
Visual Comput (2006) 22: 194–209
DOI 10.1007/s00371-006-0376-9 O R I G I N A L A R T I C L E

Pascal Glardon
Ronan Boulic
Daniel Thalmann

Robust on-line adaptive footplant detection
and enforcement for locomotion

Published online: 7 February 2006
© Springer-Verlag 2006

P. Glardon (�) · R. Boulic · D. Thalmann
Ecole Polytechnique Fédérale
de Lausanne (EPFL),
Virtual Reality Lab,
CH-1015 Lausanne, Switzerland
pascal.glardon@epfl.ch

Abstract A common problem in
virtual character computer anima-
tion concerns the preservation of
the basic foot-floor constraint (or
footplant), consisting in detecting
it before enforcing it. This paper
describes a system capable of gen-
erating motion while continuously
preserving the footplants for a real-
time, dynamically evolving context.
This system introduces a constraint
detection method that improves
classical techniques by adaptively
selecting threshold values according
to motion type and quality. The
footplants are then enforced using
a numerical inverse kinematics solver.
As opposed to previous approaches,
we define the footplant by attaching
to it two effectors whose position
at the beginning of the constraint
can be modified, in order to place
the foot on the ground, for example.

However, the corrected posture at
the constraint beginning is needed
before it starts to ensure smoothness
between the unconstrained and
constrained states. We, therefore,
present a new approach based on
motion anticipation, which computes
animation postures in advance,
according to time-evolving motion
parameters, such as locomotion speed
and type. We illustrate our on-line
approach with continuously modified
locomotion patterns, and demonstrate
its ability to correct motion artifacts,
such as foot sliding, to change the
constraint position and to modify
from a straight to a curved walk
motion.

Keywords Motion anticipation ·
Animation with constraints · Human
body simulation

1 Introduction

The animation of virtual characters remains a challeng-
ing topic in computer graphics. Common human activi-
ties, for example, walking, jogging, running or jumping
are widely applied, especially in computer games. In such
a context, the variety of generated motions is fundamen-
tal. On the one hand, it is necessary to produce animations
controlled by high-level parameters, like changing the lo-
comotion style and speed to walk around in a virtual en-
vironment. On the other hand, small continuous variations
of those parameters increase and sustain the believabil-

ity of character movements. These variations have to be
performed on-line, reactive to user’s requests or to au-
tonomous agents.

Concurrently, the resulting animation should be as re-
alistic as possible, notably by maintaining basic physi-
cal constraints. Among them, keeping the foot planted on
the floor during a period of time (referred to as footplant
in this paper) has entailed the elaboration of numerous
methods, divided into two distinct stages: the detection of
a footplant and its enforcement.

Traditional methods [2, 27] that detect the start and end
of a footplant use global thresholds on the position and
velocity of the feet, independently of the motion type con-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159145032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Robust On-line Adaptive Footplant Detection and Enforcement 195

taining the footplants. However, threshold parameters for
a light walk are not compatible with a high dynamic run.
In addition, these methods assume that the motions are
free from noise and artifacts such as foot sliding. There-
fore, in this paper, we tackle a first problem: footplant
detection in real-time. We propose an adaptive on-line
method that takes into account the nature and quality of
the motion to determine threshold values automatically. In
addition, this detection technique utilizes the motion struc-
ture to determine restricted periods of time when a con-
straint has to be investigated.

Concerning the second stage, many methods enforcing
footplants are based on specialized IK (inverse kinemat-
ics) solvers [20, 24, 37]. All, except the method of Kovar
et al. [20] can be applied on-line, for example for mo-
tion retargeting [29], or to maintain foot constraints dur-
ing the transition between two motion capture clips [23].
However, these approaches are unadapted when the ori-
ginal position needs to be modified at the constraint time.
In practice, imperfect input motions may contain a foot-
plant whose foot trajectory ends above the ground. In this
case, the constraint position has to be re-positioned on
the ground, while ensuring a smooth motion correction.
Hence, we address a second problem in this paper: real-
time constraint re-positioning and enforcement. We cor-
rect a posture with the new constraint positions by using
a numerical IK algorithm, robust enough to work on-line.
In order to avoid an abrupt change in the constraint loca-
tion, we introduce an ease-in phase based on a displace-
ment map, allowing us to modify the motion towards the
new posture smoothly. Similarly, an ease-out phase allows
us to seamlessly release the constraint. In addition, we im-
prove the motion realism by defining two effectors (heel
and toe) on each foot that control the footplant.

To deal with the two main problems presented in this
paper, it is necessary to obtain future frames of the current
animation. Actually, as the constraint detection method is
adaptive, it needs to know the foot position in advance. For
footplant enforcement, the modified posture at the start of
the constraint is required at the beginning of the ease-in
phase. In this case, future motion information is also cru-
cial. However, the motion is generated on-line, producing
a continuous stream of frames with uncertain variations
due to the parameter changes. Therefore, to compensate
these two paradoxical goals, we introduce a novel ap-
proach capable of anticipating the motion. According to
the motion state, described with its current and eventu-
ally desired high-level parameters, our method computes
future information so as to react correctly in the present.

