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Abstract The quantitative compar-
ison of the form of the braincase is
a central issue in paleoanthropology
(i.e., the study of human evolution
based on fossil evidence). The major
difficulty is that there are only
few locations defining biological
correspondence between individual
braincases. In this paper, we use mesh
parameterization techniques to tackle
this problem. We propose a method
to conformally parameterize the
genus-0 surface of the braincase
on the sphere and to calibrate the

parameterization to match biological
constraints. The resulting consistent
parameterization gives detailed
information about shape differences
between the braincase of human
and chimp. This opens up new
perspectives for the quantitative com-
parison of “featureless” biological
structures.

Keywords Scientific visualization ·
Surface parameterization ·
Morphing · Brain · Geometric
morphometrics

1 Introduction

Two major features discriminate our own species (Homo
sapiens) from our closest living relatives, the chimpanzees
(Pan troglodytes): we walk on two legs and have compar-
atively big brains. It is still a matter of debate how and
why during human evolution brain size was increased, and
what makes the principal difference between a human and
a chimpanzee brain, or between the braincase of a fossil and
a modern human. One important prerequisite to tackle these
questions is to quantify the form of the bony case containing
the brain (the brain endocast, see Fig. 1), because the brain-
case is the only comparative data source in fossil humans
and in ape specimens housed in collections worldwide.
Quantitative comparison of biological form is a notori-
ously difficult task. This is because the geometry of bio-
logical forms is typically more complex than that of stan-
dard Euclidean bodies and graphic primitives, such that
classical ruler-based measurements, e.g., linear distances
between reference points, only capture a small fraction of
potentially relevant morphological information. Free-form
object representation by surface triangulation into a trian-

gle mesh is an important first step to quantify biomedical
objects. However, once we have reconstructed a series
of free-form surfaces of braincases, how can we perform
quantitative comparative analyses of their shape?

Any biologically sensible comparison relies on the
definition of so-called homology relationships. Homology
denotes biological equivalence through evolutionary and
developmental history. For example, the brain of individ-
ual A is homologous to the brain of individual B, and
a point on the tip of the nose of individual A is homolo-
gous to the tip of the nose of individual B. The tip of the
nose is an example for a point homology or landmark.

Interestingly, close analogies exist between the defin-
ition of homology between biological structures and the
concept of surface parameterization in computer graphics.
In both instances, morphing of shape A into shape B relies
on a set of matching feature points that define a transform-
ation function. The traditional tool of geometric morpho-
metrics to define such a transformation is the thin-plate
spline (TPS) [5]. The spline function quantifies the biolog-
ically relevant difference between the two shapes and can
be used to measure and visualize local versus global shape
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Fig. 1. Brain endocasts (light green) of a chimp (left) and a modern
human (right)

differences. For example, while the face (or facial skele-
ton) of humans and apes is rich in well-defined anatomical
landmarks (such as the tip of the nose, the center of the
eye, etc.), the braincase (and even the brain) is not. On
the face, landmarks are typically defined at meeting points
between three or more adjacent structures, or at extremal
locations. Because of the lack of landmarks, splines are
difficult to apply to the braincase.

In computer graphics, methods of consistent mesh par-
ameterization deal with a similar problem, the simultan-
eous parameterization of several surfaces on a common
parameter domain such that a given set of user-specified
features match.

In this paper, we examine how concepts of mesh pa-
rameterization can be combined with concepts of geo-
metric morphometrics to obtain consistent quantitative de-
scriptions of relatively “featureless” genus-0 structures
such as the braincase. First we conformally map the sur-
faces to the sphere. Then we deform the spherical parame-
terizations such that the biological features match. The re-
sulting well-defined consistent parameterization captures
the geometry and matches biological constraints. Finally,
we apply these methods to compare the shape of the brain-
cases of chimpanzees and humans and we show how to
visualize the differences.

