1, . . . , en) are the eigenvalues and the corresponding
eigenvectors of the Hessian of F , which is the n × n
matrix of the second derivatives of F . The Hessian is a
fundamental quantity in geometry because it is related
with the intrinsic geometry of the n-graph indepen-
dently of the surface parametrization. It is important
to notice that the Hessian computed in an Euclidean
space is different in a Riemannian space. The scale
space Hessian ∇2

SS is obtained according to the follow-
ing equation (Kreyszig, 1991; Eberly, 1994):

∇2
SS :=

√[
hi j

SS

]−T dc∇x,σ f

dcξSS

√[
hi j

SS

]−1

, (34)

where ξSS = (x1, . . . , xn, σ ) and dc∇x,σ f
dcξSS

is the covari-
ant derivative of ∇x,σ f , which is a second-order tensor
defined by:

dc∇x,σ f

dcξSS
=

[
∇x,σ 2 f −

n+1∑
k=1

	k(∇x,σ f )k

]
, (35)

where ∇x,σ 2 stands for the Euclidean Hessian,
(∇x,σ f )k is the k-th component of ∇x,σ f and 	k is
the k-th Levi-Civita connection coefficient of [hi j

SS]. In
the practical case of 2-D images, i.e. when n = 2,
and considering the linear scale space with c = σ and
ρ = 1, then the Hessian, which takes into account the
particular interdependence between space and scale, is
equal to (Morse, 1994):

∇2
L SS =⎡⎢⎢⎣
σ 2 ∂2F

∂x2 − σ ∂F
∂σ

σ 2 ∂2F
∂x∂y σ 2 ∂2F

∂x∂σ
+ σ ∂F

∂x

σ 2 ∂2F
∂x∂y σ 2 ∂2F

∂y2 − σ ∂F
∂σ

σ 2 ∂2F
∂y∂σ

+ σ ∂F
∂y

σ 2 ∂2F
∂x∂σ

+ σ ∂F
∂x σ 2 ∂2F

∂y∂σ
+ σ ∂F

∂y σ 2 ∂2F
∂σ 2 + σ ∂F

∂σ

⎤⎥⎥⎦
(37)

Equations (33) and (36) allow us to compute mul-
tiscale ridges for a function F to be chosen. In our
approach, we decide to extract ridges from the norm
of the scale space gradient of the multiscale image I ,
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i.e. F = |∇L SS I (x, y, σ )| = σ · (I 2
x + I 2

y + I 2
σ )1/2, us-

ing Equation (33). The result of this process is a binary
function, namely 1ridges(x, y, σ ) which is equal to 1 for
ridge points and 0 otherwise. Then, the function 1ridges

is multiplied by the multiscale norm |∇L SS I | to weight
the ridge points. Finally, our edge detecting function is
given by the equation:

f = 1

1 + β (1ridges · |∇L SS I |) , (36)

which means that f is equal to 1 on homogeneous
regions as in the classical model of geometric/geodesic
active contour (Kass et al., 1987; Caselles et al., 1997;
Kichenassamy et al., 1996).

6. Multiscale Gradient Vector Flow

Section 4 proposed a multiscale segmentation flow (19)
which is able to capture structures, represented by (32)
and (36), in scale spaces defined in Section 3. The seg-
mentation process is completely defined however it is
very slow as the process of geometric/geodesic active
contours. This is due to the edge detecting function f
and its gradient ∇x,σ f in (19) which are only “active”
close to object edges. Indeed, when the active contour
is far from edges, the gradient of f is close to zero and
f is nearly equal to 1, which means that only the cur-
vature acts, which is a slow evolution process. When
the active contour is close to edges, then the gradi-
ent of f becomes active and attract the snake toward
the edges. The evolution process could be speed up if
the active contour was attracted by the edges in homo-
geneous/smooth regions. This issue was solved by Xu-
Prince in (Xu and Prince, 1998) who proposed a method
called the gradient vector flow (GVF) which can extend
the multiscale gradient field of f into smooth regions
and also deal with the problem of concave regions.
In the following, we firstly present the original model
of Xu-Prince which is designed to work in Euclidean
spaces. Then, we will extend the model to scale spaces.