A complete overview of our system is depicted in
Fig. 1. To illustrate our methodology, we focus on loco-
motion patterns, providing walking and running cycles. At
any time, the user can determine either current high-level
parameters, or desired ones, which have to be reached
after a specific period of time. In addition, effectors can be
configured in order to modify the foot constraint location.

Fig. 1. System overview

According to the varying parameter set, the motion antici-
pation module computes multiple anticipated frames, each
stemming from a different basic cycle. Footplants are also
detected on these basic cycles, and are enforced using our
numerical IK solver. In addition, we refer to the postures
from anticipated frames as a composite cycle. Postures
from this cycle are used to ensure a smooth transition from
the unconstrained state to the constrained state.

The main contribution of this paper is to propose
a method efficient enough to encapsulate both footplant
detection and enforcement in a single system, where mo-
tions are generated on the fly and whose parameters may
potentially vary endlessly. We explore different applica-
tions of this method: correction of input motions having
feet artifacts (sliding footplant slightly above the ground),
stylistic production by changing constraint locations, mo-
tion modification from a straight walk to a curved one.

The next section reviews related work. Section 3 de-
scribes our motion anticipation method. Section 4 de-
scribes footplant detection in detail, while Sect. 5 de-
scribes its enforcement. Then we illustrate our methodol-
ogy with results in Sect. 6. Finally, we conclude this paper
by discussing the limitations of our method and possible
extensions.

2 Related work

The goal of this paper is to present an on-line system that
integrates the detection of constraints and their enforce-
ment using an IK-based motion editing technique. For
illustration purposes, this system is coupled with a real-
time locomotion engine. The related works are, therefore,
classified into three research directions: locomotion gener-
ation, constraint detection and motion editing.

2.1 Locomotion generation

Many works have been dedicated to the locomotion of
virtual humans [28]. Two classes of methods can be distin-
guished: off-line and on-line, both offering different levels
of precision in the resulting motion, in particular regarding
footplant preservation.

196 P. Glardon et al.

Off-line methods. To produce off-line animations, the
keyframing technique allows an animator to specify key
postures at specific key times. Using appropriate soft-
ware [26], skilled designers can control the motion in
detail. However, this technique is quite labor-intensive,
as any motion parameter change entails the animators to
modify every keyframe. Kinematics approaches generate
motions from parameters such as position feet or speed
value. Extended from one of the pioneering works of Gi-
rard and Maciejewski [11], step-driven methods [8, 40]
have been developed. Motions are generated by giving
a pre-defined set of foot positions (footprints) and timing
information. This data is generally computed by a mo-
tion planning technique, which has to be as interactive as
possible to be comfortable for animators.

Dynamics approaches aim to describe a motion by
applying physics laws. As an example, Wooten and
Hodgins [43] propose control algorithms based on a fi-
nite state-machine to describe a particular motion and
proportional-derivative servos to compute the forces.
However, even if these methods produce physically cor-
rect animations, the configuration of their algorithms re-
mains difficult. It is not easy to determine the influence of
each parameter on the resulting motions.

On-line methods. The procedural animation technique
refers to the generation of motions by applying different
successive parameterized algorithms on input data. This
definition is not strict: keyframe-based techniques may
also be considered as a succession of algorithms. How-
ever, for procedural approaches, the input data does not
define the motion explicitly, but consists of a parameter set
describing initial conditions used by the algorithms. Many
methods based on empirical data and bio-mechanical ob-
servations are able to generate walking [3] or running
patterns [4], reactive to given user parameters. Other simi-
lar approaches take into account the environment, walking
on uneven or sloped terrains [38] or climbing stairs [9].
Despite their real-time capability, all these methods lack
in realism, as the legs’ motion is considered symmet-
rical, for example. To increase the motion believability,
Ko and Badler [18] propose to add inverse dynamics to
control character balance. Another class of on-line ani-
mation techniques re-uses original motion capture data.
Treated as a time-varying signal, a new motion can be
generated by modifying its frequency bands [5] or its
Fourier coefficients [39]. Other methods [29, 32] define
each motion by B-spline coefficients. New motions are
then computed by setting weights on the various original
motions and performing interpolations using polynomial
and RBF (radial basis function) functions. The Kovar
and Gleicher [19] method wraps input motions into a data
structure that ensures consistent time-warping, root align-
ment and constraint matching. Finally, Glardon et al. [12]
apply PCA (principal component analysis) on a motion
capture database composed of various walking and run-

ning cycles. The generation of new parameterized motions
is performed by interpolation and extrapolation into a hier-
archical structure of PCA spaces.

This latter class of techniques produces realistic and
high-level parameterized motions (e.g. velocity, walk-run
ratio), but suffers artifacts, as the foot constraint is not
perfectly preserved. Post-processing correction methods,
such as footskate cleanup [20] may be applied, but cancel
the real-time reactivity of the motion generation.

2.2 Constraint detection

In this paper, we consider a constraint from its geometrical
point of view: for a given body part, a goal position has to
be reached and enforced within a period of time.

A category of constraint detection methods allows us
to compute the proximity between two points of inter-
est, a virtual human’s finger and a table, for example.
To determine this proximity only at possible relevant
frames, Bindiganavale and Badler [2] introduce the notion
of effector acceleration zero-crossing. Hreljac and Mar-
shall [17] use a similar technique to determine the heel-
strike and toe-off times in walking motion. Their results
are compared with measures performed on force plat-
forms. In [23, 27], the authors propose another approach
by setting thresholds on the position and velocity of the
feet to detect footplants. Under these threshold values,
a foot joint is considered to be fixed on the floor.