2 Related work

In order to compare shapes given in the form of triangle
meshes, we need (1) a method to establish point-to-point
correspondence on the surfaces and (2) methods to visual-
ize shape difference (or the transformation from one shape
into another). In this section we look at previous work in
these areas.

2.1 Establishing point-to-point correspondence on a set of
surfaces

Semilandmarks. One approach to tackle the problem of
missing landmarks is to fill landmark-depleted regions of

the surfaces with additional points of reference, so-called
semilandmarks [6]. They are usually applied on 2D out-
lines. Extensions to 3D exist [2, 15], but typically, these
techniques are based on ad hoc template definitions, and
not used for visualization purposes.

Surface parameterization and distortion metrics. Param-
eterization of triangle meshes in 3D on a simpler domain
such as a planar region, the sphere or a simplicial do-
main is a key problem for many applications in computer
graphics and has received much attention. We refer to
the comprehensive surface parameterization survey in [8].
There are always two problems to solve: (1) no foldovers
and (2) minimization of a distortion metric. In general, it
is not possible to find an isometric mapping, i.e., a map-
ping which preserves distances or both angles and area.
Therefore, depending on the application, either area or
angle distortion or a combination of them is minimized,
and many methods have been proposed. Of special inter-
est are conformal mappings which preserve the angles of
the triangulation. Conformal mappings have a connection
to complex function theory, locally preserve geometry and
have less degrees of freedom than mappings which pre-
serve area. Equi-areal mappings, on the other hand, are
interesting because they assign the same amount of pa-
rameter space to every surface element (uniformity). In
practice, often some functional which is a combination of
angle distortion and area distortion is minimized to bal-
ance between the two extremes.

Examples are the stretch metric [23] and the harmonic
map [7]. Maps with minimal stretch are often called “quasi-
isometric” and tend to uniformly distribute samples on the
surface when the parameter domain is uniformly sampled.
Harmonic maps are a superset of conformal maps and there-
fore not angle preserving in general; however, they mini-
mizedeformation in thesense that theyminimize theDirich-
let energy. Harmonic maps are well-studied for the planar
case and are relatively easy to compute.

Spherical parameterization. Parameterizing an arbitrary
genus-0 surface on the sphere has received much attention
in recent years (see for instance [1, 10, 14, 16, 20, 22]).
Our work is based on the global conformal parameteriza-
tion introduced by Gu and Yau [13, 14]. The parameteriza-
tion is called global because it preserves the conformality
everywhere. They exploit the fact that on the sphere, a har-
monic map is also a conformal map. All conformal maps
to the sphere form a Moebius group with only six de-
grees of freedom (three of those are the rotations around
the coordinate axes). Gu and Yau define a unique solu-
tion by adding an additional constraint and also point out
that the conformal map is solely defined by the geometry
and not by the triangulation because it preserves the shape
locally. These two properties (well-defined solution and
preservation of geometry) are important prerequisites for
our application.
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Consistent parameterization. In the pioneering work [21],
a set of genus-0 surfaces was consistently parameterized
with respect to a (user-specified) base domain. The pa-
rameterizations are consistent because they give immedi-
ate correspondences between models and allow remeshes
with the same connectivity.

Later work [19, 24] presented techniques which do not
require the connectivity of the base domain to be defined
by the user and are able to handle models of higher genus.
However, these methods are limited to two or three sur-
faces to be parameterized because they avoid a simple
common parameter domain.

Asirvatham et al. [3] proposed to use the sphere as
a common parameter domain. They employ a variant of
the spherical parameterization algorithm from [20] to map
a set of genus-0 surfaces to the sphere such that manually
labeled features match. The surface in-between the feature
points, however, is parameterized using random searches
to minimize the stretch metric until a local minimum is
found. This gives visually satisfactory results but is not
adequate for comparative analysis.

