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Abstract The goal of creating machines that autonomously
perform useful work in a safe, robust and intelligent manner
continues to motivate robotics research. Achieving this au-
tonomy requires capabilities for understanding the environ-
ment, physically interacting with it, predicting the outcomes
of actions and reasoning with this knowledge. Such intelli-
gent physical interaction was at the centre of early robotic
investigations and remains an open topic.

In this paper, we build on the fruit of decades of re-
search to explore further this question in the context of
autonomous construction in unknown environments with
scarce resources. Our scenario involves a miniature mo-
bile robot that autonomously maps an environment and uses
cubes to bridge ditches and build vertical structures accord-
ing to high-level goals given by a human.

Based on a “real but contrived” experimental design, our
results encompass practical insights for future applications
that also need to integrate complex behaviours under hard-
ware constraints, and shed light on the broader question of
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the capabilities required for intelligent physical interaction
with the real world.
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1 Introduction

Since its beginnings, robotics research has been inspired by
the vision of machines that autonomously perform useful
but tedious work in a safe and robust manner. Therefore, a
fundamental requirement is the capability of influencing the
physical world, as amply demonstrated by the prevalence
of robots in factories. However, translating this requirement
into mobile robots operating in uncontrolled environments
demands a greater understanding of the world and its rules,
which requires intelligence.1 For many roboticists, the vi-
sion remains unfulfilled, as the degree of autonomy or intel-
ligence exhibited by commercially-available mobile robots
is usually still deemed very limited. This means that robots
are currently deployed only in a small subset of possible ap-
plications, and thus we can still greatly increase their contri-
bution to society. In the past decades, many of the problems

1Although there is no commonly accepted definition of intelligence,
there are consensual approximations (Gottfredson 1997; Legg and Hut-
ter 2007). The Encyclopedia Britannica (2006), as quoted by Legg and
Hutter (2007), lists many of the properties that we deem relevant for
deciding whether a robot can be considered intelligent:

[. . . ] ability to adapt effectively to the environment, either by
making a change in oneself or by changing the environment
[. . . ] intelligence is [. . . ] a combination of many mental pro-
cesses [. . . ]

CORE Metadata, citation and similar papers at core.ac.uk

Provided by RERO DOC Digital Library

https://core.ac.uk/display/159145172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:stephane@magnenat.net
mailto:roland.philippsen@hh.se
mailto:francesco.mondada@epfl.ch


468 Auton Robot (2012) 33:467–485

Fig. 1 The experimental setup: the black area is a ditch separating
two traversable regions. The robot can manipulate the resources (white
cubes) to gain access to the other side of the ditch and build a structure

limiting a broader deployment of robots have been discov-
ered and addressed by roboticists. Nowadays, the accumu-
lated wealth of robotic knowledge increasingly allows re-
searchers to draw from existing components and methods in
order to revisit broader questions about intelligence and its
application to real tasks.

We situate our work in the empirical investigation of
robots with comprehensive capabilities for real-world in-
teraction. We presume that a rich interplay with the phys-
ical environment is an essential ingredient for intelligence.
We employ novel combinations of hardware and software to
build miniature embodied systems for experimental studies
of autonomous goal-directed environment modification. In-
spired by early pioneering work on the robot Shakey (Nils-
son 1984), and now able to exploit significant advances in
the state of the art, we investigate which components and
methods are needed and how to coordinate them. Experi-
mental design and system integration are central aspects of
our work.

In this paper, we use the example of building a tower
out of scarce resources scattered through a partially acces-
sible and unknown environment. Our experimental setup
is inspired by the challenges of autonomous construction,
which has several potential applications: in the short term,
the building industry has recognised the importance of
robotics2 for its potential to reduce casualties and improve
efficiency and acknowledges that much work remains to
be done (Zavadskas 2010). In the long term, robots could
replace or reinforce infrastructure after natural disasters,
or they might construct settlements for space exploration.
We think that autonomous robots capable of reliable con-
struction work must show at least some level of intelli-
gence, and we attribute the uncommon appearance of au-

2E.g. with a dedicated journal for automation in construction: http://
www.elsevier.com/locate/autcon.

tonomous construction in mobile-robotics research to the
complex subsystem integration necessary to implement suf-
ficiently intelligent behaviours. Our tower-building scenario
(see Fig. 1) emphasizes three related challenges: it requires
robust real-world action execution, careful planning for the
use of scarce resources, and real-time reasoning grounded
in on-board perception.

2 Related work

Robotics work that is related to construction is diverse and
can be found in a variety of fields. The reason is that con-
struction provides a rich context for the investigation of
many research questions. This circumstance has also been
noted by others, such as (Wawerla et al. 2002) who sketch
a classification of related work according to the emphasis
of research, the test bed and approach, the nature of the
robots and the size of the robot team. A crisp categorization
of works related to autonomous construction is non-trivial
and beyond the scope of this paper, so here we sketch it
in broad strokes. For our discussion, the research focus is
especially important, because it predominates the nature of
the experiments and the interpretation of their outcomes. As
construction implies close and complex interactions with the
environment, it is difficult to simulate this task realistically.
Building a simulator of a construction scenario is a problem
in itself, and requires substantial experimental trials, which
in turn require a physical robot. For this reason, the rest of
this section mainly surveys the work employing real robots.

Research on bio-inspired swarm robotics provides a con-
siderable amount of prior work, which focuses on emer-
gent behaviours according to local interaction rules in (ho-
mogeneous) groups. Robots provide an excellent real-world
test ground for validating biological behaviour models, for
instance investigating the relationship between model pa-
rameters and resulting emergent structures, such as clusters
of pucks (Melhuish et al. 1998), cleared areas (Parker and
Zhang 2006) or walls (Melhuish et al. 1999; Stewart and
Russell 2006). This line of research emphasizes simplicity
and minimalism, which is reflected in the experimental se-
tups. For instance, instead of aiming at engineering a system
that builds a perfect wall, the objective would be to show
that a small set of simple rules can produce wall-like struc-
tures. A recurring ingredient in many of the construction-
related works in swarm robotics is stigmergy, the storing
of information through the arrangement of entities in the
world. Stigmergy is also found in works with other research
foci, but stems from studies of social insects (Franks and
Deneubourg 1997) and has repeatedly been shown to pro-
vide scalable coordination between robots.

Another line of research focuses on the design of multi-
robot algorithms to construct specific structures based on

http://www.elsevier.com/locate/autcon
http://www.elsevier.com/locate/autcon
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principles such as Markov processes (Jones and Mataric
2004) or local rules and interactions (Werfel et al. 2006; Ter-
ada and Murata 2008). This problem has also been described
as an inverse of that investigated by bio-inspired swarm
robotics (Werfel and Nagpal 2006), and shares the heavy use
of stigmergy (Grushin and Reggia 2006) to simplify con-
trol. Moreover, researchers frequently point to similarities
with work on modular and reconfigurable robots (Shen et
al. 2003). Real-world experiments in this area tend to be
done on simplified versions of the algorithms and setups,
with heavy use of simulation to study variations and af-
firm broader claims, although recent work with real robots
presents promising results (Petersen et al. 2011).