Liu and Popović [25] present a generic constraint de-
tection method by finding points on a character’s body
that stay fixed in space for some period of time. In add-
ition, close constraints are merged if the duration between
constraints is under specified threshold values. Salvati et
al. [35] extend this method to detect constraints relative to
moving objects in a scene (e.g. a hand touching a ball).

In addition to being off-line, all of these techniques
prove to be unreliable if the original motion is noisy. Ac-
tually, threshold values vary according to the input motion
properties. We illustrate this problem further in this pa-
per by describing situations where thresholds should be
dependent of the motion parameters. We also propose
a technique for improving the constraint detection in such
a case.

2.3 Motion editing

Motion editing techniques aim to slightly modify, retarget
or correct (e.g. by applying constraints) an existing mo-
tion.

Off-line methods. Constraint-based techniques, discussed
and classified in [15], alter an original motion while
preserving some specific geometrical features. Among
them, space-time constraint [14, 24] or physically-based
approaches [25, 30] provide effective tools to interactively
manipulate a motion clip by changing its properties. How-

Robust On-line Adaptive Footplant Detection and Enforcement 197

ever, these methods are computationally expensive and it
remains intuitively difficult to provide a correct mathe-
matical formulation corresponding to the desired motion
modifications. Recent works tend to improve this weak-
ness, either by reducing the motion dimension [34], or
by offering more intuitive motion control [36]. Alterna-
tive approaches apply IK for motion editing. Specialized
analytical methods are presented by Kovar et al. [20] to
clean up footskate from motion capture data as a post-
processing step. However, this method is not appropriate
for rigid bodies (such as those based on [16]), as the leg
length may vary. Another approach introduced by Lee and
Shin [24] allows motions to be edited hierarchically, im-
proving their modifications at each iteration. In [22], the
authors propose to modify a motion by applying a numer-
ical IK method setting priorities on effectors and control-
ling the center of mass. Finally, Yamane et al. [44] use
a similar IK solver to generate animation given an object
manipulation task and a motion database.

On-line methods. Only a few methods are able to edit mo-
tion in real-time. Rose et al. [33] propose to perform an
interpolation of several input motions to reach a given
end-effector position. In [37], an analytic inverse kinemat-
ics is applied to perform on-line motion retargeting. This
method is integrated into the locomotion generation de-
scribed in [29]. Rose et al. [32] use an optimized numeri-
cal solution to apply footplants on motions. Finally, a hy-
brid solution is provided by Choi and Ko [7] by using an
inverse rate control technique to retarget a motion. To be
computationally competitive, these on-line methods con-
trol the position of a single joint per footplant whose de-
tection is performed in a pre-processing stage. While pow-
erful, all these motion editing techniques need improve-
ments to be integrated into an on-line motion generation
system, whose footplants are automatically detected and
enforced. Actually, it is necessary to substitute the off-line
animator’s task, consisting in building up the end-effector
trajectories, by an automatic process. These trajectories al-
low the foot to be re-positioned in order to keep it fixed on
the floor level during a constraint.

2.4 Motion anticipation

Butz et al. [6] classify anticipatory mechanisms in four
categories: implicit, payoff, sensorial and state-based. We
focus on the latter category, dealing with mechanisms in
which predictions about future states directly influence
current behavioral decision making. In general, anticipa-
tion is applied to explore unknown virtual environments,
where virtual agents are equipped with multi-sensory sys-
tems [10]. A collaborative multi-agent context may also
be based on anticipation in order to predict the inter-
nal state of other autonomous virtual agents [41]. To our
knowledge, only a few works deal with motion antici-
pation. Labbé et al. [21] propose to anticipate periodic

movement trajectories in a prey-predator situation. Steer-
ing methods [31] can anticipate a motion according to
a given desired speed and/or a target to be reached. How-
ever, these techniques consider the virtual human as a sim-
ple 3D model composed of six degrees of freedom, instead
of a complete articulated system.

To conclude this survey, we summarize the main draw-
backs of the previous methods:

� Constraint detection methods are unreliable in an on-
line context.

� Constraint enforcement methods do not consider the
re-positioning of the foot.

� Anticipation methods based on a real-time locomotion
engine do not provide future body postures.

Therefore, our method aims to provide a complete on-
line system for character animation: motion generation,
adaptive constraints detection and finally smooth con-
straint re-positioning and enforcement. In order to achieve
this goal, we introduce the notion of motion anticipation in
the next section.

3 Motion anticipation

We define the term of motion anticipation as the ability
to generate future motion postures. In the case of off-line
animation processes, these postures are directly dispos-
able. The particular case of on-line motion generation is
much more complicated. In point of fact, traditional an-
imation methods [29, 32] compute the postures frame by
frame, according to an elapsed ∆t time between two an-
imation updates. To anticipate postures, it is necessary to
have a method that is efficient enough not to alter the real-
time motion generation process, in terms of update rate. In
addition, the anticipation has to take into account possible
parameter variations, such as changes in the locomotion
speed.

