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The Free Convection Boundary-Layer Flow
Induced in a Fluid Saturated Porous Medium
by a Non-Isothermal Vertical Cylinder
Approaches the Shape of Schlichting’s Round Jet
as the Cylinder Radius Tends to Zero
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Abstract. The title statement is proven for a circular cylinder whose surface temperature (above that
of the ambient fluid) varies inversely proportional with the axial distance from the leading edge.
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1. Introduction

Since the pioneering work of Minkowycz and Cheng (1976), the free convec-
tion from a vertical cylinder with a power-law surface temperature distribution
Ts(x) = T∞ +A · xn and embedded in a fluid saturated porous medium has at-
tracted considerable interest. In the paper of Minkowycz and Cheng (1976), the
boundary layer approximation of the governing equations were established, numer-
ical results for various values of n between 0 and 1 were reported and comparisons
between the local similarity and local nonsimilarity methods were given. A detailed
study of the isothermal case n = 0 using a nonlocal marching method and an
asymptotic analysis for large values of x has been performed by Merkin (1986).
Extensions of the problem for the case of mixed convection were presented by
Merkin and Pop (1987), for non-Darcy free convection by Hossain and Nakayama
(1993) and for non-Darcy mixed convection by Kumari and Nath (1989), respect-
ively. More recently, Bassom and Rees (1996) have extended the work of Merkin
(1986) to a range of values on the power-law exponent n. These authors found that
the asymptotic flow field far from the leading edge of the cylinder takes a multilayer
structure for n < 1. This multilayer structure still persists for n > 1 close to the
leading edge, while far downstream a simple single layer is present.
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The present paper considers the free convection from a vertical cylinder with
inversely-linear surface temperature distribution (n = −1) embedded in a fluid
saturated porous medium and shows that in the limiting case of the vanishing
cylinder radius a the corresponding flow field can be overlapped on the velocity
field of Schlichting’s celebrated round jet in a clear viscous fluid.

2. Basic Equations

We consider the steady free convection boundary-layer from a vertical imper-
meable cylinder of radius a embedded in a fluid saturated porous medium of
ambient temperature T∞. The cylinder is heated and its axial symmetric surface
temperature Ts, which everywhere exceeds the ambient temperature T∞ of the fluid,
is prescribed (see below). Under these conditions, over the cylinder an ascending
free convection boundary layer flow will be formed (see Figure 1). Assuming
the Boussinesq approximation is valid, the basic boundary-layer equations are
(Minkowycz and Cheng, 1976):
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Figure 1. Schematics of the flow domain around the cylinder of radius a (full lines) and co-
ordinate system. In the limiting case a → 0 of an infinitesimally thin cylinder (and a suitable
surface temperature distribution), the occurrence of a jet-like velocity field is expected.
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Here x � 0 and r � 0 are the axial and radial coordinates, respectively, u and v

the velocity components along x and r axes, T is the fluid temperature, K the
permeability of the porous medium, g the acceleration due to gravity, and α, β
and υ = µ/ρ are the effective thermal diffusivity, thermal expansion coefficient
and kinematic viscosity, respectively. These equations are to be solved subject to
the boundary conditions

T = T∞ + T0 ·
(
x

L

)n

≡ Ts(x) and v = 0 on r = a,

T → T∞ as y → ∞ (4)

where L is a reference length which represents the axial distance x at which Ts(x)

takes a prescribed value Ts(L) = T∞ + T0, where T0 > 0 will be assumed. The
major part of the present paper is concerned with the special case n = −1 of the
inversely-linear surface temperature distribution.

After the introduction of Stokes’ stream function ψ and the dimensionless quanti-
ties X,Y, φ and Ra defined by the expressions
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the dimensional temperature and velocity fields will be given by
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and the problem (1)–(4) reduces to solve equation
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along with the boundary conditions
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Thus, the axial velocity profile u measured in units of α/L and the temperature
difference T − T∞ measured in units of T0/Ra coincide:
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3. Similarity Solutions

We start with the similarity transformation

φ = 2Xf (η), η = Ra ·
(
Y

2

)2

Xn−1 (10)

which yields for the temperature and velocity fields (6) the expressions

T = T∞ + T0X
nf ′(η), u = α

L
Ra · Xnf ′(η),

v = − 2α

LY
[f (η) + (n − 1)ηf ′(η)] (11)

Here the prime denotes differentiation with respect to the similarity variable η

whose variation range is

Ra ·
(

a

2L

)2

Xn−1 ≡ η0 � η�∞ (12)

and the function f (η) satisfies the ordinary differential equation

ηf ′′′ + (1 + f )f ′′ − nf ′2 = 0 (13)

along with the boundary conditions

f (η0) = (1 − n)η0, f ′(η0) = 1, f ′(∞) = 0 (14)

For the present paper it is important to notice that Equation (13) may be transcribed
in the form

d2

dη2

(
ηf ′ + 1

2
f 2 − f

)
= (1 + n)f ′2 (15)

As we see, the transformation (10) leads to the exact similarity equation (13) sub-
ject to the boundary conditions (14), among them the first one depends in general
on the axial coordinate x. Thus, we are faced here for any n �= 1 (and a �= 0) with
an exact local similarity problem, where the local feature occurs only in one of the
boundary conditions (but not in the differential equation). In the case n = +1, η0

is independent of x and the problem becomes fully similar. It also becomes fully
similar for any n in the limiting case of an infinitesimally thin cylinder, a → 0,
where η0 → 0.