The implementation and control of the robot and the parts
to be assembled are emphasized by engineering-centric
works. Some of these target construction systems for spe-
cific tasks, such as structure assembly in extraterrestrial set-
tings (Stroupe et al. 2006; Huntsberger et al. 2003), in or-
bit (Everist et al. 2004; Ueno et al. 2003), or for assembling
vertical trusses (Lindsey et al. 2011). Some works explore
how to integrate a human in the loop to handle contingen-
cies (Sellner et al. 2006). With the same engineering orien-
tation, architects (Gramazio 2008) and the construction in-
dustry (Gambao et al. 2000) have shown a long-lasting inter-
est in automation and robotic approaches (Skibniewski and
Wooldridge 1992; Zavadskas 2010). The foci of these works
vary from robots doing specific tasks automatically, such as
drilling (Molfino et al. 2008), painting road lanes (Woo et
al. 2008) or constructing structures by continuous deposi-
tion of concrete (Khoshnevis 2004), to the automatic deploy-
ment and assembly of construction tools (Kang and Miranda
2006; Skibniewski and Wooldridge 1992) and the high-level
planning and scheduling of construction operations (Hsie et
al. 2009; Jun and El-Rayes 2010). In these works, construc-
tion itself is the research goal, and a strong presence of other
robotic aspects is frequently encountered, such as human-
robot interaction, coordination of heterogeneous teams, or
advanced perception and control techniques.

Following on most of the work in this last category,
we also emphasize robotic algorithms and representations.
However, the underlying research questions differ: we are
interested in determining the set of capabilities and their in-
terplay required, in principle, for a system to exhibit phys-
ical environment interaction that may be considered intelli-
gent. In contrast to bio-inspired works, we aim at building
precise structures. In contrast to systems of multiple spe-
cific robots, we use a single robot with generic manipula-
tion capabilities. Rather than attempting a detailed compari-
son with the relatively recent contributions previously cited,
we trace the roots of our endeavour more directly to the pi-
oneering work on Shakey (Nilsson 1984), which reasoned
and acted in its environment through on-board sensing and
control. The fundamental questions have not really changed,

but now the fruit of decades of research from the robotics
community is available to us. This is reflected in our mix of
methodologies, representations, algorithms, and the modern
miniaturized technologies for sensing, actuation, and com-
putation. Note that we conduct our work directly on a physi-
cal robot instead of first using a simulator: we are interested
in the whole complexity of real-world interactions, and set-
ting up a simulation with enough accuracy to produce re-
sults comparable with reality is a daunting task. Moreover,
validating such a simulator requires substantial experimen-
tal trials to ensure that it behaves like the real world in all
cases. These trials in turn require a physical robot. For this
reason, and although many theoretical works have explored
autonomous construction in simulation, we have decided to
conduct our experiments directly in reality.

3 Experimental setup

Our research interest in empirical studies of intelligent phys-
ical interaction has lead to the “real but contrived” experi-
mental design shown in Fig. 1. A robot follows high-level
orders from a human, such as building a structure at a spe-
cific pose. The environment contains various traversable re-
gions separated by ditches. At the beginning of the experi-
ment, the robot does not know the shape of the environment.
Moreover, the resources (building material) are scarce, and
so the robot must use them parsimoniously. In particular, the
robot might have to employ some resources to build bridges
to gain access to more resources. As briefly mentioned in the
introduction, we consider that such an adverse setup high-
lights some of the challenges linked to intelligence that a
construction robot will face in the real world. In particular,
it explores these points:

– Construction is a sustained process involving many oper-
ations. Each operation, such as the manipulation of phys-
ical objects, can fail in different ways. Failures must be
handled at the control level, and the overall system must
be sufficiently robust to deal with them.

– Resources are scarce and not usage-specific. The robot
has to use them appropriately in a near-to-optimal way,
thus precluding purely reactive behaviours: careful action
planning is required to avoid deadlocks.

– The environment is initially unknown. All behaviours, in-
cluding planning, must be grounded in on-board sensors
and executed with on-board actuators.

This setup does not explore all the elements needed to
build full-scale autonomous construction robots. In particu-
lar, it trades off real-world aspects (such as on-board sensing
and limited computational power) with engineered scaffold-
ing (e.g. a magnetic gripper and uniform resources) to sim-
plify some of the sub-problems that are not central to the
investigation.



470 Auton Robot (2012) 33:467–485

The use of the marXbot miniature robot provides a safe
and flexible experimental tool, which is of great importance
when working on physical interaction with the world. Fur-
thermore, a real-world application will have constraints of
size, energy and processing power, which are also exhib-
ited by this robot. Thus, such a small platform highlights the
challenges of integration.

The following properties of the setup allow us to ad-
dress the question of intelligent physical interaction with
current technology in a laboratory room. Three types of ob-
jects must be mapped by on-board sensors: walls, ditches
and resources. Proximity sensors can sense walls and re-
sources, and ditch sensors detect the absence of ground. The
distance scanner can only see walls (which provides dis-
ambiguation between walls and resources, but complicates
sensor fusion). There is no depth sensor for the ditches, but
there is a known relationship between their width and their
depth. Resources are cubes of expanded polystyrene and
have a known side length; they are always on the ground,
which is known to be flat. They have a ferromagnetic ring
around their lower part, which enables the robot to grasp
them with a magnetic gripper. Furthermore, their top faces
are known to be the brightest objects in the world, which
eases visual detection. They also have magnets at their bot-
tom and small metal plates on their tops, which allows them
to self-align, self-assemble and stay connected. The ditches
divide the ground into regions, all of which are larger than
a known lower bound. The small size of the environment
allows two further simplifications: First, the distance scan-
ner has a range large enough to keep a wall in view, so loop
closure is currently not an issue for our simultaneous local-
isation and mapping (SLAM) implementation. Second, any
pair of regions shares a ditch, so topological path planning
does not require graph search. As our focus is not on the per-
formance details of SLAM or path planning, we just briefly
discuss these (and other points) in Sect. 9.

4 Robotic platform

4.1 Hardware

We employ the marXbot robot, a miniature (170 mm in di-
ameter) mobile robot, shown in Fig. 2. The marXbot is a
modular robot; our configuration has 4 modules:

1. The base (Bonani et al. 2010) with 2 degrees of freedom
(DOF) moves the robot over rough terrain and embeds
a 38 Wh lithium polymer battery. This battery provides
up to 7 hours of continuous operation. In addition, the
base senses objects (walls and resources) within 5 cm us-
ing a ring of 24 proximity sensors. The base also detects
ditches with a ring of 8 ground sensors.

Fig. 2 The marXbot robot (top) and the details of the magnetic ma-
nipulator (bottom)

2. The 3 DOF magnetic manipulator (Rochat et al. 2010)
grasps ferromagnetic objects. This module contains 6
proximity sensors for fine alignment and ditch detection
when building bridges.

3. The 1 DOF rotating distance scanner (Magnenat et al.
2010) perceives walls at distances of up to 1 m.

4. The upper module (Bonani et al. 2010) embeds an ARM

computer based on a 533 MHz Freescale i.MX31 and
128 MB of RAM. This module also holds a colour cam-
era, which provides vision.

One or more microcontrollers drive each module. They com-
municate using ASEBA, an event-based control architecture
for microcontrollers (Magnenat et al. 2010). The use of
ASEBA allows a compact integration of many different fea-
tures, with a clean architecture and a great flexibility of us-
age.

4.2 Software

Figure 3 shows the software architecture of the robot con-
troller. At the low-level, ASEBA implements the reactive
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Fig. 3 The system architecture

behaviours directly inside the microcontrollers. These be-
haviours include the avoidance of obstacles and ditches, as
well as the grasping and deposing of objects. This provides
a short-term closing of the control loop and ensures a fast re-
activity of the robot. The high levels implement two classi-
cal sense/plan/act architectures. The first manages path plan-
ning, and the second provides reasoning based on hierarchi-
cal task network (HTN) planning (Nau et al. 2004, Chap. 11).
We can interpret this scheme as an instance of a hierarchical
control system (Albus et al. 1981).