6.1. Gradient Vector Flow in Euclidean Spaces

The gradient vector flow model was originally devel-
oped to overcome the issues of contour initialization
and poor convergence to boundary concavities in the
geometric/geodesic active contours model (Kass et al.,
1987; Caselles et al., 1997; Kichenassamy et al., 1996).
For example, Figure 5 presents an object with concave

Figure 5. Figure (a) presents an object which boundary is a har-

monic curve. Figure (b) shows the gradient of the given image and

Figure (c) presents the extended image gradient using the GVF

method.

concavities which can not be fully segmented with clas-
sical geometric/geodesic active contours (even with a
balloon force (Cohen, 1991)) since the snake can not go
inside concave parts of the given object. Moreover, the
convergence of the classical active contours model is
slow compared with the method proposed by Xu-Prince
in (Xu and Prince, 1998) even if the initial contour is
satisfactory. Xu-Prince propose to diffuse/extend the
image gradients into smooth regions while preserving
edge forces. Their method is defined in a variational
framework since the GVF field minimizes the follow-
ing energy functional in the n-D Euclidean space:

FGV F
E S (V) =∫
μ

(
n∑

i=1

|∇Vi |2
)

︸ ︷︷ ︸
(1)

+ |∇ f |2|(V − ∇ f )2︸ ︷︷ ︸
(2)

dx, (37)

where f (x1, . . . , xn) is the initial data n-D function,
V(x1, . . . , xn) = (V1, . . . , Vn) is the gradient vec-
tor field minimizing Functional (37) and extending
the original gradient of f in homogeneous/smooth re-
gions, μ is an arbitrary constant which balances the
contributions between the diffusion and regularization
term (37.1) and the data fidelity term (37.2). Indeed, if
μ → 0 then the solution is V = ∇f and if μ → ∞ then
V is solution of the classic isotropic diffusion equa-
tion

∫ ∑n
i=1 |∇Vi |2. Moreover, when the norm of gra-

dient |∇ f | is small in (37), i.e. in smooth regions, the
term (37.2) is also small and Energy (37) minimizes the
diffusion-based term (37.1) by propagating the vector
field V. Inversely, when the norm of gradient |∇ f | is
large, i.e. on edges, the second term (37.2) dominates
and constraints the vector field V to be equal to the
original data ∇ f .

The minimization of Energy functional (37) is done
using the calculus of variations and the gradient descent
method which provide n flows, one per component of
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Figure 6. Figure (a) presents the initial active contour. Figure (b)

is the final contour using the classic image gradient on Figure 5(b)

and Figure (c) is the final contour using the GVF method on Figure

5(c).

the GVF field. The Frechet derivative of FGV F
E S w.r.t.

Vi in the ξ -direction is〈∂ FGV F
E S

∂Vi
, ξ

〉
= (38)∫

ξ ·
[

−μ

(
n∑

j=1

∂2
x j

Vi

)
+ |∇ f |2(Vi − ∂xi f )

]
dx,

for 1 ≤ i ≤ n. Then, the flow minimizing FGV F
E S w.r.t.

Vi is

∂Vi

∂t
= μ

(
n∑

j=1

∂2
x j

Vi

)
− |∇ f |2(Vi − ∂xi f ), (39)

for 1 ≤ i ≤ n.
Let us apply the GVF model to Figure (5.a). Fig-

ure (5.b) presents the image gradient and Figure (5.c)
the extended image gradient computed with Equations
(39). Finally, Figure 6 illustrates the usefulness of the
GVF method since the geodesic/geometric active con-
tours model which uses the classic image gradient can
not fully segment the harmonic boundary whereas the
gradient vector flow allows us to completely segmented
the boundary.

6.2. Gradient Vector Flow in Scale Spaces

The previous section introduced the GVF method
which basically extends the image gradient in homoge-
neous/smooth regions to faster capture image edges and
to deal with concave and convex object boundaries. The
previous method was defined in n-D Euclidean spaces
but we will generalize it into scale spaces by taking ac-
count the special relation between space and scale using
the metric tensor (13). We will use the multiscale gra-
dient vector flow model to extend the multiscale edge
detecting function (32) or (36) into smooth regions to
efficiently capture multiscale objects in multiscale im-
ages.

The Euclidean GVF model is extended to scale
spaces by simply “updating” the Euclidean quantities
to their Riemannian equivalents. Thus, the Euclidean
gradient ∇ is replaced by the scale space gradient ∇SS

and the Euclidean infinitesimal invariant volume ele-
ment dx by the scale space one dxSS , Energy functional
(37) then becomes:

FGV F
SS (V) =

∫
μ

(
n∑

i=1

|∇SS Vi |2
)

(40)
+ |∇SS f |2(V − ∇SS f )2 dxSS,

Considering the scale space gradient ∇SS = (c∇, ρc∂σ )
and dxSS = ∏

1≤i≤n

dxi
c

dσ
cρ , the Frechet derivative of

FGV F
SS w.r.t. Vi in the ξ -direction is:〈

∂ FGV F
SS

∂Vi
, ξ

〉
=

∫
ξ ·

[
− μ

(
n∑

j=1

∂x j (c
2∂x j Vi ) + ∂σ (c2ρ2∂σ Vi )

