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Abstract. This paper deals with a multigeneration game that provides a new rationale for representing time
preference in very long term cost benefit analysis, as it happens typically in the economics of global climate
change. One defines an intergenerational game where each generation has a random life duration and transfers
the control of the economic system to the next generation at the end of its life. The payoff to a generation is
a discounted sum of the expected consumption by the whole infinite sequence of generations, starting with
the current one. The equilibrium is characterized by a dynamic programming equation; a unique solution is
proved to exist; a numerical technique is proposed and implemented on a continuous time simplified version
of the model DICE94. The results show the influence of this form of altruism on the asymptotic steady states
of the economy subject to a global climate change effect.
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1. Introduction

There is a growing consensus about the anthropogenic global climate change (GCC)
induced mainly by the emissions of greenhouse gases (GHG) due to fossil fuel energy
uses, industry and agriculture activities. To cope with anthropogenic GCC economies
can rely on abatement, mitigation and adaptation. An interesting aspect of the problem
is that abatement decided by the current generation, if any, will be made for the benefit
of generations in a rather distant future and for the benefit of populations that are not
currently the principal emitters. More generally the evaluation of sustainable development
policies poses an ethical challenge addressed in Beltratti, Chichilnisky, and Heal (1995)
and Chichilnisky (1996, 1997) through an axiomatic approach. In this paper we focus
on the operational aspect of the problem: how to perform cost benefit analysis (CBA)
for very long lived projects that overlap several generations? Among the proposals made
by economists to deal with this issue one may distinguish (i) the recommendation to use
a 0 discount (or pure time preference) rate when dealing with economic problem that
involve many generations (F. Ramsey proposed this rule in 1928 (Ramsey, 1928) when
he first studied the optimal economic growth problem), (ii) the use of a time dependent
discount rate that would tend to 0 when t → ∞ (Ainslie and Haslam, 1992; Harvey, 1994;
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Dasgupta, Mäler, and Barrett, 1999; Weitzman, 1998; 1999), and also a multigenerational
game theoretic approach (Arrow, 1999) based on an idea first proposed in a different
context in Phelps and Polak (1968). It has been argued that imposing a 0 discount rate
imposes too much a toll on the current generation (Nordhaus, 1999; Tóth, 2000) and it has
been shown that time dependent discount rates lead to time inconsistency. It is therefore
the game theoretic approach that seems to offer the best way to design a time consistent
evaluation system that realizes an equilibrium between the well being of current and
future generations.

In this paper we further develop an intergenerational game model that has been first
proposed in Haurie (to appear) as a way to introduce a form of altruism in long term
CBA, without incurring the curse of time inconsistency. In the formalism of Haurie (to
appear), each generation was interested in its own expected consumption and the one of
the immediately following generation. That was a formalism close to the overlapping
generation model in economic growth (Croix and Michel, 2002). In the present work
we propose a multigeneration game model where each generation considers in its payoff
the whole sequence of the expected rewards to all the future generations. A coefficient
of altruism is introduced which plays a role similar to a discount factor applied to the
rank of generation rather than to time (the weight given to a generation decreases with
its rank).

As in Haurie (to appear) we introduce in Section 2 a piecewise deterministic control
formalism where the control is exerted by a succession of players, also called genera-
tions, each having a random life duration. A general definition of an intergenerational
equilibrium is given and we focus the rest of the paper on the case of a stationary con-
trol system where each generation has an exponentially distributed life duration that is
introduced in Section 3. We then recall that such systems are likely to have steady-state
attractors (also called turnpikes) for the equilibrium trajectory. We can then compare the
turnpikes under different assumptions concerning the pure time preference (killing rate)
or altruism parameters. Implementing a numerical technique that is explained in Haurie
(to appear) we can show in Section 4 the impact of introducing this type of game theoretic
formalism in a typical CBA applied to GCC, namely a simplified version of the DICE
model (Nordhaus, 1994). In conclusion we draw some consequences for the conduct of
CBA in the context of sustainable development.