For monitoring reasons, we have run most of the software
on a remote desktop computer using a Wi-Fi link. However,
we designed the software considering the available process-
ing power of the robot itself, and thus the software could run
in real time on the class of processors that the robot embeds.

5 Global perception

The rotating distance scanner of the robot provides ambigu-
ous distance readings that we fuse together using a SLAM al-
gorithm inspired by FastSLAM (Magnenat et al. 2010). This
algorithm builds an occupancy-grid map whose cells hold
whether or not there are obstacles at the height of the scan-
ner (9 cm). However, there is a richer variety of elements in
the world than the scanner is able to capture. In particular,
to build structures autonomously, the marXbot must also use
other sensors. In this section, we show how to combine the
outputs from the SLAM algorithm and the different sensors
to build a representation of the environment.

As Fig. 1 shows, the terrain consists of multiple regions
separated by ditches of different widths and depths. All
ditches are wide enough to fit a block into. As the robot does
not have a distance sensor that is able to measure the depth
of the ditches, it assumes that locations where ditch width is
just over the edge length of a cube have a depth equal to the
edge length of a cube, and therefore are suitable to build a
bridge. This is a strong prior on the environment, and a depth

Fig. 4 A screenshot of the software showing the representation of the
environment. The solid shapes represent the two traversable regions,
separated by the ditch. The small black circles represent the resources.
The blue circles have their origin on the centres of mass of the regions
and their radius are proportional to the areas of the regions. The green
line with four points between the regions shows the pose of a potential
bridge

sensor should be used in future research. However, although
it requires work, adding such a sensor does not present ex-
treme challenges, and thus we think that this strong prior
does not impair the significance of this work. The robot uses
this depth prior to plan bridges in locations where the dis-
tance between two regions is the closest. The environment
also contains resources, which are 6 cm-cubes of expanded
polystyrene.

The aim of the global perception subsystem is to cre-
ate a propositional-logic representation of the world that is
grounded in reality (see Fig. 4). Indeed, in order to reason
about the world, the robot needs a logical representation
(Russell and Norvig 2003, Sect. 7.4). However, to execute
decisions, the representation must be linked with geomet-
ric information. This leads to a dual propositional-geometric
representation of the world in which logical atomic sen-
tences are grounded in geometric data. We implement this
representation process through three layers of increasing ab-
straction (see Fig. 5). The first layer consists of three prob-
abilistic maps of the walls, the ditches and the resources.
For the second layer, we combine the maximum-likelihood
estimations of the probabilistic maps to create two segmen-
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Fig. 5 The three layers of the
global perception process

tation maps, one of the traversable regions and one of the
resources. The third layer provides the dual propositional-
geometric representation. We build the latter by analysing
and filtering the segmentation maps to extract atomic sen-
tences representing the regions, their connectivity, the re-
sources, their associated regions and the robot itself.

This model shares similarities with related works on se-
mantic maps (Kuipers 2000; Zender et al. 2008; Nüchter
and Hertzberg 2008). However, probably because in these
works robots do not manipulate the world, they do not ac-
quire as much geometric information as our robot. More-
over, the software presented in these works is designed to
run on laptop-level processors, so the authors are relatively
free to use heavy computations, whereas in our case we take
into account the limitations of our embedded processor, as
described in the following subsections.

5.1 Probabilistic maps

The lowest layer of global perception consists of three prob-
abilistic maps. These maps are two-dimensional occupancy-
grid maps (Elfes 1989) of walls, ditches and resources. They
have a spatial resolution of 2 cm, which we found suffi-
ciently accurate, while fitting within our processing-power
and memory constraints. Each cell holds the log-odds ratio
l(X) = log(

p(X)
1−p(X)

) where p(X) is the probability of con-
taining an element (Thrun 2002, p. 94, p. 286). We store
l(X) with a resolution of 16 bits.

The probability of observing something with a sensor of-
ten depends on what has been sensed by another sensor. For
instance, when an infrared proximity sensor of the base de-
tects an obstacle, this reading may be due to a resource or
to a wall. In this case, we must use the wall map to disam-
biguate the reading. Formally, in this example, the probabil-
ity of detecting a resource is the product of the probability
of detecting an obstacle and the probability that this obstacle
is not a wall: p(resource) = p(obstacle)(1 − p(wall)). De-
spite its simplicity, this formula does not take a linear form
when expressed as a log-odds ratio, given three binary ran-
dom variables X,Y,Z such that p(Z) = p(X)p(Y ):

l(Z) = l(X) + l(Y ) − log
(
1 + el(X) + el(Y )

)
(1)

This is unfortunate as computing logs and exponentials is
slow. However, we observe that in practice, there are often
cases in which probabilities for obstacles and walls are close
to 0 or 1. Thus, we make the following approximation:

p(Z = 1) = p(X = 1)p(Y = 1)

⇒ l(Z) ≈ l(X) + l(Y ) + lm (2)

where lm is the smallest possible log-odds–ratio value. This
approximation is a smooth function that produces values
close to the real formula around the extreme cases. Because
it only performs two additions, it is very fast and thus well-
suited for real-time processing on a miniature robot. In our
implementation of sensor data fusion, we use the approxi-
mate function instead of the true function.

5.1.1 Sensing and data fusion

We create the three maps by fusing the data from differ-
ent sensors. The ground and proximity sensors of the base
provide short-range information, but with a high confidence
and a quick refresh rate. The vision provides long-range
information, but at a slower frequency and a lower confi-
dence than proximity sensors. The wall map is the output of
the distance scanner through the SLAM algorithm. The ditch
map is the result of the fusion of the wall map and the out-
puts of the ground sensors and the vision. The resource map
is the result of the fusion of the wall map and the outputs of
the proximity sensors and the vision.

5.1.2 Vision

As Fig. 6 shows, we use vision to locate resources and to
detect ditches at long range (>40 cm). This is possible be-
cause we know that the ground is flat and that the resources
are cubes with a height of 6 cm and are always located on
the ground.

The camera chip has a resolution of 2048 × 1536 pixels.
As our probabilistic maps have a resolution of 2 cm, and the
robot shakes slightly when it moves, we do not need such a
high resolution. Thus we down-sample the image to 128 ×
384 pixels by exploiting the hardware average filter of the
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Fig. 6 The vision on the marXbot. Left: the world as seen by the cam-
era. Right: the result of the processing: in red, the ditches; in blue, the
top lines of the resources. These show the lower half of the image. In
the robot the horizontal dimension is further down-sampled by a factor
of 4

camera chip. This permits a short exposure time while still
capturing noiseless images. We process only the lower half
of the image, as there are no objects of interest above the
altitude of the camera.

We process the image from its bottom to its top. The de-
tection of ditches is based on thresholding pixels.3 Note that
a point seen behind a wall or a resource is not a genuine
piece of information about the presence of a ditch. There-
fore, we back-project the classified pixels from the image to
the world, assuming an altitude of 0 cm. Then, on the wall
and the resource maps, we cast a line from the camera po-
sition to the back-projected coordinate. If any of these lines
crosses a point with a probability of containing a wall or a
resource larger than 0.5, we discard the point.

The detection of the resources is obtained by compar-
ing pixels of the same column to find the top edges of the
polystyrene cubes in the image. In our model, these edges
are the most intense parts of the image, as they are white
and receive light from 75 % of their sides. This model is in-
spired from the ambient-occlusion technique used in com-
puter graphics (Landis 2002). Assuming that our lighting
model is correct, and knowing that we process pixels from
the bottom to the top of the image, we are sure that the last
pixel meeting the condition belongs to a top edge.4 To detect
the distance to the edge, we back-project this pixel from the
image to the world, assuming an altitude of 6 cm. We then
cast a line on the wall map to ensure that this pixel really
corresponds to a visible resource.