)

+ |∇SS f |2(Vi − (∇SS f )i )

]
1

cn+1ρ
dx, (41)

for 1 ≤ i ≤ n + 1. Then, the flow minimizing FGV F
SS

w.r.t. Vi is

∂Vi

∂t
= μ

(
n∑

j=1

∂x j

(
∂x j Vi

cn−1ρ

)
+ ∂σ

(
ρ∂σ Vi

cn−1

))
− |∇SS f |2

cn+1ρ
(Vi − (∇SS f )i ),

(42)

for 1 ≤ i ≤ n +1. For our application, we consider the
linear scale space, i.e. c = σ, ρ = 1 and 2-D images,
i.e. n = 2:

∂Vi

∂t
(x, y, σ ) = μ(σ−1∇x,σ 2Vi − σ−2∂σ Vi )

− σ−1|∇x,σ f |2(Vi − σ∂i f ), for i = x, y, σ,

(43)

where ∇x,σ 2 = ∇2 + ∂2
σ and ∇x,σ = (∇, ∂σ ).

7. Results

In this section, we apply our multiscale image segmen-
tation model in the linear scale spaces of two images:
a 64 × 64 synthetic image based on the Von Koch’s
picture, corrupted with additive Gaussian noise and a
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Figure 7. First row presents the linear scale space of the Von Koch’s picture at four different scales of observation. Second row shows the norm

of the linear scale space gradient and third row presents the ridges of the scale space image gradient norm. Fourth row gives the multiscale GVF.

64 × 64 brain magnetic resonance image. The number
of scales for both pictures is 15.

The first row of Figures 7 and 8 present the linear
scale space of the Von Koch’s picture and the brain
picture at four different scales of observation. The sec-
ond row of Figures 7 and 8 show the norm of the
linear scale space gradient. The third row present the
multiscale edge detecting function, defined in Equa-
tion (36), based on the ridge points detected from the
norm of the linear scale space gradient. The multi-
scale ridges, defined in Equation (33), are robustly
extracted with the approach of Morse, Chapter 7 in
Morse (1994). The fourth row of Figures 7 and 8
show the multiscale GVF. The initial vector field is
chosen to be the scale space gradient of the edge de-
tecting function (36), i.e. V(t = 0) = ∇L SS f . The
multiscale GVF, Equation (43), is implemented using
central approximation schemes for spatial derivatives
and the scale derivative scheme proposed by Eberly
(1994, 1994a). The run times are about 5 minutes for
the Von Koch’s picture and 15 minutes for the brain
picture.

The segmentation process is given by the flow
(28). It is implemeted as follows: the mean curvature

KL SS , developed in Equation (30), is implemented, like
GVF, using central approximation schemes for spa-
tial derivatives and the scale derivative scheme pro-
posed by Eberly (1994, 1994a). The advection term,
Equation (31), is discritized with standard upwind
schemes based on hyperbolic conservation laws, see
e.g. Osher (2003) or Sethian (1999). Furthermore, the
level set function is periodically re-initialized with
the fast marching method of Adalsteinsson-Sethian
(1995).

First row of Figures 9 and 10 present the evolution
of the active contour, which is a surface in this case, in
the linear scale space and the last three rows show the
evolution process of the multiscale snake at four differ-
ent scales. The run times of the segmentation process
are about 5 minutes for the Von Koch’s picture and 15
minutes for the brain picture.

8. Conclusion, Comparison and Future Research

In this paper, we defined a method to extract objects
lying in images at different scales of observation. As
we explained in Section 1, the multiscale nature of
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Figure 8. First row presents the linear scale space of a 2-D brain image at four different scales of observation. Second row shows the norm of

the linear scale space gradient and third row presents the ridges of the scale space image gradient norm. Fourth row gives the multiscale GVF.

images, discovered by Iijima, Witkin, Koenderink
(Weickert et al., 1999; Witkin, 1983; Koenderink,
1984), makes this image segmentation method relevant
because real-world images contain objects meaningful

Figure 9. First top row presents the multiscale active contour evolv-

ing in the linear scale space and the last four row show the active

contour propagating at four different scales.

at given scales of observation and which are linked
through the scale because fine structures are included
into coarser structures in a semantic way.