2. A piecewise deterministic multigeneration game model

In this section we introduce a general dynamic game formalism that combines a piece-
wise deterministic control structure as e.g. in Boukas, Haurie, and Michel (1990) with
a multi-generation stochastic game approach as proposed in Alj and Haurie (1983).
We shall see that in the case where the randomness is described through exponentially
distributed random life duration of each generation, this model generalizes the usual
optimization of the discounted sum of rewards that is used in standard economic growth
models.
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2.1. A general formulation

Consider a dynamical system defined by the state equations

ẋ(t) = f (t, x(t), u(t)) (1)

u(t) ∈ U (t, x(t)) (2)

x(0) = xo. (3)

A reward rate L(t, x(t), u(t)) is associated with the state and control variables. The
system is controlled by a succession of players, each one representing a generation
denoted k ∈ IN. The life duration of generation k is a random variable θk with finite
expected value.

The state of the system is represented by s = (t, ζ, x), where t ≥ 0, ζ ∈ IN and
x ∈ X ⊂ IRn . When the game begins, at t1 = 0, generation 1 is in control. After
a random life time θ1 generation 1 dies and leaves control to generation 2, etc... If
generation � controls the system between time t� and time t� + θ� its sum of rewards is
the integral

∫ t�+θ�

t� L(t, x(t), u(t)) dt . We shall assume that the payoff to any generation
is constructed from the expected sums of rewards of all the forthcoming generations in
a manner described below.

Definition 1. A strategy for generation k is a mapping from [0, ∞) × X into the class of
mappings w(·) : [0, ∞) → U . If generation k takes control at time t k , with initial state
xk = x(t k), then its control will be u(t) = w(t − t k) where w(·) = γ [t k, xk]. This control
generates a trajectory x(·) : [t k, ∞) → X , with x(t k) = xk . The control generated is
admissible as it satisfies u(t) ∈ U (x(t)).

Definition 2. The payoff to generation k, when it takes control at time t k = ∑k−1
�=1 θ�,

with state xk is defined as

Vk[sk ; γk, γ̃k+] =
∑
�≥k

α(k, �)Eγ�

[ ∫ t�+θ�

t�

L(t, x(t), u(t)) dt |x� = x(t�)

]
. (4)

In the above expressions the state trajectory x(·) is a solution of (1)-(3) with initial state
xk at initial time t k .

Remark 3. The parameter α(k, �) defines the weight that generation k is placing on
the rewards of generation � when it computes its payoff. In Haurie (to appear) these
coefficients are such that α(k, �) = 0 if � > k + 1. Each generation was uniquely
interested in the well being of the next generation. In the present paper we concentrate
on the case where α(k, �) = β�−k , for � ≥ k. When β = 0 the present generation is
totally selfish; whereas, when β = 1 the present generation will consider, on an equal
footing the well being of all the future generations.
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Definition 4. An intergenerational equilibrium is a sequence γ ∗ = (γ ∗
k : k ∈ IN) such

that,

∀k ∈ IN, ∀sk ∈ S, Vk(sk ; γ ∗
k , γ ∗

k+) = max
γk

Vk(sk ; γk, γ̃
∗
k+). (5)

Remark 5. In the above definition, each generation replies optimally to the expected
behavior of all the forthcoming other generations. The influence a generation has on the
rewards accrued to the forthcoming generations is essentially through the state value
x(t k + θk) = xk+1 which prevails when the control is transferred to the next generation.

In the above model we have a piecewise deterministic structure where the only random-
ness comes from the dates at which the control passes from one generation to the next.
Between these random times the system behaves deterministically.

2.2. Time consistency

As it is now well established, this equilibrium concept is time consistent. It means that
what is used by the current generation for computing its payoff, based on the control to
be implemented by the coming generations, is consistent with the optimizing behavior
of these generations when they will face the same problem. The lack of time consis-
tency is the major drawback for the implementation of time dependent discount (time
preference) rates. Intergenerational equilibria provide time consistency, usually at the
expense of Pareto optimality as noticed already in Phelps and Polak (1968). However,
in this particular case studied here, when the life duration is an exponential random
variable and the weighting takes the simple form α(k, �) = β (�−k), with β < 1, we
obtain the rare situation where an equilibrium coincides with a Pareto or non-dominated
solution.