Brain mapping. This is an example of a relevant applica-
tion of the methods described above. Many approaches
exist to map cortical surfaces of different individuals into
a canonical space where they can be compared numer-
ically or visually. This is a scenario similar to ours, and
conformal mappings received much attention [12]. It is of-
ten desirable that landmarks are mapped onto each other in
parameter space and landmark matching has been studied
intensively. The work in [26] and [28] introduce additional
constraints to the algorithm for the conformal mapping.

However, we are not only interested in aligning the sur-
faces in both real and parameter space, but we want to
measure (and visualize) the actual deformation between
the surfaces. We use the method proposed by Glaunès et
al. [9] to calculate large deformation diffeomorphisms of
the sphere onto itself, given a source and a target set of
landmarks.

2.2 Visualization of shape transformation

A traditional way to visualize shape deformation in 2D
are deformation grids. An image is overlaid with a Carte-
sian coordinate system and the TPS is calculated, which
deforms the image such that the homologies match a tar-
get configuration. Applying the spline on the coordinate
system results in a deformed grid. Thompson [25] intro-
duced hand-drawn deformation grids to visualize shape
transformation of related biological forms. Bookstein [5]
formalized the approach. Previous attempts to directly ex-
tend the deformation grids from 2D to 3D (by either 3D
cuboid grids or 2D square grids positioned in space) were
problematic from a biological point of view [27].

Alternatively, once point-to-point correspondence is
determined on two or more surfaces, the difference can be

calculated in the form of scalar or vector fields, statisti-
cally analyzed and visualized on the actual surface using
standard scientific visualization methods like false-color
mapping or annotation with glyphs (icons) [27].

2.3 Contribution

First, we are going to propose a method to consistently pa-
rameterize a set of genus-0 surfaces on the sphere. Every
vertex of the original meshes is mapped to a well-defined
position on the sphere. Second, we are going to exploit
the quasi-conformality of the parameterization to draw an
orthogonal (θ, φ) coordinate system on the surface. This
resembles the 2D deformation grids and forms a new ap-
proach to use the concept on 3D surfaces.

3 Consistent quasi-conformal map to the sphere

In this section we present our main contribution, the
method to calculate a well-defined consistent parameteri-
zation for a set of genus-0 surfaces. Figure 2 gives a picto-
rial explanation of the procedure.

We have a set of NS endocranial surfaces Mi , repre-
sented as triangle meshes. On every surface, a set Li of NL
points li, j is manually labeled. The sets Li indicate biolog-
ical correspondence across the surfaces.

Our goal is to find a unique bijective mapping hi from
each surface Mi to the sphere S2

hi : Mi → S2 : (x, y, z) �→ (θ, φ), i ∈ [1, NL ] . (1)

The requirements are:
1. For all surfaces, points of biological homology map to

the same positions pj in parameter space, i.e.,

h1(l1, j) = h2(l2, j) = ... = hNS(lNS, j) = pj . (2)

2. The surface between the landmarks is mapped such
that geometrical features match as well as possible
under the biological constraints.
In order to find a unique solution, we use the fact

that a conformal map from a surface to the sphere has
only six degrees of freedom, three of which are rota-
tions. This is because a conformal map can be composed
with any conformal map from the sphere onto itself to
form a new conformal map. So, additional constraints are
needed. Haker et al. [16] fix three points on the sphere
and Gu and Yau [13] propose the zero-mass center con-
straint:∫

Mi

f dσMi = 0 (3)

where dσMi the area element on Mi . Equation 3 defines
a solution f , which is unique up to the three rotations. We
use their algorithm to compute a unique spherical confor-
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Fig. 2. Pictorial overview of
the calculation of our consis-
tent quasi-conformal spheri-
cal parameterization. The ori-
ginal surfaces are conformally
mapped to the sphere; there
maps are deformed such that
the biological features (homolo-
gies) match their spherical con-
sensus. The spherical domain
is then sampled with a Loop-
subdivided spherical icosahe-
dron to consistently remesh the
original surfaces

mal map fi for each surface Mi . Conformal maps locally
preserve geometry, so the fi fulfill the second requirement
from above.