5.2 Segmentation maps

From the three probabilistic maps, we create two segmenta-
tion maps, as seen in Fig. 4. The first map is the region map.

3The ditch thresholding is the following: Let {r, g, b} be a pixel and i

be its intensity defined as i = r + g + b. This pixel might correspond
to a ditch if i < tintensity ditch and |r − g| < tcolour ditch where tx are
thresholding constants. Otherwise, the pixel might correspond to the
ground.
4The resource thresholding algorithm is the following: Given a pixel
{r, g, b} of intensity i, if i > tintensity res. and b + tcolour res. > r and
i > iprev + tres. delta, this pixel might belong to the edge of a resource.
Note that iprev is the intensity of the last candidate pixel, and that tx are
thresholding constants.

It is based on the fusion of the wall and the ditch maps:

p(region = 1) = (
1 − p(wall = 1)

)(
1 − p(ditch = 1)

)
(3)

We consider a point for segmentation if its probability of be-
ing a traversable region, p(region = 1), is close to one. We
use the approximation from Eq. (2) to compute this prob-
ability. We then apply a segmentation algorithm to create a
list of regions. This algorithm also computes the area of each
region and its centre of mass.

The second map is the resource map. We use the same
procedure as for the region map. We take p(resource = 1)

directly from the probabilistic resource map as the input of
the segmentation algorithm.

5.3 Propositional-geometric representation

Out of the two segmentation maps, we create a dual
propositional-geometric representation of the environment.
The propositional-logic part is well-suited for defining a
state space for automated planning (see Sect. 6.2). We
refer to real-world objects (regions, resources, robot) by
unique constants, such as a3 for a region or r7 for a re-
source. We type these constants by unary predicates, such
as region(a3) or resource(r7). We relate real-
world objects to each other using binary predicates, such
as isIn(r7, a3). These predicates describe the region
connectivity: isConnectable(region0, region1) for
potential bridges and isConnected(region0, region1)
for actual bridges. They also indicate in which region a re-
source or the robot lies: isIn(object, region). At the ge-
ometric level, we map these atomic sentences to geometric
data, such as the centres and the areas of regions and re-
sources or the pose of a potential bridge.

We only consider regions with a sufficiently large area
(>200 cm2), as our prior knowledge of the environment tells
us that no tiny regions exist. This allows filtering out spuri-
ous regions in areas of uncertainty. To build the potential-
bridge map (connectivity graph), we search for pairs of
regions that have a small ditch between them. Because
the regions might not be convex, we search for the clos-
est points using a Monte-Carlo algorithm. This algorithm
consists of drawing pairs of points following a distribution
N (centre,

√
surface/2). If both points lie within their re-

gions, the algorithm considers a line between the points and
finds the intersections of this line with the region bound-
aries. The algorithm repeats this process a certain number
of times and keeps the line with the smallest distance be-
tween the two regions as a potential bridge.5 If this distance

5This algorithm is fast for relatively even and convex regions, for which

most points drawn following a distribution N (centre,
√

surface/2) lie
inside the region. Otherwise, this algorithm would need a huge number
of iterations to have a good chance of finding the closest points. In that
case, it would be better to employ a grid-based algorithm, such as a
variant of A* (Hart et al. 1968).
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is small enough (<12 cm), we relate these regions with the
predicate isConnectable and store the boundary points
in the geometric part of the representation.

As with regions, we only consider resources with a suf-
ficiently large area (>32 cm2). We find the position of the
resource in the region-segmentation map. If the resource is
indeed located within a region, we add an isIn predicate
between the resource and the region. We store the position
of the resource in the geometric part of the representation.
Finally, we find the region in which the robot lies and add a
corresponding isIn predicate.

6 Reasoning

6.1 Pathfinder

The pathfinder is composed of two layers (light blue in
Fig. 3). The high-level layer allows the robot to go from
one region to another. To find this path, the robot looks
up the source and the destination regions in the potential-
bridge table. Because it suffices for our application, we have
currently only implemented direct lookup when a potential
bridge exists between two regions. Extending this with a
search in the potential-bridge graph to find the path for two
regions that are not directly connected is easy. The result
of the high-level path-finding layer is a sequence of points.
Note that the HTN planning domain enforces that the robot
builds a bridge prior to crossing a ditch.

The low-level layer finds a path between two of these
points. This may correspond to a path within a region or
to the crossing of a bridge. This path avoids walls and un-
explored regions. It also avoids resources if possible. The
algorithm performs a wave-front propagation with variable
propagation speed and a smooth front (Philippsen 2006). We
use the variable propagation speed to implement soft con-
straints, such as allowing the robot to avoid the resources
if there is enough room. At the implementation level, we
first take the maximum likelihood of the probabilistic wall
map to extract the free space. We consider that an unknown
location (that is, one with a uniform distribution for wall
probability) is not accessible. To prevent the robot from hit-
ting walls when moving, we perform a morphological ero-
sion (Haralick et al. 1987) of this map (4 cells using 8-
connectivity) to shrink the free space by 8 cm, which cor-
responds to the radius of the robot. If the robot does not try
to cross a bridge, we also perform dilatation of the ditch map
(2 cells using 4-connectivity) and resource map (2 cells us-
ing 8-connectivity). After erosion and dilatation, the maps
are combined in a manner that ensures that a robot located
half-way over a ditch will find a way out, and that the robot
will avoid resources when possible. We set a very low prop-
agation speed in the ditches, an intermediate one in the re-
sources and a high one in the free space. Specifically, we

first use the eroded free-space map to set a fast propagation
in free space and a zero speed in the walls. Then, for each
cell, if the dilated resource map holds a positive value, we
set the speed to the minimum of the free-space map and an
intermediate value. Finally, if the dilated ditch map holds a
positive value, we reset the speed to the minimum of its pre-
vious value and a low value. Note that the propagation speed
within the walls is zero, because the robot is not supposed to
be inside them. Should this happen anyway, it is likely due
to a bug, and the programme triggers an exception.

This two-layer pathfinder does not in general produce op-
timal global paths. For example, if a path traverses three re-
gions, there might be more than one potential bridge con-
necting the first two regions of the path, with one closer to
the third region than the others. In that case, choosing the
closest one would lead to a shorter global path than choos-
ing the remotest one. To implement such a global optimisa-
tion, we would need a unified pathfinder, such as one based
on our current low-level layer. However, this is not trivial
because we want to limit the number of bridge traversals,
and we want the robot to traverse bridges perpendicularly
to the ditches. In the current system, we ignore ditches and
resources when we explicitly search for paths over bridges,
and we position the robot perpendicularly to the ditch before
every traversal. Because of these difficulties, we employ the
two-layer approach.