2.3. The case of exponentially distributed random life durations

Assume that the life duration of generation � is an exponential random variable with
expectation 1

ρ�
. Then, for generation �, once it has adopted a control u(·) : [t�, ∞) →

U (t, x(t)), the expected reward sum can be expressed as

Eγ�

[ ∫ t�+θ�

t�

L(t, x(t), u(t)) dt

]
=

∫ ∞

0
e−ρ�t L(t, x(t), u(t)) dt (6)

which is exactly the discounted sum of rewards over the infinite time horizon.1 This
reminds the well known fact that the discount rate ρ� (often also called the killing rate) is
directly associated with the uncertainty about the life duration period. Therefore, in the
case of exponentially distributed life durations, the above models leads to payoffs that
are constructed from a sequence of infinite horizon discounted sums of rewards.
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2.4. The limit case when there is no altruism

When there is no altruism (α(k, k) = 1, α(k, �) = 0 if � > k), each generation k,
observing the inherited state xk at time t k when it receives control optimizes its expected
sum of rewards. In the case of exponentially distributed life durations, it leads to a
sequence of disconnected deterministic control problems with a performance criterion
which is the discounted sum of rewards.

2.5. The limit case with total altruism

When there is full altruism (α(k, �) ≡ 1), the problem should be equivalent to the case
of a single infinitely lived generation, that is, the deterministic problem, with infinite
horizon and without discounting.

3. The stationary exponential case

In this section one assumes that the life duration of generation k is an exponentially
distributed random variable θk with expected value 1

ρ
. One also assumes that the controlled

dynamical system is stationary

ẋ(t) = f̃ (x(t), u(t)) (7)

u(t) ∈ Ũ (x(t)) (8)

x(0) = xo. (9)

Assumption 1. The class of admissible controls maintains x(t) ∈ X, ∀t ≥ 0, where X
is a compact set in IRn .

As in Haurie (to appear) we shall concentrate on the analysis of the attractors that can
exist for the optimal trajectory obtained from the solution of this game.

3.1. Stationary dynamic programming equations

Because of time stationarity, the problem will have the same structure for each generation
and one can define a generic generational payoff as

Ṽ (xo; γ, γ̃ ′) =
∞∑

�=0

β�Eγ �

[ ∫ θ

0
L̃(x(t), u(t)) dt

]
, (10)

where γ , resp. γ̃ ′, is the current generation (resp. next generations) strategy (resp. strate-
gies), θ0 (resp. θ�) is the life duration of present (resp. �-th) generation, xo is the initial
state and x(·) is the trajectory, solution to the state equations (7)–(9) induced by these
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strategies. A stationary equilibrium is thus defined as a strategy γ that satisfies

∀x ∈ X, Ṽ ∗(x) ≡ Ṽ (x ; γ ∗, γ̃ ∗) = max
γ

Ṽ (x ; γ, γ̃ ∗). (11)

Theorem 6. A stationary intergenerational equilibrium is characterized by the following
dynamic programming equation:

Ṽ ∗(x) = max
γ

Eγ

[ ∫ θ

0
L̃(x(t), u(t)) dt + β Ṽ ∗(x(θ ))|x(0) = x

]
x ∈ X, (12)

with the optimal strategy of each generation being obtained as the solution of the family
of infinite horizon optimal control problems

γ ∗(x) = argmaxu(·)

[ ∫ ∞

0
e−ρt (L̃(x(t), u(t)) + ρβ Ṽ ∗(x(t))) dt |x(0) = x

]
x ∈ X. (13)

Proof. By definition one has

Ṽ ∗(xo) =
∞∑

�=0

β�Eγ ∗

[ ∫ t�+θ�

t�

L̃(x(t), u(t)) dt |x(t�)

]
. (14)

Expressing the conditional expectation after the first random time θ one readily obtains
(12). Since the elementary probability of the interval [θ, θ + dθ ) is given by ρe−ρθ dθ ,
and using equation (10) one can write

Ṽ (xo; γ ∗, γ̃ ∗) =
∫ ∞

0

(∫ θ

0
L̃(x∗(t), u∗(t)) dt + β Ṽ ∗(x∗(θ ))

)
ρe−ρθ dθ,

where x∗(·) is the trajectory generated at initial state xo by the control u∗(·) defined by
the strategy γ ∗. Integrate by parts the first integral to finally obtain

Ṽ ∗(xo) =
∫ ∞

0
e−ρt (L̃(x∗(t), u∗(t)) + ρβ Ṽ ∗(x∗(t))) dt. (15)

It suffices to write the equilibrium conditions to obtain the conditions (13).

Remark 7. The dynamic programming equation (12) is very similar to the one of a dis-
crete event Markov Decision Process. This will help to prove existence of the equilibrium.