Area and distances are distorted however. More pre-
cisely, they are changed by a scaling factor (the so-called
conformal factor) depending on the position on the sur-
face. It is desirable to have a uniform (i.e., equi-areal)
parameterization because uniform sampling is important
for discrete function approximation and analysis. As men-
tioned, it is not possible to avoid both angle and area
distortion. A way to find the most uniform conformal pa-
rameterization has been proposed in [17]. However, the
nature of our data (no extreme extrusions) and the zero-
mass center condition prevent extreme area distortion.

In order to fulfill the first requirement, we need to find
good positions for the images of the landmarks on the
sphere and then deform the conformal maps such that the
images of the landmarks match on the sphere.

We rigidly align the spherical parameterizations fi
by generalized least squares minimization (GLS) of the

spherical landmark distances to obtain the aligned sets gi.
We use an algorithm based on the one from Gower [11]
but adapted to spherical geometry (i.e., no translation step
and projection of the mutual mean to the sphere). The
spherical consensus C is the set of mean landmarks cj on
the sphere:

cj = normalize
( NS∑

i=1

gi(li, j)
)
, j ∈ [1, NL ] . (4)

The aligned maps gi must now be deformed such
that the associated landmark sets Li match C. We use
the algorithm from [9] to construct a deformation map
di : S2 �→ S2 such that:

di(gi(li, j)) = cj ∀ points li, j (5)

for each surface by integration of velocity fields that min-
imize a quadratic smoothness energy under the landmark
constraint Li → C on the sphere.
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The conformal maps gi can be deformed with the de-
formation diffeomorphisms di :

hi = di ◦ gi, (6)

thus constraining the geometry with the biological data.
Because both di and gi are bijective, hi is bijective as well,
and so is h−1

i .
Since the smoothness energy minimized in Eq. 5 is

based on geodesic distances, the deformations do not
preserve angles, i.e., the hi are not conformal anymore.
We use this angle deformation to visualize shape trans-
formation in the next section and call the maps quasi-
conformal.

An important property of the deformation is unique-
ness, inferring that the hi are unique as well.

4 Visualizing shape difference

The mappings hi are bijective and permit sampling the
surfaces Mi over the spherical domain (using barycentric
coordinates). However, to measure the difference in shape,
it is important to remove differences in size, position and
orientation between the objects. We size-normalize the
original surface Mi by scaling all vertices such that the
volume becomes equal to one:

Mnorm
i = Mi

3
√

volume(Mi)
(7)

and minimize landmark variability by minimizing the sum
of squared distances [11].

Sampling the surfaces over the spherical domain (i.e.,
the inverse mapping h−1

i ) maps a sampling position
(θk, φk) to a position pk in R3 onto the surface Mnorm

i and
results in a consistent remesh with the connectivity of the
sampling scheme (see Fig. 2). The pi

k are corresponding
points and can directly be used for statistical analysis. For
instance, the difference of two surfaces M1 and M2 is just
the difference of all p1

k and p2
k .

4.1 Drawing a consistent coordinate system on surfaces
and texturing

Once a consistent parameterization for a set of surfaces
is obtained, a coordinate system can be drawn on the pa-
rameterization domain and mapped to the surfaces. Cor-
responding points on each surface have the same spherical
coordinates (θ, φ). Drawing an equi-angular coordinate
system on the sphere produces spherical quadrangles with
spherical angles approaching right angles (“orthogonal co-
ordinate system”). A conformal map to a surface preserves
the angles and produces approximations to rectangles on
the surface. The stronger the (biologically defined) defor-
mation di (Eq. 5), the larger the deviation from conformal-
ity; this is observable in the non-orthogonality of the grid

on the surface, which resembles the mentioned deforma-
tion grids.