The present form of the exact local similarity implies that for any specified
axial distance x from the leading edge (i.e., for any specified value of η0), that
value of f ′′(η0) has to be sought for which the boundary value problem (13) and
(14) becomes a well-posed initial value problem whose solution satisfies the ad-
ditional condition f ′(∞) = 0. Once the quantity f ′′(η0) has been found (e.g., by
the familiar shooting method), the corresponding temperature and velocity fields
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will be obtained (numerically) according to Equations (11). The dimensionless
surface heat flux as specified by the local Nusselt number Nux is then given by
the expression

Nux = −aRa

2L
f ′′(η0)X

n (16)

In the special case n = −1 the above reduction to an initial value problem (with the
additional condition f ′(∞) = 0) becomes even much simpler, since for n = −1
the right-hand side of Equation (15) vanishes and thus from this equation two first
integrals emerge:

ηf ′′ + f · f ′ = C1 ηf ′ + 1
2f

2 − f = C1η + C2 (17)

where C1 and C2 are integration constants which depend in general on η0. The first
two boundary conditions (14) imply C1 = η0 · [2 + f ′′(η0)] and C2 = −η0 · [1 +
η0 · f ′′(η0)] and thus we obtain the first order Riccati equation

ηf ′ = − 1
2f

2 + f + η0[2 + f ′′(η0)] · η − η0[1 + η0f
′′(η0)] (18)

A comprehensive discussion of the local similarity solutions corresponding to ar-
bitrary values of n and η0 is out of the scope of this paper. As specified in the
title, our present concern is the limiting case of an infinitesimally thin cylinder,
a → 0, with an inversely linear (n = −1) surface temperature distribution Ts(x).

In this case η0 = C1 = C2 = 0 and the exact local similarity problem reduces
to an exact full similarity problem. The corresponding solution of Equation (18) is
easily found. It is
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1 + η/2
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Accordingly
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4. Discussion and Conclusions

Comparing expressions (21) of u and v to the corresponding velocity components
of Schlichting’s round jet (Schlichting, 1933; Schlichting and Gersten, 1997), it
turns out immediately that the functional dependence of these two velocity fields
on x and r is exactly the same. As an illustration, in Figure 2 the jet-like profiles
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Figure 2. Dimensionless downstream velocity (and temperature) profiles as a function of the
(dimensionless) radial coordinate Y for different axial distances X, plotted for Ra = 100.

of the downstream velocity component of our free convection flow, as given by
the first equation of (21), are shown for different axial distances from the leading
edge. The momentum-spreading with increasing x, which is a characteristic fea-
ture of free jets, is also clearly seen in Figure 2. According to Equation (9), these
velocity profiles measured in units of α/L also coincide with those of the dimen-
sionless temperature field (T − T∞)/(T0/Ra). Thus, while Schlichting’s round jet
is isothermal, the present free convection boundary layer flow is associated with a
thermal boundary layer which is congruent with the downstream velocity. The cor-
responding Nusselt number as given by Equation (16) is vanishing for any x �= 0
as a → 0. This means, that in our free convection flow from an infinitesimally thin
cylinder (“wire”) heat is transferred to the fluid only at the leading edge, x = 0.

In order to achieve a full overlap of the velocity field the free convection flow
and Schlichting’s round jet, in addition to their identical functional dependences
on x and r, also certain gauge conditions must be fulfilled. There are two such
conditions. One of them is physically evident: we must require that the momentum
flux

J̇ = 2πρ
∫ ∞

0
u2r dr (22)

which is now a conserved quantity, has the same value for the two flow fields. For
the free convection flow this implies to chose the reference length L such that the
Darcy–Rayleigh number defined under Equations (5) takes the value

Ra = 3J̇

8πρα2
(23)
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The second gauge condition results by a simple inspection of the corresponding
equations (obtained after the expression (23) of Ra has been substituted in Equa-
tions (21)). This second condition requires to consider the round jet of such a clear
fluid whose kinematic viscosity υ equals the effective thermal diffusivity α of the
fluid saturated porous medium in which our free convection flow has been formed.

We may therefore conclude that the velocity field of the free convection bound-
ary layer flow from an infinitesimally thin vertical cylinder (wire) with inversely
linear temperature distribution and embedded in a fluid saturated porous medium,
can be mapped on the far field of Schlichtling’s round jet formed in a clear viscous
fluid.

Finally, it is worth noticing that a similar mapping of Schlichtling’s round jet
on a boundary layer flow induced by a stretching wire is also possible (Magyari
and Keller, 2001). In this case, already the gauge condition of the coinciding mo-
mentum fluxes suffices for a full overlap of the two velocity fields (Magyari and
Keller, 2001).
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