Theorem 8. For β < 1 the dynamic programming equation (12) admits a unique solu-
tion.
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Proof. Let V be the Banach space of the Lipshitz continuous functions Ṽ (x), x ∈ X ,
endowed with the norm ‖Ṽ ‖ = supx∈X |Ṽ (x)|. Define the operator T ∗ : V → V by

T ∗(Ṽ )(x) = max
γ

Eγ

[ ∫ θ

0
L̃(x(t), u(t))dt + β Ṽ (x(θ ))|x(0) = x

]
Ṽ ∈ V x ∈ X (16)

where u(·) and x(·) are the solution to (7) and (8) with initial condition x(0) = x induced
by the strategy γ . It is an easy, matter (see Appendix 1), using standard results of the
theory of Markov decision processes (see e.g. (Puterman, 1994)) to prove that the operator
T ∗ is contracting for all β < 1, hence the result.

3.2. The equilibrium is also Pareto optimal

Consider the problem consisting of optimizing the discounted sum over all generations
of their expected rewards

max
{γ �}�=1...∞

Ṽ (xo; {γ �}�=1...∞) =
∞∑

�=0

β�Eγ �

[ ∫ θ

0
L̃(x(t), u(t)) dt

]
. (17)

It is a simple matter to write the dynamic programming equation for this problem and to
find that it also leads to (12) which characterizes the intergenerational equilibrium. The
link between intergenerational equilibrium and the dynamic programming conditions in
stochastic control models has already been exposed in Alj and Haurie (1983).

We can give an interesting interpretation of this property. The model proposed has
two intertwined discounting schemes. The first one is associated with the random life
duration of each generation, the second one is not associated with time per se but, instead,
with the rank of the coming generations.2

Another interesting aspect of this piecewise deterministic control system is that the
random times when generations switch from one to the next in control are not influenced
by the control. Furthermore, the only event that takes place at these random times is a
renewal of the control which passes to a new player. As we have seen, the successive
generations will use the same strategy and, therefore the trajectory will not be affected
by these random switches. As we shall see in more details in the next subsection, this
trajectory will be the solution of an associated auxiliary deterministic and implicit infinite
horizon control problem.

3.3. The associated implicit infinite horizon control problem

Theorem 6 characterizes the equilibrium strategy of a generation as the solution of a
family of auxiliary infinite horizon ρ-discounted optimal control problems having an
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implicitly defined reward function

L∗(x(t), u(t)) = L̃(x(t), u(t)) + ρβ Ṽ ∗(x(t)). (18)

We call it “implicit” because the function Ṽ ∗(x(t)) is itself defined by the very strategy
γ ∗ characterized by the solution of this control problem. The auxiliary infinite horizon
control problem is defined as

max
∫ ∞

0
e−ρtL∗(x(t), u(t)) dt (19)

s.t.

ẋ(t) = f̃ (x(t), u(t)) (20)

u(t) ∈ Ũ (x(t)) (21)

x(0) = xo. (22)

3.4. Long run steady state analysis

Under sufficient concavity and curvature assumptions (see Carlson, Haurie, and
Leizarowitz (1994) for details) the infinite horizon optimal control problem (19)–(22)
may have an attractor x̄ common to all trajectories, emanating from different initial
states xo. This attractor is a trajectory steady-state that solves the following implicit
programming problem (Feinstein and Luenberger, 1981):

max L∗(x, u) = L(x, u) + ρβ Ṽ ∗(x) (23)

s.t.

0 = f (x, u) + ρ(x − x̄) (24)

u ∈ U (x) (25)

where x̄ is the turnpike itself. When the altruism parameter β tends to 0, the above
turnpike will tend to coincide with the one associated with the usual discounted reward
optimal control problem.

max L(x, u) (26)

s.t.

0 = f (x, u) + ρ(x − x̄) (27)

u ∈ U (x) (28)

So, in terms of asymptotic behavior of the optimal trajectories, altruism is modifying the
attractor by replacing the optimized reward L(x, u) with a modified reward L(x, u) =
L(x, u) + ρβ Ṽ ∗(x). We can do static comparative analysis to assess the impact of this
modification on the asymptotic steady-state.
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When ρ → 0 one may expect the expression ρ Ṽ ∗(x) to tend toward g∗
1−β

where g∗

is the maximal sustainable reward, solution of

g∗ = max L(x, u) (29)

s.t.