Spherical coordinates can be drawn on the surfaces
as a wire frame on top of the surface. Using texturing as
a more general approach, any rectangular image can be
used to texture the surface since the spherical coordinates
can directly be used as texture coordinates:

u = φ

2π
, v = θ

π
. (8)

The positions of the Mnorm
i and the spherical coordi-

nate system are important for the visual appearance of
the deformation grid. If a subset of the landmarks defines
a symmetry plane, we can use them to position the Mnorm

i
in a canonical way: we rotate all surfaces such that the
symmetry plane of the average surface lies in the xz-plane.

We usually position the coordinate system such that the
poles are on the y-axis and the 0-meridian passes through
(0, 0, 1).

However, the poles of the spherical coordinate system
are problematic areas for visualization. When there is no
need for a specific position of the coordinate system in
space, we can fix the spherical grid to the camera such that
the poles are always on top and bottom. In practice, if we
look at a surface in a 3D viewer and rotate the object rela-
tive to the camera with rotation matrix A, we transform
the texture coordinates with AT . This resembles the pro-
jective texture mapping technique where a (planar) image
is projected onto a 3D scene, like a slide projection.

4.2 Morphing

Our parameterization permits the definition of a morphing
function from the surface Mfrom to surface Mto by linear
vertex interpolation:

pk
inter(t) = (1− t) · pk

from + t · pk
to, t ∈ [0, 1] . (9)

Combined with displaying an orthogonal coordinate
system on the surface, interactive blending between the
shapes is a very powerful way to explore shape difference.

4.3 Visualization of relative shape transformation on the
surface

From the consistent parameterizations, scalar or vector
fields can be calculated and visualized directly on the sur-
face. We implemented the method for visualizing shape
variation proposed in [27].

Direction and magnitude of shape transformation. To
compare a surface Mnorm

i to a reference surface Mnorm
R , we

calculate the displacement vector dk for every spherical
sampling position (θk, φk):

dk = pk
i − pk

R . (10)
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The displacement vector dk is then decomposed into its
normal and tangential components (relative to the surface
in pk

R):

dk = dk⊥ +dk‖, (11)

where dk‖ is visualized as an arrow glyph attached to pk
i ,

and the length and direction of dk⊥ is color-coded on the
surface.

Local growth. Local relative growth at vertex pk on the
surface can be calculated by comparing triangle areas:

bk = log

(
Ak

i

Ak
R

)
, (12)

with Ak
i the area of the 1-ring of pk on Mnorm

i and Ak
R the

corresponding area on Mnorm
R . The scalars bk are visual-

ized by coloring the surface.

5 Application and results

We implemented the methods proposed in this paper as
parts of our MorphoTools Framework. MorphoTools is
an application for 3D geometric morphometric analy-
sis and visualization of the results. It permits interactive
biological hypothesis refinement. The mesh processing
methods from Sect. 3 are implemented in C++, using the
OpenMesh1 library. Visualization of the results, using the
techniques described in Sect. 4, is implemented in Java
with the aid of the Visualization Toolkit (VTK).2

We calculated homology-calibrated parameterizations
for a test set consisting of endocranial surfaces of N = 4
humans and N = 4 chimpanzees.

Triangle meshes were manually segmented from volu-
metric CT scans using the software Amira.3. The endocra-
nial surface of each individual was manually annotated
with (K = 7) homologous landmarks (see Fig. 3), located
at clearly recognizable foramina in the cranial base, and on
well-defined points along the midplane of the braincase.

We used the tool ReMESH [4] to remove topological
noise (i.e., make sure the meshes are genus-0) and to sim-
plify the surfaces to 50 000 vertices prior to our parameter-
ization.

As a sampling scheme we used an icosahedron pro-
jected to the sphere and subdivided seven times (Loop
scheme), resulting in 163 842 consistent vertices which we
call “semilandmarks”. Each subdivision level contains the
vertices of the previous level. This permits straightforward
level-of-detail control by choosing the subdivision level

1 See http://www.openmesh.org for more information.
2 See http://www.vtk.org for more information.
3 See http://www.amiravis.com for more information

for the reconstruction (we used this feature for drawing
level-3 wire frames on top of level-7 meshes at the bottom
of Fig. 2).