6.2 Task planning

We want the robot to find a plan to fulfil the human’s or-
der autonomously. The order can be a move or a build order.
For example, the human can order the robot to build a verti-
cal structure, which requires 3 resources. Imagine that only
2 resources are readily available but 3 resources are avail-
able at a remote location. In this case, the robot could use
these 2 resources to fill a ditch to access the remote loca-
tion to fetch the 3 resources. To use these separate elements
of knowledge to choose its course of action, given the envi-
ronment and the goal, the robot uses an HTN planner (Nau
et al. 2004, Chap. 11), in our case Planner 9 (Magnenat et
al. 2009). The space of possible plans to solve a given con-
struction task is constrained by the HTN planning domain for
our construction scenario (Fig. 7). We designed this domain
around connectRegions, an HTN task that connects re-
gions together. The idea is to connect a source region s to
another region t , that might or might not be the destination
d , and then to recurse from this newly-connected region t

towards d . The region-already-connected alterna-
tive stops the recursion in case the two regions s and d are
already connected or are the same. The two top-level tasks
moveRobot and buildStructure call the connec-
tRegions task with the destination and the resource re-
gions as parameters. Note that subtasks are executed sequen-
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Relations
unary relations = {robot, region, resource}

binary equivalent relations = {isConnectable,
isConnected}

binary relations = {isIn}

Actions
move(d, r)

locals: a

precond: region(a) ∧ isIn(r, a)
effects: ¬isIn(r, a) ∧ inIn(r, d)

take(res)
locals: a

precond: resource(res) ∧ region(a) ∧ isIn(res, a)
effects: ¬isIn(res, a) ∧ ¬resource(res)

fill1(d, s)
precond: region(d) ∧ region(s)
effects: ∅

fill2(d, s)
precond: region(d) ∧ region(s)
effects: isConnected(d, s)

build1(d)
precond: region(d)
effects: ∅

build2(d)
precond: region(d)
effects: ∅

build3(d)
precond: region(d)
effects: ∅

Methods
regions-already-connected(d, s)

task: connectRegions(d, s)
precond: region(d) ∧ region(s) ∧ isConnected(d, s)
subtasks: 〈 〉

fill-ditch(d, s)
task: connectRegions(d, s)
locals: t, rob, roba, res1, res1a, res2, res2a

precond: region(d) ∧ region(s) ∧ region(t) ∧ robot(rob) ∧
region(roba) ∧ isIn(rob, roba) ∧ resource(res1) ∧
region(res1a) ∧ isIn(res1, res1a) ∧ resource(res2) ∧
region(res2a) ∧ isIn(res2, res2a) ∧ ¬same(res1, res2)
∧ ¬same(t, s) ∧ isConnected(s, roba) ∧
isConnected(s, res1a) ∧ isConnected(s, res2a) ∧
isConnectable(s, t) ∧ ¬isConnected(s, t)

subtasks: 〈take(res1), fill1(t, s),
take(res2), fill2(t, s),
connectRegions(d, t)〉

move-robot(d)
task: moveRobot(d)
locals: s, r

precond: region(d) ∧ region(s) ∧ robot(r) ∧ isIn(r, s)
subtasks: 〈connectRegions(d, s), move(d, r)〉

build-structure(d)
task: buildStructure(d)
locals: rob, roba, res1, res1a, res2, res2a, res3, res3a

precond: region(d) ∧
robot(rob) ∧ region(roba) ∧ isIn(rob, roba) ∧
resource(res1) ∧ region(res1a) ∧ isIn(res1, res1a) ∧
resource(res2) ∧ region(res2a) ∧ isIn(res2, res2a) ∧
resource(res3) ∧ region(res3a) ∧ isIn(res3, res3a) ∧
¬same(res1, res2) ∧ ¬same(res2, res3)

subtasks: 〈connectRegions(d, roba),
connectRegions(d, res1a), take(res1), build1(d),
connectRegions(d, res2a), take(res2), build2(d),
connectRegions(d, res3a), take(res3), build3(d)〉

Fig. 7 HTN planning domain for autonomous construction. Section 7.2 describes the actions (take, fill1, etc.)

tially. The preconditions and the forward decomposition of
Planner 9 prevent infinite recursions.

When the human gives an order, we directly construct
the initial state space from the propositional representation
of the world. Then we call Planner 9, and if it finds a plan,
we execute it. This consists in sequentially executing the ac-
tions.

7 Actions

The robot performs two main activities: exploration and plan
execution. When the experiment starts, the robot begins ex-
ploring, which allows it to build a representation of its en-
vironment. The resource and the ditch maps are only up-
dated when the robot is exploring, because when the robot
is transporting a resource, the latter occludes the camera and
the proximity sensors of the base directed forward. When a
human gives an order, the robot uses its internal represen-
tation to build the initial state of the planning problem. The
robot then performs task planning. If the planning succeeds,
the robot stops exploring and executes the plan; otherwise
it continues exploring. The execution of the plan consists in

performing each action sequentially. An action in the HTN

planning sense corresponds to a low-level behaviour imple-
mented in ASEBA. Prior to executing an action, the robot
moves to a specific position in the relevant region. To do
so, it uses the two-layer pathfinder algorithm presented in
Sect. 6.1. After executing a plan, the robot switches back to
exploration.

7.1 Exploration

The exploration algorithm needs only to provide a good ex-
ploration, as it delegates safety considerations to the micro-
controllers. The exploration behaviour of the robot aims at
providing efficient coverage at a low computational cost. To
do so, the robot has an ordered list of relative points (Fig. 8).
We have selected these points based on preliminary experi-
ments. The exploration algorithm runs through this list, and
for each point checks whether it is explorable. If so, the algo-
rithm sets a speed command to steer the robot to this point.
If no point of the list is explorable, the robot simply goes
straight. A point is explorable if it has not been explored
yet, that is, if the ditch map contains a low certainty for this
point. Moreover, the point should not be on the other side
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Fig. 8 The exploration strategy,
grey area is explorable

Fig. 9 The movement sequence
to grasp a resource with precise
alignment

of a wall or a resource, considering the current position of
the robot. This strategy drives the robot towards unexplored
areas and leads to a good ditch map, which is essential for
reasoning about the topology of the environment. If the po-
sition of the robot has not changed for 5 seconds, the robot
enters an emergency unblocking behaviour. It rotates in a
random direction for a random time, and then moves straight
on for about 3 seconds. The exploration algorithm is exe-
cuted at about 1 Hz. Note that at the low level, the microcon-
trollers running ASEBA implement obstacle and ditch avoid-
ance autonomously. This behaviour consists of two vector-
field avoidance algorithms (Borenstein and Koren 1991). If
the robot perceives a ditch or an obstacle, it avoids it; other-
wise it performs exploration. Ditches have priority over ob-
stacles, and as avoidance consists in turning on the spot, the
ditch avoidance behaviour prevents the robot from hitting an
obstacle.

7.2 Plan execution

We implement the low-level behaviours corresponding to
HTN actions by using ASEBA. The plan executor starts a
low-level behaviour using a specific event, and the low-level
behaviour also informs the executor of its execution result
(success or failure) through an event.

7.2.1 move

This behaviour consists in moving to a given position in a
destination region. The region identifier is available in the
propositional part of the representation of the world and the
position in the geometric part.

7.2.2 take

This behaviour consists in accurately grasping a resource.
The precision is critical because a misaligned resource
would add errors to all subsequent operations. Based on pre-
liminary experiments, we have chosen to grasp resources in
two stages to ensure their precise alignment on the manipu-
lator.

Figure 9 shows the numbered movement sequence, and
this text refers to its steps. First, the robot turns to face the
resource using the camera (1). We compute the position of
the resource in the image by taking the median of the po-
sition of pixels whose intensities are above a given thresh-
old on the lowest horizontal line of the image. We consider
a pixel if its intensity is higher than 80 % of the maximal
intensity, renormalised. The robot turns using an on/off con-
troller. Once the resource is centred in the image, the robot
goes forward (2) and grasps the resource (3–5). It then ro-
tates leftward (6) and rightward (7) to ensure a firm grip.
Indeed, if the resource was attached by only one of its cor-
ners, these rotations would allow the gripper to grasp one
of its sides. At that point, the resource is securely grasped,
but it is certainly misaligned. Thus, the robot ungrasps the
resource and moves back (8). It then moves forward again
(9) while using the infrared sensors of the magnetic manip-
ulator to align the resource at the centre of the manipulator
(10). The robot performs this by rotating if the difference be-
tween the median right and left infrared sensors is above a
threshold. Otherwise, the robot goes straight on. The speed
of rotation is proportional to the difference, which results
in a P controller with hysteresis. When the robot is close
enough to the resource, it grasps it again (11–13), and this
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time the resource is well aligned. We have found this con-
trol policy to produce a precise grasping. To allow scanning
for ditches while holding a resource, the magnetic switch-
able device lies on one side of the manipulator while the
infrared sensors lie on another side. Thus, between scanning
and grasping, the robot must rotate the manipulator, which
explains the steps (3–5) and (11–13).