0 = f (x, u) (30)

u ∈ U (x). (31)

Therefore, the limit steady-state problem will be

max L∗(x, u) = L(x, u) + g∗

1 − β
(32)

s.t.

0 = f (x, u) (33)

u ∈ U (x). (34)

Clearly this problem admits the same solution as the maximal sustainable reward one
defined in (26)–(28). So, when the discount (killing) rate ρ → 0 the optimal trajectory
is similar to the one associated with the infinite horizon, undiscounted control problem.

3.5. Numerical technique to compute a solution

The numerical computation of the fixed point of the operator T ∗ defined in (16) can be
undertaken through an adaptation of the Kushner-Dupuis method (Kushner and Dupuis,
1992).

To implement that method we represent the optimal strategy as a feedback loop and
we implement a continuous time dynamic programming approach. Assuming regularity
for this value function Ṽ ∗(x) and using standard dynamic programming arguments one
can characterize the value function as the solution to the Hamilton-Jacoby-Bellman
equation

ρṼ ∗(x) = max
u∈Ũ (x)

{
L̃(x, u) + ρβ Ṽ ∗(x) + ∂

∂x
Ṽ ∗(x) f̃ (x, u)

}
. (35)

In equation (35), one approximates the partial derivative ∂
∂xi

Ṽ ∗(x) by finite differ-
ences taken in the direction of the flow, that is:

∂

∂xi
Ṽ ∗(x) →

{
(Ṽ ∗(x + ei h) − Ṽ ∗(x))/h if f̃i (x, u) ≥ 0

(Ṽ ∗(x) − Ṽ ∗(x − ei h))/h if f̃i (x, u) < 0
(36)

where ei is the unit vector of the i-th axis. Define

f̃ +
i (x, u) = max{0, f̃i (x, u)}

f̃ −
i (x, u) = max{0, − f̃i (x, u)}.
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Substituting the differences to the partial derivatives in equation (35), one gets

ρṼ ∗(x) = max
u∈Ũ (x)

{
L̃(x, u) + ρβ Ṽ ∗(x) +

n∑
i=1

(
(Ṽ ∗(x + ei h) − Ṽ ∗(x))

h
f̃ +
i (x, u)

− (Ṽ ∗(x) − Ṽ ∗(x − ei h))

h
f̃ −
i (x, u)

)}
. (37)

which yields

0 = max
u∈Ũ (x)

{
hL̃(x, u) − Ṽ ∗(x)

(
ρ (1 − β)h +

n∑
i=1

(
f̃ +
i (x, u) + f̃ −

i (x, u)
))

+
n∑

i=1

( f̃ +
i (x, u)Ṽ ∗(x + ei h) + f̃ −

i (x, u)Ṽ ∗(x − ei h))

}
. (38)

Define the interpolation interval

	h = h

ρ h + ∑n
i=1 | fi (x, u)| . (39)

Where we have used the fact that f̃ +
i (x, u) + f̃ −

i (x, u)) = | fi (x, u)|. One considers
an MDP with discrete states xg, g ∈ G and control u ∈ Ũ (xg). The transition rewards
are given by (L̃(xg, u) + ρ β Ṽ ∗(x))	h . The transition probabilities 
i (xg, xg′

, u) are
defined as follows:

• When g ∈ G \ ∂G the transition probabilities xg to any neighboring sampled value
xg ± ei h are given by

π±
i (xg, u) = f̃ ±

i (xg, u)∑n
i=1 | fi (x, u)| + ρ β h

.

• A renewal jump occurs with probability

πren(xg, u) = ρ β h∑n
i=1 | fi (x, u)| + ρ β h

.

• On the boundary ∂G of the grid, the probabilities are defined according to a reflecting
boundary scheme.

• All the other transition probabilities are 0.

A discounting term is defined by

β(xg, u) =
∑n

i=1 | fi (xg, u)| + ρ β h∑n
i=1 | fi (xg, u)| + ρ h

.
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The DP equations for this approximating MDP are given by

v(xg) = max
u∈Ũ (xg)

{
L̃(xg, u)	h + β(xg, u)(πren(xg, u)v(xg)

+
∑

i=1,...,n

∑
±

π±
i (xg, u)v(xg ± hei )

}
(40)

that we also write more concisely

v(xg) = max
u∈Ũ (xg)

{
L̃(xg, u)	h + β(xg, u)

∑
g′∈G


i (x
g, xg′

, u)v(xg′
)

}
(41)

where 
i (xg, xg′
, u) stands for the controlled transition probabilities defined above.