To address on-line anticipation, we base our approach
on the motion modeling method presented in [12], which
generates a motion as a whole locomotion cycle as op-
posed to the standard frame by frame approach. By apply-
ing a PCA algorithm on a motion capture database, hier-
archical PCA spaces have been constructed. As this PCA
algorithm considers eigencycles and not eigenframes, an
entire time-normalized walking or running cycle is com-
puted at once, according to given motion parameters. This
method is very efficient and takes only 0.3 ms to compute
a 25 frame cycle. Note that original motions have been
captured on a treadmill.

3.1 Current posture computation

A motion may be represented as a continuous function of
time

M(t) = (pr(t), qr(t), q1(t), . . . , qn(t)), (1)

198 P. Glardon et al.

where pr(t) and qr(t) represent the global position and
orientation of the root node, and qi(t), for i > 0, the local
transformation of the i-th joint.

To compute M(t) at a given time t = ti (i.e. a pos-
ture), we need to generate a locomotion cycle L first, de-
termined by a parameter vector w whose elements each
describe a motion characteristic (e.g. speed, type of loco-
motion, personification). This cycle is regularly sampled
into frames Fi = L(ϕi) on a normalized time ϕ = 0 . . .1
referred to as the locomotion phase. A locomotion cycle
can be written as

L(w) = (F0, . . . , Fm) (2)

and its corresponding continuous function as

L(w, ϕ) = (p̂r(ϕ), q̂r(ϕ), q1(ϕ), . . . , qn(ϕ)). (3)

We bear in mind that p̂r(ϕ) and q̂r(ϕ) contain only the
translation and orientation of treadmill locomotion.

Then, the current time ti has to be dynamically
wrapped into the normalized time, by updating the loco-
motion phase from ϕi−1 to ϕi . Actually, to the elapsed
time ∆t = ti − ti−1 corresponds a ∆ϕ computed by a fre-
quency function described in [12]. Hence the new locomo-
tion phase is

ϕi = ϕi−1 +∆ϕ (mod 1) (4)

and is multiplied by the total frame number of a cycle so as
to obtain the frame index i , and so, the unwrapped frame
Fi of L(w, ϕ).

Finally, M(ti) has to be constructed in the global co-
ordinate system because the root node of a cycle L is
expressed in a local coordinate system aligned to the body.
In addition, this node contains only local translation and
orientation oscillations of the motion, as the original cy-
cles of the motion model are performed on a treadmill.
Therefore, according to the two current motion param-
eters, linear velocity v and angular speed ω, pr(ti) and
q0(ti) of M(ti) are modified with respect to the elapsed
time ∆t = ti − ti−1:

pr(ti) = pr(ti−1)− p̂r(ϕi−1)+ p̂r(ϕi)+v∆t,

qr(ti) = qr(ti−1)× q̂r(ϕi−1)
−1 × q̂r(ϕi)×Rot(ω∆t),

(5)

where Rot(α) defines the rotation of the yaw angle α.

3.2 Anticipated posture computation

To anticipate the motion, our method generates not only
M(ti), but also any future posture M(ti +∆T), with ∆T �
∆t, in real-time and at any point in time ti . Figure 2 illus-
trates the anticipation of 13 postures, with a constant ∆T
between each posture. The yellow bodies on the far left
in the images represent the current postures, whereas the

Fig. 2. Motion patterns with anticipation. The yellow posture (far
left) represents the current frame, while the others (from yellow
to red, towards the right) are anticipated postures. Left: invariant
motion parameters. Right: variation of the speed parameter

others are anticipated. To explain the posture computation,
we consider two contexts: one where the parameter vector
w does not vary (Fig. 2, left), and one where it continu-
ously varies (Fig. 2, right).

We imagine the creation of a buffer containing n an-
ticipated postures, with a constant ∆T between postures.
For the first context (we assume that the angular speed
is null), the j-th posture M(ti + j∆T), for j = 1 . . . n, is
computed analogously to M(ti). As L(w) contains all the
cycle frames, only the root node has to be updated accord-
ing to Eq. 5 where ∆t := j∆T .

The second context considers a continuous variation of
w. Let wj be the parameter vector at time tj = ti + j∆T .
Hence, the computation of the j-th posture at time tj in-
volves the generation of a new motion pattern L(wj). We
refer to the set of all these n new patterns as composite cy-
cles. Then, the root node of each M(tj) is sequentially up-
dated, starting from j = 1 until j = n, to take into account
the continuous parameter variation. Equation 6 described
one update step, where ∆T = tj − tj−1.

pr(tj) = pr(tj−1)− p̂r(ϕj−1)+ p̂r(ϕj)+d(∆T)

qr(tj) = qr(tj−1)× q̂r(ϕj−1)
−1 ×

q̂r(ϕj)×Rot
(

ωj +ωj−1

2
∆T

)

, (6)

where ωj is the angular speed at time tj .
The function d(∆T) approximates the translation com-

ponent of a curved trajectory. Assuming that ∆T is small
enough to consider the parameter variation between tj−1
and tj as linear, the translation approximation can be writ-
ten as

d(∆T) =

⎛

⎜

⎜

⎝

sin
(

αj−1 + ωj+ωj−1
2 ∆T

) ‖vj‖+‖vj−1‖
2 ∆T

0

cos
(

αj−1 + ωj+ωj−1
2 ∆T

) ‖vj‖+‖vj−1‖
2 ∆T

⎞

⎟

⎟

⎠

(7)

Robust On-line Adaptive Footplant Detection and Enforcement 199

Fig. 3. The original root trajectory (green curve) approximated by
the function d(∆T), illustrated by the red line, for a given ∆T =
tj − tj−1

where vj and αj are the linear velocity and the yaw angle
at time tj , respectively. In our coordinate system, a null
yaw angle coincides with a locomotion direction along the
Z-axis. Figure 3 illustrates the approximated root transla-
tion (the red line) of an original curved motion (the green
curve).