7.2.3 fill

This behaviour consists in dropping a resource into a ditch
to build a bridge to the opposite region. To build a safe pas-
sage for the robot, a bridge requires two resources side by
side. The HTN planning domain ensures that this behaviour
is called only when the robot is holding a resource. There
are two versions of this behaviour, fill1 and fill2; they
differ only by the initial placement of the robot. For fill1,
the robot is initially placed at the right of the centre of the
bridge, and at the left for fill2.

The robot goes towards the ditch and scans for it using the
infrared proximity sensors of the magnetic manipulator. The
robot computes the difference between the median right and
left infrared sensors and rotates accordingly. We limit the
rotation speed. This control law improves the orthogonal-
ity between the robot and the local side of the ditch. When
the two infrared sensors see the ditch, the robot goes back
for a short distance, then stops and drops the resource. The
robot must go back because the infrared proximity sensors
are placed far from the magnetic switchable device, so the
robot must move to drop the resource close to the border of
the ditch.

7.2.4 build

This behaviour consists in building a tower of up to three
resources. The HTN planning domain ensures that this be-
haviour is called only when the robot is holding a re-
source. There are three versions of this behaviour, build1,
build2 and build3, which are used to place the base re-
source for the tower, the middle resource and the top re-
source, respectively. Putting the base resource is easy, the
robot simply goes forward for a short distance, then stops
and disengages its magnetic switchable device. It then lifts
its manipulator slightly to ensure that the resource is well
detached, and then it goes back for a short distance. Putting
the middle and the top resources first requires an orienta-
tion using the camera, as described in Sect. 7.2.2. The robot
then raises its manipulator, goes forward and scans for the
previous resource using the infrared proximity sensors of its
magnetic manipulator. If the sum of the intensities of the two
sensors close to the middle is above the threshold, the robot
stops and disengages its magnetic switchable device. As the
resources have small magnets at their bottoms and little fer-
romagnetic plates on their tops, the new resource self-aligns

and self-assembles with the existing resource. Finally, the
robot goes back for a short distance. The difference between
adding the middle and the top resource lies in the height to
which the robot raises its manipulator.

8 Results

8.1 Representation

To analyse the performance of our representation system,
we conducted 5 experimental runs of 25 minutes each in the
environment shown in Fig. 1. At the start of every run, we
placed the robot in the centre of the small region (the one
with two resources). The robot faces the opposite region.
We keep at least 10 cm between the robot and the walls and
the ditches, as the sensors self-calibrate at the beginning of
a run.

To understand how the representation of the world
evolves over time, we analysed the entropy of the proba-
bilistic maps and the number of grounded objects over time.
We took one measurement every second. We are interested
in the quantity of information in the probabilistic maps. Fol-
lowing the definition of mutual information, we define this
quantity as the entropy of the map prior to observation mi-
nus the entropy of the built map. This difference is positive,
because the knowledge about the world grows over time
while the robot explores. We use a binary logarithm to com-
pute the entropy; therefore the unit of information is bit.
For the grounded objects, we recorded the number of re-
gions, resources and potential bridges, which are found in
the propositional-geometric representation.

Figure 10 overlays the evolution of the representation
over time for the 5 runs. The top plot shows how much in-
formation the robot holds about the world in its probabilistic
maps. These values correspond to the subjective view from
the perspective of the robot, not to a ground truth. In this
plot, we see that the SLAM map has the fastest growing
quantity of information. This is reasonable as the rotating
distance scanner can see both near and far, in addition to
scanning around the robot. In the long run, the SLAM map
holds slightly more information than the resource map. One
reason for this is that the SLAM algorithm converges while
the resource perception is always subject to the imprecisions
of the temporal synchronisation between the positioning, the
camera and the infrared sensors. Another reason is that the
SLAM algorithm sets a prior on wall depth, because it uses a
sensor model to update the probabilistic map. This prior al-
lows the wall map to cover a larger region than the resource
map does. We also see that the ditch map holds less informa-
tion than the resource map. We believe that this is due to the
shaking induced by the tracks, combined with the fact that
the camera always sees a large patch of the ground, causing
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Fig. 10 The evolution of the environment representation over time.
These plots overlay the curves from 5 runs. Top: the quantity of in-
formation contained in the different probabilistic maps. Bottom: the
number of grounded objects per type. In reality, there are 5 resources
and 2 regions close enough to build a bridge between them

the sides of the ditches to move in the image, thus destabi-
lizing their position. Moreover, the SLAM is not perfect. In
particular, it might slightly stretch its map compared to real-
ity. Thus, when using its camera compared to its ground sen-
sors, the robot sees the ditches at slightly different positions.
On the sides of the ditches, these two sensors return con-
tradictory information, which increases the entropy of the
ditch map. The reason for this stretch might be a constant
bias due to the slipping of the tracks. It would be interesting
to test this hypothesis by adding a correction factor to the
parameters of the SLAM algorithm.

In the bottom plot of Fig. 10, we see that the number of
regions and bridges quickly reaches the correct value in all
runs. The number of resources is also approximately correct,
although it is less stable. On average over all runs, between
20 and 25 minutes the robot detected the right number of re-
sources 72 % of the time (1008 correct detections for 1394
measurements). The perception of the resources is imperfect
because, as shown in Fig. 1, three resources are in the remote
region and are thus far from the robot. This long distance
affects the perception in two ways. First, when the robot
moves, the tracks create a slight vertical shaking, which in
turn creates small displacements in the image’s pixels. This

results in large changes in the perceived distance to the re-
source, because the coordinate transform divides a constant
by the pixel position. Second, as the robot turns, the angular
position of the object with respect to the robot frame changes
very quickly. The image and the odometry are temporarily
unsynchronized, which results in errors to the perceived hor-
izontal position of the resource. These problems also affect
the perception of the ditches, but as the ditches are larger
than the resources, these errors do not disturb the perceived
topology of the world, even if they increase the entropy of
the ditch map.

8.2 Autonomous construction

We tested the construction application in the real-world
setup presented in Fig. 1. A video of this experiment is avail-
able online.6

We ran several iterations of three tasks. The first two val-
idated the two types of construction–a bridge and a tower–
and the last one combines both. To validate the bridge, we
ordered the robot to move to the opposite region. To validate
the tower, we ordered the robot to build one in its current re-
gion, in which there were enough resources. To validate the
combination, we ordered the robot to build a tower in its
region, in which there were not enough resources. Table 1
(top) shows the solution plans for these tasks, with constants
corresponding to the example in Fig. 4. In all tasks, we ini-
tially let the robot explore for a while until we saw that its
representation of the environment was stable. This explo-
ration phase lasted 5 to 10 minutes. We have ran each task
10 times. Figure 11 shows the sequence of images of a suc-
cessful run (third task). Table 1 (bottom) shows the success
rate and the average duration of the different tasks. We took
into account only successful task executions to compute the
average duration.