Expliciting these probabilities we obtain

v(xg) = max
u∈Ũ (xg)

{
	h

(
L̃(xg, u) + βρv(xg) +

n∑
i=1

( f̃ +
i (xg, u)v(xg + ei h)

+ f̃ −
i (xg, u)v(xg − ei h))

)}
(42)

We solve this MDP using linear programming (see Puterman (1994)), after having also
discretized the control variables (see Appendix 2 for details).

4. Application to GCC integrated assessment

In this section we use the simplified continuous time version of the DICE model
(Nordhaus, 1994, 1999) already introduced in Haurie (to appear), to illustrate the impact
of multigeneration equilibrium approach on GCC integrated assessment.

4.1. A reduced model based on DICE94

We shall illustrate this approach on the following, very simplified, dynamical system
structure representing an economy with a single homogenous good that can be consumed
or invested to obtain productive capital; the output depends on two production factors,
labor and capital. Table 1 gives the full list of variables entering the model.

max
c(·)

∫ ∞

0
e−ρtU (c(t), L(t)) dt (43)

U (c(t), L(t)) = L(t)
c(t)1−α − 1

1 − α
(44)

L̇(t) = gL (t)L(t) (45)
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Table 1
List of variables in the DICE94 model.

List of endogenous state variables
K (t) = capital stock
M(t) = mass of GHG in the atmosphere
T (t) = atmospheric temperature relative to base period
T ∗(t) = deep-ocean temperature relative to base period

List of control variables
I (t) = gross investment
µ(t) = rate of GHG emissions reduction

List of exogenous dynamic variables
A(t) = level of technology
L(t) = labor input (=population)
O(t) = forcing exogenous GHG

List of auxiliary variables
C(t) = total consumption
c(t) = per capita consumption
D(t) = damage from GH warming
E(t) = emissions of GHGs
F(t) = radiative forcing from GHGs
�(t) = output scaling factor due to emissions control

and to damages from climate change
Q(t) = gross world product

ġL (t) = −δL gL (t) (46)

Q(t) = �(t)A(t)K (t)γ L(t)1−γ (47)

Ȧ(t) = gA(t)A(t) (48)

ġA(t) = −δAgA(t) (49)

Q(t) = C(t) + I (t) (50)

c(t) = C(t)

L(t)
(51)

K̇ (t) = I (t) − δK (t) (52)

E(t) = (1 − µ(t))σ (t)Q(t) (53)

Ṁ(t) = β0 E(t) − δM (M(t) − 590) (54)

F(t) = 4.1
log[M(t)] − log[590]]

log[2]
+ O(t) (55)

Ṫ (t) = 1

R1
{F(t) − λT (t) − R2

τ12
{T (t) − T ∗(t)} (56)

Ṫ ∗(t) = 1

τ12
{T (t) − T ∗(t)} (57)

D(t) = Q(t)θ1(T (t) + θ2T (t)2) (58)

T C(t) = Q(t)b1µ(t)b2 (59)
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�(t) = 1 − b1µ
b2

1 + θ1(T + θ2T 2)
. (60)

This model is basically an economic growth model linked with a global tempera-
ture model. A damage function computes the output loss due temperature increase and
abatement control. The model is well adapted to CBA analysis at a global level and has
become a landmark in the domain of global climate change integrated assessment.

4.2. Numerical analysis of asymptotics

We report now the result of numerical approximations for the identification of the asymp-
totic attractors, or “turnpikes” under different equilibrium specifications.

4.2.1. Without altruism
This system is not time homogenous because of population growth and technical progress.
However the model implies asymptotic values for these exogenous variables that are given
below

Ā = 0.063
L̄ = 12000
Ō = 1.15

We therefore use these asymptotic values in our computations of a stationary intergen-
erational equilibrium. The Table 3 gives the asymptotic steady state of any trajectory for
ρ = 0% and ρ = 6%, respectively. We notice the important effect of the pure rate of
time preference on the asymptotic environmental state, represented by the variables T
and M . Also, discounting implies a lower level of asymptotic consumption.