In practice, the anticipation of the local orientation of
a given joint is not sufficient. We also need to know its
position in the global coordinate system, in particular for
foot joints in order to compute their Euclidian distance to
the floor. With this aim in mind, the human body hierar-
chy has to be traversed, starting from the root node until
the desired node, by multiplying every local node orienta-
tion. This operation is expensive, and it severely limits the
number of anticipated frames given a continuous varying
real-time animation context.

In short, given a future parameter variation (e.g. char-
acterized by a set of parameter values to be reached within
a desired period of time), the proposed method is able to
anticipate postures and the Cartesian location of body seg-
ments in a global coordinate system. This material is used
for footplant detection and enforcement, as explained in
the next two sections.

4 Footplant detection

A virtual human’s activity can be segmented into many
different constraint types, allowing a formal description of
its motion. One of the most important constraint types is
the footplant, defined as a period of time during which
a foot or part thereof (e.g. ankle, toe) remains in a fixed
position with respect to the ground. In this paper, a foot-
plant considers two joints: the ankle (or heel) and the
metatarsal (or toe) joints, according to the standard H-
ANIM [16] skeleton. The knowledge of constraint infor-
mation is crucial in many situations. For example, it al-
lows us to structurally align motions [29, 32], to determine

the transition period between two motions [13] or to cor-
rect artifacts such as footskate [20]. A footplant has to be
detected with methods that have to return precise results.
Actually, a too short footplant duration would not totally
correct the foot sliding. Conversely, a too long duration
would stretch the leg when reaching the joint limits, result-
ing in motion discontinuities.

4.1 Thresholds on Cartesian position and speed

The problem of footplant detection can be solved by using
a standard method based on the current vertical position
(or height) and translation speed of the foot, as described
in [23, 27]. At each animation frame, foot constraints are

Fig. 4. Problem of threshold values for footplant detection on noisy
data: the correct footplant start frame (circle) and end frame (cross).
Top: the vertical trajectory of the foot. Bottom: the speed curve of
the foot

200 P. Glardon et al.

checked. The foot is considered to be in contact with the
ground when its position and linear speed are lower than
specific thresholds.

However, this approach is not reliable for noisy or
badly calibrated motion capture data. Figure 4 illustrates
the vertical position and speed values of a foot in function
of time, for noisy data. Here, the determination of a pos-
ition threshold εp is difficult. If the threshold value is too
small (see threshold A in Fig. 4, left), the footplant is too
short. By increasing the value, the footplant may be split
into several pieces (see threshold B), or may be too long
(see threshold C). This footplant splitting problem exists
for the setting of the speed threshold εs as well (Fig. 4,
right).

To tackle this problem, the computed joint position
at frame i may be replaced by an average of the n +1
positions from frame i − n

2 to frame i + n
2 , using our antici-

pation method for future frames. In this way, the influence
of peaks in noisy data is reduced. However, the difficulty
remains to determine an appropriate n value. Our experi-
ments have shown that this method fails to detect short
footplant duration when increasing n.

In addition to the footplant splitting problem, the εp
and εs thresholds are dependent on the input motions,
due to their quality or their characteristics. During a sin-
gle motion capture sequence, the quality may change, for
example when one or more foot markers have been clum-
sily moved by the performer. Hence, the reference floor
level moves up or down, entailing the need to modify εp.
Different motion characteristics also result in adapting the
εs threshold. For instance, Fig. 5 depicts the ankle speed
over time, for a fast running and a slow walking motion.
If a unique εs is used, the footplant fails at least for one of
both motions. In addition, an appropriate threshold for the
heel is not necessarily valid for the toe.

One solution consists in determining an empiric
threshold function, whose given motion characteristics re-
turn the corresponding εp and εs values. However, this
approach is unpractical due to the significant number of
parameters influencing the thresholds: motion speed, mo-
tion capture quality, performer style, joint type.

4.2 Adaptive positional threshold

We overcome these difficulties by detecting footplants
on locomotion patterns in an on-line manner, using our
motion anticipation technique. Roughly speaking, our
method uses a vertical position (height) threshold only.
This latter is adaptively computed by investigating a spe-
cific fixed set of frames of the input patterns.

By avoiding the use of the speed threshold, we re-
move its problematic setting and we improve the detec-
tion method efficiency. Actually, when the foot position is
under εp, the speed threshold allows us to identify uncon-
strained foot motion above the floor. This typically occurs
during walking patterns, when the constrained foot leaves

Fig. 5. Right ankle linear speed value comparison between a slow
walking (red) and a fast running (blue) motion. The circles indicate
the start and end of the footplant

the floor and goes forward for the next step. Therefore,
in our patterns we aim at defining a period of time during
which we ensure that the foot is fixed to the ground if its
position is under εp.