The first task consists in moving from the small region
(the one with two resources) to the large one (the one with
three resources). To fulfil this task, the robot must build a
bridge. At the beginning of this task, we placed the robot
in the centre of the small region, facing the opposite re-
gion. This task fully succeeded 9 times out of 10 trials, and
was partially successful the remaining run when the robot
dropped the second resource aside instead of into the ditch.
However, when the robot then moved, it pushed the resource
into the ditch and managed to cross successfully.

The second task consists in building a tower in the large
region, using the three resources available in this region. At
the beginning of this task, we placed the robot in the centre
of the large region, turning its back on the ditch. This task
fully succeeded 9 times out of 10 trials, and was partially
successful the remaining run when the robot put the third

6http://www.youtube.com/watch?v=h865RHbT9Ms.

http://www.youtube.com/watch?v=h865RHbT9Ms
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Table 1 Experimental tasks. Top: solution plans. Bottom: mean dura-
tion and success rate over 10 runs

bridge (local res.) tower (local res.) bridge + tower (remote res.)

take(c0) take(c1) take(c0)

fill1(a1, a0) build1(a1) fill1(a1, a0)

take(c5) take(c2) take(c5)

fill2(a1, a0) build2(a1) fill2(a1, a0)

move(a1, r0) take(c3) take(c1)

build3(a1) build1(a0)

take(c2)

build2(a0)

take(c3)

build3(a0)

task mean dur. success rate

bridge 100 s 9.5/10 (1 partial success)

tower 286 s 9.5/10 (1 partial success)

bridge + tower 726 s 8/10

and last resource of the tower half onto the second resource.
It thus built a tower but not a straight one.

The third task consists in building a tower in the small
region, starting from that region. Because that region holds
only two resources, the robot must first employ them to build
a bridge towards the large region, and use the three resources
there to build the tower in the small region. At the beginning
of this task, we placed the robot in the centre of the small
region, facing the large region. This task fully succeeded 8
times out of 10 trials. In one trial, the robot fell into a ditch
just before executing fill2, because of the imperfection
of the world perception. In another trial, the robot failed to
take its third resource because it tried to grasp the resource
from its corner, and the gripper alignment procedure was not
able to grasp one of its side.

9 Lessons learnt and future work

In this section, we share the lessons we learnt by implement-
ing and validating the autonomous-construction application,
and based on these we propose future work.

9.1 On physical constraints

The integration of many features in a miniature robot leads
to the optimisation of competitive constraints.

There is a hardware conflict between sensing and acting,
as both demand access to the front of the robot. Indeed, vi-
sion requires empty space, but one must also fit a manip-
ulator within this space. This is a commonly encountered
design challenge in complex robots where multiple sensors

and actuators must share the same physical space, but it is
exacerbated in tasks like construction.

Hardware constraints are due to the sparse sampling of
the space of possible hardware devices by existing products.
For example, in our robot, the camera provides perception
of ditches and resources beyond 30 cm and the infrared sen-
sors give close-up information, so we do not have any sen-
sor covering the range of 5 to 30 cm. This is sub-optimal
because the size of the arena forces the robot to explore its
surroundings in detail. This operation demands a lot of time
and does not take the best advantage of the range-sensing
capabilities of the camera. However, production constraints
prevent us from improving the sensor placement, and we did
not find any commercially-available wider-angle lens suited
to our camera hardware. As there is a gap between the per-
ception range of the camera and that of the proximity sen-
sors, the robot must compensate by using a conservative
exploration strategy. This strategy aims at ensuring dense
ditch and resource maps, despite the limitations of the hard-
ware. This example shows that sensor properties strongly
affect the algorithms to use for perception and control. This
might be one of the limiting factors in the development of
advanced real-world applications, where the availability of
sensors and the requirements of high-level control do not al-
ways coincide.

9.2 On the software architecture

The robot controller is a complicated piece of software be-
cause many modules interact with each other to form a com-
plex network. This is a problem, because when program-
ming a module, one must consider the other modules at the
level of both the data flow and the temporal constraints. For
instance, the state machines for action execution can be-
come very complex if one has to consider potential fail-
ures at any level. Frameworks such as ROS (Quigley et al.
2009) help in coping with the structural complexity. We have
not employed ROS in this project because at the time we
started, it was not ready for production use, especially on
ARM platforms. Moreover, on resource-limited platforms,
such component-based frameworks have significant over-
heads compared to single programs. In future work, ROS or
a similar framework may be a suitable choice, as nowadays
platforms are more powerful.

Current frameworks do not tackle the temporal com-
plexity arising from many interacting components. How-
ever, there are promising ways to address this problem (Ra-
manathan et al. 2010; Hager and Peterson 1999). In addition,
to implement complex actions, an interesting research direc-
tion could be to define actions sequentially, execute each of
them in its own thread and use exceptions to handle failures.
This could be implemented using the semantics of continu-
ations (Strachey and Wadsworth 2000). Recently, scripting
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Fig. 11 Image sequence of a successful construction

languages such as Python7 (Tismer 2000) have provided this
feature. We think that this aspect of action programming will
become important when versatile action capabilities are in-
tegrated in a single mobile robot.

9.3 On robustness

A complex application such as autonomous construction has
multiple points of failure. These failures are not only binary
and local, but can propagate from one step to another. For
instance, the robot might incorrectly grasp a resource, such
that the resource would jam itself in the ditch when crossing
a bridge, which could make the robot fall. Thus, it is impor-
tant to detect and correct faults early.

7Continuations are available in the stackless version of Python, see
http://www.stackless.com or through the yield keyword in normal
Python.

Faults can happen not only in actions but also in per-
ceptions. One way to detect a fault in action is to compare
the sensor values resulting from the action with those ex-
pected after a success. Experimental evidence has shown
that humans employ this strategy to detect failure of pre-
dicted actions (Förster et al. 2010). Another way is to build
compliant behaviours, as we did for grasping resources (see
Sect. 7.2.2). Faults in perception can be corrected by us-
ing various principles. One principle is that the world state
tends to be constant over time and to use this information
to correct the perception. For instance, the loop closing in
SLAM (Stachniss 2009) is based on this principle. In our
application, the environment is small enough such that we
do not need to perform this operation. One can also correct
faults using prior world knowledge. We perform this correc-
tion when we put a threshold on the area of a resource to
create a symbolic constant.

http://www.stackless.com
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9.4 On artificial-intelligence architecture

In this experiment, we implemented reasoning using Plan-
ner 9, a generic HTN planner that we developed in a pre-
vious work (Magnenat et al. 2009). Using an HTN planner
brings flexibility to the reasoning and allows the combining
of elements of knowledge that are described independently.
In this experiment, the topology of the world is simple, and
thus the execution time of the planner is negligible com-
pared to the time taken by the perception subsystem. As the
paper on Planner 9 shows (Magnenat et al. 2009), the lat-
ter can solve more complex problems than the experimental
scenario of this study can. Clearly, in this application, the
difficulty of perceiving the world and implementing the be-
haviours on a physical robot shadows the interest of such
a powerful reasoning engine. In a more general context, one
can imagine a rich world with many entities, leading to large
maps with many symbolic constants. Under such conditions,
the planner’s computational load might again become sig-
nificant. Nevertheless, we think that in many real-world ap-
plications, there are only a limited number of entities rele-
vant to the planner at a given moment. Therefore, there are
ways to prune most of the entities to limit the search space.
For instance, typing removes all entities of the wrong type.
Moreover, one might use a salience mechanism, such as con-
sidering only physically close entities, to further reduce the
search space. For these reasons, we think that the factors
limiting the intelligence of a robot are not the AI algorithms
but the robustness of the perception (symbol grounding in
particular), the precision of the actions, and the detection of
their outputs.