4.2.2. With altruism
We now compute the asymptotic steady states for trajectories that satisfy the intergenera-
tional equilibrium introduced in this paper. Using the method described in Appendix 3 we
obtain the figures of Table 4 showing the asymptotic attractors from β = .1, β = .5 and

Table 2
Parameter values.

α = 1
b1 = 0.045
b2 = 2.15
β0 = 0.64
γ = 0.25
δK = 0.10 (per year)
δM = 0.0833 (per decade)
λ = 1.41
θ1 = 0.0007
θ2 = 3.57
σ = 0.033
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Table 3
Turnpike values when ρ = 0% and ρ = 6%,

respectively.

State variables State variables

K̄ = 943 K̄ = 506
M̄ = 911 M̄ = 1170
T̄ = 2.64 T̄ = 3.69

Control variables Control variables
Ī = 94.3 Ī = 50.6
µ̄ = 0.68 µ̄ = 0.36

Exogenous variables Exogenous variables
Ā = 0.063 Ā = 0.063
L̄ = 12000 L̄ = 12000
Ō = 1.15 Ō = 1.15

Auxiliary variables Auxiliary variables
C̄ = 291 C̄ = 278
Ē = 41.83 Ē = 75.47
F̄ = 3.72 F̄ = 5.20
Q̄ = 400 Q̄ = 342

ρ = 0% ρ = 6%

Table 4
Turnpike values when ρ = 6% and β = 0.1, 0.5, 0.8, 0.99, respectively.

State variables State variables State variables State variables
K̄ = 530 K̄ = 663 K̄ = 810 K̄ = 871
M̄ = 1151 M̄ = 1077 M̄ = 1010 M̄ = 955
T̄ = 3.62 T̄ = 3.34 T̄ = 3.07 T̄ = 2.83

Control variables Control variables Control variables Control variables
Ī = 53 Ī = 66 Ī = 81 Ī = 87.14
µ̄ = 0.36 µ̄ = 0.47 µ̄ = 0.57 µ̄ = 0.63

Exogenous variables Exogenous variables Exogenous variables Exogenous variables
Ā = 0.063 Ā = 0.063 Ā = 0.063 Ā = 0.063
L̄ = 12000 L̄ = 12000 L̄ = 12000 L̄ = 12000
Ō = 1.15 Ō = 1.15 Ō = 1.15 Ō = 1.15

Auxiliary variables Auxiliary variables Auxiliary variables Auxiliary variables
C̄ = 280 C̄ = 286 C̄ = 290 C̄ = 290
Ē = 73 Ē = 63.42 Ē = 54.62 Ē = 47.48
F̄ = 5.10 F̄ = 4.71 F̄ = 4.33 F̄ = 4
Q̄ = 347 Q̄ = 366 Q̄ = 385 Q̄ = 392

β = 0.1 β = 0.5 β = 0.80 β = 0.99
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β = .99, respectively, with still a pure time preference of 0.06 % within the life span of
each generation. We notice that, as expected, the introduction of altruism transforms the
asymptotic steady state into a solution which lies half-way between the discounted-no-
altruism solution (ρ = 0.06 and β = 0) and the undiscounted solution (ρ = 0). When β

increases, as observed previously, the asymptotic steady-state gets closer to the solution
of the undiscounted single generation problem. The introduction of altruism increases
the environmental concern, favors higher capital accumulation and reduces emissions
through a more active abatement policy.

5. Conclusion

The intergenerational equilibrium that has been characterized in this paper offers a ratio-
nale for proposing criteria to be used in CBA when the projects span several generations.
The whole approach boils down finally to a modification of the reward (utility) function
entering the economic growth model, by valuing the stocks of physical and environ-
mental capital at each instant of time. In the approach developed here, this valuation is
often practised by economists of the environment.3 This value is obtained endogenously
from an altruistic consideration of the wellbeing of forthcoming generations. Using
known results of the theory of asymptotic control and numerical methods borrowed from
stochastic control theory, we have analyzed the effect of this form of altruism on the
attracting steady states (turnpikes) of the growing economy. These effects correspond to
the expected consequences of intergenerational altruism in the treatment of long term
environmental problems, like, typically, the anthropogenic global climate change. The
scheme proposed in this paper is linked with the growing literature on intergenerational
equilibria (see Sorger, 2002); using a double discounting process, one intra-generational
described by the pure time preference rate ρ, and one inter-generational given by the
altruism parameter β, we have obtained a formulation which reduces to an optimization
scheme. This is contrasting with Haurie (to appear) where the altruism is fully concen-
trated on the next generation in row. In the scheme proposed in Haurie (to appear), time
consistency is indeed obtained but not Pareto optimality. An open domain of investiga-
tion is the experimentation of these approaches in dynamic economic models that are
not time homogenous.