Moreover, the multiscale paradigm used in this paper
implies that all solutions to a given image analysis prob-
lem, corresponding to different scales of observation,

Figure 10. First top row presents the multiscale active contour

evolving in the linear scale space and the last four row show the

active contour propagating at four different scales.
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are valid! The choice of a “correct” scale is significant
only for a given application, which “fixes” the scale, but
all solutions are relevant. That is why we considered
all scales in our approach, i.e. all possible solutions, to
the segmentation problem.

Unlike classical multiscale segmentation models,
that have already been proposed by e.g. Leroy-Herlin-
Cohen in (Leroy et al., 1996), we do not use the multi-
scale concept to speed up the convergence toward the
global optimal solution. Indeed, the authors in (Leroy
et al., 1996) proposed to use the Gaussian scale space to
speed up the convergence of the active contour model
as follows: first, the snake solution is determined at a
coarse scale, then the final contour is used as initial-
ization at a finer scale. This process is iterated until
the finest scale. This multiscale segmentation process
allow first to avoid bad local minima, corresponding
to bad segmentation results, and thus obtain a local
minimum close to the global optimal segmentation so-
lution and second, to avoid a high computational cost
to find the global solution because they work from low
dimensional images, in coarse scales, to high dimen-
sional one, in fine scales, still using simple optimiza-
tion technique based on the gradient descent. Thus,
classical multiscale segmentation models speed up the
segmentation process and are robust with respect to
initial condition and noise. However the main issue in
this model is the fact that authors did not consider the
fundamental relation between space and scale/time. In
other words, they did not introduce the intrinsic geom-
etry of the Gaussian scale space in the segmentation
process. In our work, we have taken into account the
geometry of the Gaussian scale space, and other scale
spaces, in the segmentation process. Our multiscale im-
age segmentation model used the important geometric
information of scale spaces, which was not the case in
the previous works. Thus we performed the segmenta-
tion process at all scales simultaneously and we also
found a solution close to the optimal global solution.
Indeed, like classical multiscale segmentation models,
our model can avoid bad local minima at finer scales
thanks to coarser scales. It is due to scale spaces, which
create a basin catching in the minimization algorithm,
and the mean curvature force which acts on the sur-
face through scales to influence finer scales thanks to
coarser scales.

Close to our approach, Schnabel-Arridge (1999) also
proposed a model to extract scale by scale the shape of
objects. They used the segmentation result at each scale
to build a multiscale representation of the segmented

object. The extracted multiscale shapes are used to lo-
calize and characterize shape changes at different levels
of scale. They applied their model to segment 3-D brain
magnetic resonance images in order to quantify the
structural deformations for patients having epilepsy.
Thus their approach is close to ours but the main weak-
ness of their model is not to use the relation between
space and scale/time, coded in the geometry of scale
spaces.

From a mathematical point of view, the Polyakov
framework, introduced by Sochen-Kimmel-Malladi
(Sochen et al., 1998) in image processing, provided
us the mathematical framework to use and incorpo-
rate the multiscale information lying in scale spaces
in the active contour segmentation process. Indeed,
the Polyakov functional gave us the general evolution
equation for the active contours in any Riemannian
manifold defined from a first fundamental form/metric
tensor. Since scale spaces, such as the Gaussian scale
space, the curvature scale space or the Beltrami scale
space, are natural Riemannian manifolds which metric
tensors were defined from the general heat diffusion
equation in Section 3. We also chose to work, like in
classical approaches (Kass et al., 1987; Caselles et al.,
1997; Kichenassamy et al., 1996), with harmonic maps
by choosing the metric tensor of the embedded man-
ifold as the induced metric tensor. The result is the
model of multiscale active contours, which is able to
extract multiscale structures lying in images.

Future works will be focused on integrating this
multiscale segmentation technique into shape analysis
methods such as the shape recognition task or the shape
registration method to improve their robustness and
their performance. More precisely, combining a multi-
scale shape prior such as the multiscale medial axis
called cores and developed by Pizer-Eberly-Morse-
Fritsch (Pizer et al., 1998), with our mutiscale seg-
mentation model could provide an efficient multiscale
recognition method. Moreover, our multiscale image
segmentation model provides a multiscale shape rep-
resentation that can be useful to register complex geo-
metric shapes such as the brain cortical surface. Special
metrics defined in multiscale spaces can be used to ef-
ficiently compare shapes at different scales.

Another future work will be to change the linear scale
space (Bresson et al., 2005), which does not preserve
well the edges, into a more useful scale space such as
the curvature scale space which is one of the funda-
mental model in image processing (Osher and Sethian,
1988; Alvarez et al., 1993).
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