9.5 On the representation

The dual propositional-geometric representation success-
fully allowed our robot to reason in an abstract model of
the world, and to link the resulting plan to physical objects
with geometric properties. This highlights the importance of
defining the representation, which in our case is atomic sen-
tences referring to two-dimensional geometric shapes.

In general, choosing a propositional-geometric mapping
is not trivial, as there are many ways to express the same
reality. For instance, reasoning about the number of re-
sources in a region could be done using a numeric fluent,
numberOf(resource, region). In this application,
we decided to use one constant per physical resource be-
cause it eased the implementation of the planning domain.
In general, creating a domain for a real-world problem is
a hard task. This has prompted the implementation of al-
gorithms that learn such domains from traces of plan ex-
ecutions (Zhuo et al. 2010; Nejati et al. 2009). However,
the application of such methods to robotic problems re-
mains to be demonstrated (preliminary results can be found
in Philippsen et al. 2009).

Currently, we discard the existing constants when we cre-
ate the propositional representation. However, it would be
better to keep them and update them with the information
from the new segmentation maps. To do so, we could match
the existing regions with the new ones according to the dis-
tance between their centres and their respective surfaces.
However, this simple procedure would not always be well
suited, such as when two regions merge as a result of the ex-
ploration by the robot. We could handle this case explicitly
by directly comparing the old and the new label informa-
tion on the old and the new segmentation maps, and fuse the
atomic sentences accordingly.

Our symbol-grounding process uses several thresholding
constants, such as the minimal size of a region or the maxi-
mal width of a ditch allowing the robot to build a bridge. We
chose these constants in function of our knowledge of the
robot hardware and some preliminary experiments. It would
be interesting to allow the robot to learn some of these con-
stants. However, this would be difficult because it would
require low-level safety procedures, such as using the ac-
celerometer to trigger a back move when the robot begins to
fall. Another solution would be to learn these constants from
a simulation, but setting up the simulation would be a major
work in itself.

9.6 On localisation

The current system implements SLAM using only the ro-
tating distance scanner and the odometry/gyroscope. How-
ever, we could use other sensors, such as the camera or
even the ground infrared sensors, to contribute information
to the SLAM algorithm. However, the number of combina-
tion possibilities is enormous and a SLAM implementation
fusing data from various heterogeneous sensors is an open
problem. We think that the most promising direction is to
perform symbolic topological SLAM (Beeson et al. 2010).
This method consists in abstracting local observations into
symbols and relations between symbols, and then to per-
form SLAM at the symbolic level. By using the symbolic
level instead of the metrical one, the probabilistic space is
much smaller. Moreover, this method allows the use of var-
ious features and the spatial relations between them. Re-
cent studies have explored the use of vision (Cummins and
Newman 2008) and range data (Beeson et al. 2010), and
some have shown how to take the odometry readings into
account (Sabatta et al. 2010). Finally, symbolic topological
SLAM is close to what we currently think is the implemen-
tation of path integration and mapping in mammals (Mc-
Naughton et al. 2006). On the other hand, metric maps pro-
vides the user with a nice representation with which they can
interact. It would be interesting to explore novel types of in-
teractions from the user, such as pointing using a laser or a
colour patch, and to see whether this allows for topological
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localisation. If so, it would be interesting to compare this
type of localisation with the metric one, in the context of a
demanding application, such as autonomous construction.

9.7 On the development process

Good visualisation and monitoring tools are extremely im-
portant for developing a system as complex as this one. In
particular, the ability to see the different maps and scans in
real time is critical. Indeed, the human eye is excellent at de-
tecting small repeated errors. Moreover, the monitoring tool
must be flexible to allow visual inspection of the intermedi-
ate steps of the different algorithms. Finally, it is important
to overlay the dual propositional-geometric representation
over the probabilistic and the segmentation maps, which al-
lows easy validation of the correctness of the representation.

ASEBA provides logging and replay tools, which allow
the re-creation of the stream of events the robot received
during an experiment. This feature proved extremely useful
in implementing the first draft of the perception subsystem.
Indeed, on a fast computer it is possible to rerun the exper-
iment at several times the speed of real time, thus increas-
ing the efficiency of finding bugs and implementing features.
The camera programme cannot log in sync with ASEBA, but
by taking snapshots we managed to make it work fairly eas-
ily. However, we are convinced that for complex applica-
tions, a logging and replay architecture is of paramount im-
portance. Modern software frameworks for robotics provide
and emphasise such capabilities.

Finally, the development of such a complex application
requires knowledge in many fields, such as mapping, ex-
ploration, symbol grounding, task planning and action ex-
ecution. These are not easy to combine, albeit integration
projects such as ROS facilitate this by providing readily us-
able bricks.

9.8 On exploration vs execution

In this experiment, we issued task orders only when we con-
sidered that the perception of the world was correct. Even so,
we noticed that failures, in particular for the take action,
tended to occur when the perception quality was worse than
usual. This confirms that perception quality is critical for ac-
tion success. Moreover, automating the decision of when to
stop exploring and when to start acting is not trivial. A sim-
ple solution could be to wait for a certain duration, and then
to start acting as soon as Planner 9 finds a successful plan.
However, there is a risk that a transient reading, seen as a re-
source, would produce an erroneous grounding and thus an
erroneous plan. A more robust solution would be to wait for
the symbol-grounding output to stabilise and to start plan-
ning and execution only when this output has not changed
for a certain duration. We could also make the planning more

robust for environmental changes, such as using continual
planning (Ghallab et al. 2004). However, in this scenario it
would be a hack to work around the limitations of the sen-
sors, as the robot and its constructions are the only dynamic
elements in the environment. Moreover, it would be more
difficult to design the planning domain, because planning
and action execution are more interwoven than in a simple
HTN planner. This interweaving does not increase the ex-
pressivity of planning, but it does make the planning process
more reactive.

10 Conclusion

This paper presents an empirical study that sheds light on the
capabilities required for intelligent physical interaction with
the real world. Our system leverages modern algorithms and
representations as well as the recent increase in miniaturized
computational resources. A few application-specific sim-
plifications allow the use of state-of-the-art perception and
planning approaches on a miniature robot with tight com-
putational constraints. This provides a small experimental
environment for autonomous construction, which avoids the
pitfalls of simulation-based studies.

From an application-oriented point of view, this paper is
a case study involving integration and system engineering.
We presented implementation details for the various compo-
nents, described their coordinated interplay and experimen-
tally validated system performance. The robot performed
its tasks successfully 80 % of the time, and we discussed
lessons learnt and future work that would improve perfor-
mance and extend the proposed approach to a wider range
of domains. Our practical contribution lies in a novel com-
bination of world modelling, symbolic-geometric reasoning
and sensori-motor behaviours for construction.

From a more conceptual point of view, we endeavour
to understand the essential ingredients for intelligent be-
haviour. In this context, we trace our roots back to the ad-
vent of mobile robotics and AI, and postulate that modifying
one’s environment is an essential part of intelligence. Here,
our contribution stems from the application of modern meth-
ods to a question that continues to accompany robotics re-
search even after four decades. The challenges that we have
designed into the test scenario reflect this deeper interest:
the experimental setup requires robust real-world action ex-
ecution, careful planning of the use of scarce resources, and
reasoning that is in real time and grounded in on-board per-
ception. We have shown that a mixture of continuous and
symbolic representations and methods over several compo-
nents in a hybrid system architecture can indeed lead to flex-
ible, robust, goal-driven behaviour in novel situations.
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