Appendix 1: Proof of contraction property for operator T ∗

We consider two functions Ṽ and W̃ in V . T ∗ maps V into V . Fix x ∈ X , assume
T ∗(Ṽ )(x) ≥ T ∗(W̃ )(x) and let

γ ∗ = argmaxγ

{
Eγ

[ ∫ θ

0
L̃(x(t), u(t)) dt + β Ṽ (x(θ ))|x(0) = x

]}
.
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Then

0 ≤ T ∗(Ṽ )(x) − T ∗(W̃ )(x) ≤ Eγ ∗

[ ∫ θ

0
L̃(x(t), u(t)) dt + β Ṽ (x(θ ))|x(0) = x

]

− Eγ ∗

[ ∫ θ

0
L̃(x(t), u(t)) dt + βW̃ (x(θ ))|x(0) = x

]

= β

∫ ∞

0
ρ e−ρt (Ṽ (x∗(t)) − W̃ (x∗(t))) dt

≤ β ‖Ṽ − W̃‖.

We repeat this argument in the case that T ∗(Ṽ )(x) ≤ T ∗(W̃ )(x) to get finally

|T ∗(Ṽ )(x) − T ∗(W̃ )(x)| ≤ β ‖Ṽ − W̃‖, ∀x ∈ X (61)

and thus, taking the supremum w.r.t. x ∈ X we get the desired result. �

Appendix 2: The linear program used to solve the associated MDP

We introduce the variables zg = v(xg). Let � be a grid for the control set Ũ = ⋃
x∈X Ũ (x)

and denote uξ , ξ ∈ �, the sampled control points. For each xg, g ∈ G, we denote
�g = {ξ ∈ � : uξ ∈ Ũ (xg)}. We then solve the following LP

minimize
∑
g∈G

zg

s.t. zg ≥ L̃(xg, uξ )	h + β(xg, uξ )
∑
g′∈G


i (x
g, xg′

, u)zg′
, g ∈ G, ξ ∈ �.

This is a very large LP indeed. With n = 3, m = 2 and 10 discretization points on each
dimension, we end up with 1000 variables and 100’000 constraints. These LP are solved
easily (less than 2 minutes) on a 700 Mhz processor PC, using XPress. AMPL (Fourer,
Gay, and Kernighan, 1993) was used to submit the model to the optimizer.

Appendix 3: The numerical computation scheme

Once the intergenerational game is solved, the associated LP gives the values zg = v(xg)
for the discretization points. Typically we use a grid in 3 dimensions with 10 points on
each axis; so we end up with 1000 values, corresponding to different sampled values for
the state variables K , M and T . We then adjust a polynomial regression to these data,
obtaining very good R2 values. This polynomial function is used as an approximation of
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the function Ṽ ∗(x). We then proceed to solve the implicit programming problem:

max L∗(x, u) = L(x, u) + ρβ Ṽ ∗(x) (62)

s.t.

0 = f (x, u) + ρ(x − x̄) (63)

u ∈ U (x). (64)

We do it by implementing a Gauss-Seidel method where the values x̄ are updated se-
quentially as given by the solution of the problem (63)-(64), with a fixed x̄ .

Notes

1. Recall that an exponential random variable T with parameter ρ� has the half line [0, ∞) as support with a
distribution function P[T ≤ θ ] = 1−e−ρ�θ . The expected value of T is then 1

ρ
. Now, since the elementary

probability of T being in the interval θ, θ + dθ is given by ρe−ρ�θ dθ , we can write

Eγ�

[ ∫ t�+θ�

t�
L(t, x(t), u(t)) dt

]
=

∫ ∞

0


 ∫ θ

0
L(t, x(t), u(t)) dt


ρe−ρ�θ dθ.

It suffices to integrate by parts to obtain the result (6) that is the discounted value of the infinite stream
of rewards.

2. As is natural, we may have a decreasing interest in what happens to our grand, grand...grand children.
3. See Ambrosi et al. (to appear) for an interesting analysis of the different elements that enter into the utility

function for integrated assessment models.
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