We make use of the observations performed on time-
normalized walking and running patterns [13]. From them,
we assert that for a given type of locomotion (walk or
run), a foot joint constraint occurs roughly inside a fixed
time interval, regardless of other motion characteristics.
Therefore, our method investigates this time interval, re-
ferred to as the enclosed frames defined from Fb to Fe,
in order to detect the correct constraint, specified between
the frame indexes F ′

s = idx(F ′
b) and F ′

e = idx(F ′
e). The

idx(F) function returns the F frame index of the F given
frame.

Instead of using a fixed threshold value, εp is com-
puted adaptively according to the current L(w) pattern.
From it and for a given foot joint, we attach a set of frames
I = (Fb, . . . , Fe). Then, the global heights hb and he of
this joint are extracted at the respective bounding frames
Fb and Fe. We assume that the mean h of these two values
is related to the pattern properties, namely its locomo-
tion speed and style, in order to determine εp adaptively.
To confirm, we compare various h values computed for
the right heel and left toe, at different locomotion speeds
and for five subject capture styles. Figure 6 illustrates the
results for walking patterns and Fig. 7 for running ones,
where each cell contains the corresponding mean height,
in meters.

From these pictures, we infer that h is dependent on
pattern parameters and, therefore, that the adaptive εp is
a function of h. Clearly, the εp threshold has to be greater
than the min minimal vertical position on I, but smaller

Robust On-line Adaptive Footplant Detection and Enforcement 201

Fig. 6. Joint’s mean height for bounding frames Fb and Fe for
walking patterns at various speeds. Left: right heel comparison.
Right: left toe comparison

Fig. 7. Joint’s mean height for bounding frames Fb and Fe for run-
ning patterns at various speeds. Left: right heel comparison. Right:
left toe comparison

than h, as described in Eq. 8. We introduce the δ constant
defined in [0 . . .1], characterizing the correctness of the
default bounding frames Fb and Fe. As an example, by
setting δ close to 1, it means that Fb and F ′

b are close to
each other. Figure 8 schematizes the method parameters.

εp = min +δ(h −min). (8)

In practice, the start frame index F ′
b of a footplant for

a given joint is detected as follows. We start by compar-
ing the joint’s vertical position at frame Fb (left circle on
the curves in Fig. 9) with εp (dashed lines in Fig. 9) com-
puted in Eq. 8. If the position at frame Fb is already below

Fig. 8. Schematic representation of the constraint detection method
parameters

Fig. 9. Examples of our motion data for the right ankle vertical pos-
ition. The circles indicate the bounding frames. Top: different speed
values for walking. Bottom: different speed values for running

the threshold (e.g. the curve representing a 4.5[m/s] run
on Fig. 9, bottom), idx(Fb) is assigned to F ′

b. Otherwise,
as long as position is above the threshold, the compari-
son is reported to the next frame. When the comparison is
stopped, the current frame index is assign to F ′

b. Analo-
gously, F ′

e is determined by starting at frame Fe, and the
threshold comparison is reported to the previous frame as
long as the current frame value stays above the thresh-
old. In this way, our method ensures that a footplant never
splits off into small pieces.

4.3 On-line detection

At first sight, this detection method seems inappropriate
for an on-line context. The movement needs to be known

202 P. Glardon et al.

in advance to obtain hb and he, in order to determine the
threshold. Thanks to the anticipation, each frame Fi of
the L(w) cycle can be used at any time. Therefore, when
a new L(w) is generated, the detection method is applied
on the four joints describing both feet, providing a start
and end frame index per constraint in the time-normalized
pattern.

5 Footplant enforcement

We address the problem of re-positioning and enforcing
a footplant by using the numerical IK algorithm incorpo-
rating the priorities presented in [1]. This method ensures
that at least the high priority end-effector goal is achieved
at best before considering lower priority constraints.

5.1 Inverse kinematics model

We attach two positional end-effectors on each foot, one
for the heel and the other for the toe. In order to limit
the computation time of the IK algorithm, we simplify the
IK configuration by defining two independent IK chains,
one for each leg. A chain contains six DOF’s, from the hip
joint to the toe joint.

Basically our footplant enforcement method works as
follows. In an unconstrained state, the effector attached to
a foot joint is driven by the locomotion pattern. As soon
as its corresponding constraint has to be applied, the ef-
fector goal is re-positioned on the floor and remains fixed
during the whole constraint duration. To ensure motion
continuity, the effector trajectory is smoothed around the
constraint, by defining ease-in and ease-out phases. We
therefore apply the displacement map technique [5, 42] by
describing a displacement map d(t) in order for the cor-
rected motion Mcor(t) = M(t)⊕d(t) to satisfy the detected
footplants.