Since all vertices are consistent, principal compon-
ent analysis (PCA) [18] can be used to measure the
shape variance in the sample set. The first principal
component, which comprises 82.13% of the total shape
variation, distinguishes humans from chimpanzee en-
docasts (see Fig. 4). In the following, we visualize the
transformation from the mean chimp to the mean hu-
man.

Figure 5 shows the morphing (Eq. 9) of a chimp into
a human endocast and compares the performance of our
new method with classical TPS-based morphing. The fig-
ure clearly shows the advantage of our method for such
landmark-depleted forms: the thin-plate spline, defined
purely by the landmarks, deforms the mean chimp surface
such that the landmarks match the ones of the mean hu-
man. Since no landmarks are defined on the lateral parts,
the TPS grossly misses the target surface in these areas.
Clear differences can also be observed in the upper part of
the back and the “nose” at the front.

Our method, in contrast, defines corresponding points
everywhere on the actual surfaces, which results in a much
more natural shape transformation.

Fig. 3. The landmarks used for our analysis

Fig. 4. Principal component analysis of the consistent remesh
(163 842 “semilandmarks”). Squares represent humans; circles rep-
resent chimps. The red crosses and the arrow indicate the shape
transformation along PC1 from the mean chimp to the mean hu-
man. PC1 comprises 82.13% of the total shape variation
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Fig. 5. Morphing from the mean chimp (top row) to the mean human (bottom row). Consistent Spherical parameterization (left), which de-
fines corresponding points everywhere on the surfaces, is compared to thin-plate splines (right) which are defined by the seven landmarks
only

Fig. 6a–d. Visualizing shape transformation from chimp to human braincase. a The source surface (mean chimp braincase). b The target
surface (mean human braincase) (both are overlaid with consistent spherical coordinate grids). c, d False-color map representation of the
same transformation as in a, b. Graphs show mean human braincase, red/green indicate the direction (inward/outward) and magnitude
of shape transformation perpendicular to the surface; arrows indicate shape change parallel to the surface. Yellow/purple indicate relative
area expansion/contraction that was necessary to attain human shape

In Fig. 6, the techniques described in the previous sec-
tion are used to visualize the shape transformation from
a chimp braincase to a human braincase.

The pictures show that the spherical conformal pa-
rameterization, constrained with biological information, is

well-suited to measure and visualize shape transformation
of biological surfaces. Only a few landmarks are used but
the patterns revealed are relatively complex and are clearly
driven by geometrical features in-between the landmarks
(for instance the lateral parts).
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6 Conclusion and outlook
We have presented a method to constrain conformal spher-
ical parameterizations of genus-0 surfaces with biological
information (landmarks). The result is a parameterization
which is (1) consistent from a biological point of view
because the known point homologies are fixed points in
the (spherical) parameter domain, and (2) quasi-consistent
from a geometrical point of view because the parameter-
ization is based on a conformal map (which is geometry
preserving). The method was applied to quantify the sur-
faces of the braincase of chimpanzees and humans, and
multiple visualization paradigms were used to explore the
shape difference.

The resulting visualizations are very encouraging for
further studies of shape variation of the braincase within
our own species, and between closely related species.
Studying larger samples with this method will permit
answering important biological questions, for instance

whether intraspecific variability is smaller than interspe-
cific variability. For the emerging field of paleoneurology,
the parameterization method proposed in this paper rep-
resents the first fully quantitative approach to compare
complete endocranial surfaces. This is essential for biolo-
gical research regarding our own evolution since it enables
biologists to assess the braincase quantitatively (and there-
fore exploratively).

A limitation is the restriction to data without extreme
extrusions, because the area distortion in the conformal
map might become unacceptable. In [17], topological
modification was suggested for such cases.
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