Let C be a constraint defining a position goal Cp for
the effector E, active from t1 to t2. The desired effector
trajectory E(t) is built from its original trajectory E0(t) as:

E(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

E0(t)+ (

1−Γ
(t−t1+σ

σ

)) (

Cp − E0(t1)
)

for t1 −σ � t < t1
Cp

for t1 � t � t2
E0(t)+Γ

(t−t2
σ

) (

Cp − E0(t2)
)

for t2 < t � t2 +σ

E0(t)
otherwise

, (9)

where σ is the ease-in and ease-out duration. The Γ func-
tion is the descending cubic step function, described in
Eq. 10 and plotted in Fig. 10,

Γ(t) = 2t3 −3t2 +1 for 0� t � 1. (10)

Fig. 10. The descending cubic step function used for the ease-in/out
phases

Similarly to Lee et al. [24], we consider a motion as
a set of independent character postures. At each time t =
ti , the original posture M(ti) is modified by applying IK
with end-effector trajectories defined in Eq. 9. Figure 11
illustrates the original and corrected vertical trajectories
of the two effectors attached to the right foot. In addition,
we choose to set highest priorities on the ankle’s effectors:
their constraints occur first and have significant visual im-
pact. The IK solver therefore ensures that, at least, the
ankle constraint is enforced, before trying to enforce the
toe constraint. This effect is visible in Fig. 11 (right), as
the corrected toe position trajectory goes down just after
the release of its constraint. At this instant, the IK algo-
rithm is not able to compute a solution ensuring a correct
position for both effectors, due to an important foot sliding
observed in the too noisy input data. However, the position
error is under 0.01 m.

5.2 Ease-in with anticipation

The end-effector trajectories are constructed in order to
ensure smooth motion generation around the constraint.
Examining Eq. 9, one can observe that while performing
the ease-in phase, the original position of the effector E0
at (the future) time t1 is required.

Thanks to the anticipation, this position and its corres-
ponding constrained position Cp are computed as follows.
At the beginning of the ease-in phase, namely at time t1 −
σ , the anticipated posture M(t1) is computed to extract
E0(t1). This position, which corresponds to the original
one of its attached foot joint, is re-positioned to be on
the ground and stored in Cp. Figure 12 illustrates the cur-
rent posture (yellow) at time t −σ and the anticipated one
(green) at time t1 for each effector.

5.3 Ease-in activation

Before enforcing a footplant, we have to know its starting
time t1 in order to activate its ease-in process at time t1 −
σ . This step is performed using our footplant detection
method, applied differently according to three scenar-

Robust On-line Adaptive Footplant Detection and Enforcement 203

Fig. 11. Original E0(t) and corrected E(t) vertical effector trajecto-
ries for the right foot.Top: effector attached to the ankle. Bottom:
effector attached to the toe

ios: constant motion parameter, planned motion parameter
variation and modification of a planned motion parameter
variation.

5.3.1 Constant motion parameter

In this first case, the motion parameter vector w is con-
stant over time. At the initialization stage, triggered at
time ti (when w is set), a new cycle L(w) is computed
and footplants are detected with our method. To systemat-
ically check if there is already a footplant to activate, the
[ti . . . ti +σ] time interval is regularly sampled into n∆t
intervals. For each j-th interval, the time ti + j∆t is used
to compute its corresponding locomotion phase ϕj . This
value is multiplied by the L(w) frame number to obtain

Fig. 12. The start of an ease-in phase for each effector. Current (yel-
low) and anticipated postures (green) are computed. From left to
right and top to bottom: Effectors are attached to: right ankle, right
metatarsal, left ankle and left metatarsal

the corresponding idx(Fj) frame index in the normalized
time. If this frame index is more than or equal to the F ′

b
of a foot joint, a constraint occurs at time ti + j∆t. As
ti + j∆t < σ , the ease-in phase is immediately activated.
After this initialization, at any t time, the future t +σ time
is transformed into the normalized time to detect whether
a constraint needs to be activated.

5.3.2 Planned motion parameter variation

In this case, a new w′ has to be reached within a given du-
ration ∆m, involving a linear change of w′ over time. We
therefore assign a w′

j parameter vector to each future time
ti + j∆t, for which a new L(w′

j) locomotion pattern is
generated and footplants are detected. Then, analogously
to the previous case, the corresponding idx(Fi) frame in-
dex for time ti + j∆t is extracted and compared to F ′

b. In

204 P. Glardon et al.

practice, these operations are too expensive for real-time.
Hence, frame indexes F ′

b and F ′
e are pre-computed by

applying the detection method on motions with various
parameter vectors (7 and 11 different normalized speed
values for walking and running patterns, respectively).
Theses frame indexes are then used to determine the ones
of L(w′

i) by applying linear interpolation. Our results
confirm the pertinence of this approach as can be seen in
Sect. 6.

5.3.3 Modification of a planned motion parameter varia-
tion

This last case handles the situation in which a planned
variation is interrupted by a new one at time t′. For each
future ti + j∆t time, a new locomotion pattern is com-
puted and footplants are detected, similarly to the previous
case. However, if an effector is in an ease-in phase when
the variation is interrupted, its trajectory has to be care-
fully modified, as its goal position Cp and time t1 have
changed, due to the new motion parameter configuration.
Figure 13 illustrates this modification schematically. First,
the effector trajectory E0(t), depicted by the blue line, is
continuously modified to reach the Cp constraint. This cre-
ates a new trajectory E(t), depicted by the dashed blue
line. Due to the motion parameter changes at a time t′
during the ease-in phase, a new E ′

0(t) original effector tra-
jectory is provided (green curve). We therefore have to
modify E(t) in order to reach the new goal position C′

p at
a new time t′1. We modify Eq. 9 in order for the effector
trajectory, modified from E ′

0(t) to remain smooth. There-
fore, from time t′ the effector trajectory, depicted by the
red dashed line, is updated as follows:

E(t) = E ′
0(t)+

(

1−Γ

(

t − t′

t′1 − t′

))

(

E ′
0(t

′)− E(t′)
)+

Γ

(

t − t′
t′1 − t′

)

(

C′
p − E ′

0(t
′
1)

)

. (11)

Fig. 13. Step variation during the ease-in phase. The blue and the
green curves correspond to the original effector trajectories, the
dashed blue and red curves to the modified ones

Figure 14 illustrates the smoothness of the modified
effector trajectories. The animation is generated first by
continuously increasing the walking speed. This process is
then interrupted by another parameter variation, consisting
in a transition to a running motion.

6 Experimental results

First we describe the different components of our system
prior to presenting some on-line application examples.

Fig. 14. Original E0(t) and corrected E(t) vertical effector trajec-
tories for the right foot. The animation first describes a walk that
continuously speeds up before being interrupted by a continuous
transition to a run. Top: effector attached to the ankle. Bottom:
effector attached to the toe

Robust On-line Adaptive Footplant Detection and Enforcement 205

6.1 Putting it all together

For our experiments, we used a motion capture database
composed of 180 walking and 140 straight line run-
ning cycles, differing in performer styles and locomotion
speeds. A locomotion cycle is generated in 0.3 ms on a
2.2 CPU GHz machine, and is composed of 25 frames,
animating an H-ANIM body with 60 DOF’s. To speed
up the motion anticipation computation, only lower body
postures are computed. All the 25 posture configurations,
including the joint global positions, are calculated within
1.3 ms.

Then enclosed frame set I has to be determined, for
walking and running cycles, and for each joint needing
floor contact detection. We use the values summarized in
Table 1. These frames’ indexes define the interval in which
the constraint detection algorithm is performed. In our ex-
periments, δ is equal to 0.4, and the exact starting and
ending constrained index frames F ′

b and F ′
e for all joints,

are computed in less than 0.05 ms.
After detecting the constraint relative to an effector, the

method continuously checks whether a constraint has to be
enforced in the near future, in order to activate the ease-
in phase. The computation time for footplant enforcement
depends on the number of joints whose trajectory is modi-
fied by the IK algorithm. On average, 1.8 ms are necessary
to smoothly enforce the two footplants, representing four
constraints.

Finally, we have tested our method with a continuous
motion parameters variation and we obtained a maximal
computational cost of 4.7 ms per frame. This is the most
expensive case, as it entails pattern computation for each
future time ti + j∆t.

6.2 Foot sliding correction

The first experiment consists in cleaning up the foot slid-
ing and penetration into the ground. Our original motion
shows some artifacts, as illustrated at the top of Fig. 15.
This is due to the input motion capture data and the PCA

Table 1. Frame interval for each constrained joint, observed on lo-
comotion cycles of 25 frames

Joint’s idx(Fb) idx(Fe) idx(Fb) idx(Fe)
name (walk) (walk) (run) (run)

Right 1 12 1 7
ankle
Right 3 15 1 9
metatarsal
Left 13 26 (mod 25)12 19
ankle
Left 15 29 (mod 25)13 22
metatarsal

algorithm used to reduce data dimensionality. The foot-
plants are then correctly detected and re-positioned, no
more foot sliding is perceptible and IK does not introduce
discontinuities during the animation.

Fig. 15. Foot sliding clean up. Top: original motion. Bottom: modi-
fied motion

6.3 Stylistic edition

Another application of our methodology is to create small
stylistic variations of the generated motion, by modifying
the location of one (or more) end-effector during its con-
straint. In our example, the right toe constrained position
is displaced, as depicted in Fig. 16, to produce a pigeon-
toed effect. At the beginning of the ease-in phase, we
modify the anticipated toe joint position corresponding to
the start of the constraint. This modification consists in

Fig. 16. Modification of the right toe position produces a right
pigeon-toed walking motion

206 P. Glardon et al.

a rotation, having its center placed at the right ankle joint,
around a perpendicular axis to the ground. The rotation
angle is set in order to direct the toe towards the left ankle.

6.4 Continuous parameter variation

The on-line reactivity to user parameter modification is an
important aspect of our method. At any time, the user or
the AI driving the autonomous agent can define a new mo-
tion parameter set that has to be reached in a given period
of time. The smooth parameter evolution is performed by
a controller. In our implementation, we control the param-
eter evolution linearly. Imagine a slow walking pattern. By
setting a higher speed value and changing the locomotion
from walk to run, the motion will simultaneously accel-
erate and start to run (see Fig. 17). Therefore, the motion

Fig. 17. Continuous parameter variation, from a walk at 0.8 m/s to a run at 1.9 m/s (parameter variation within 3 s)

Fig. 18. Walking to running with angular speed variation. The red body in the zoomed frames corresponds to the original motion

is continuously modified while guaranteeing that the foot-
plants detection and enforcement are still coherent with
the corresponding parameter values.

6.5 Curved path

In the last experiment, our straight-line locomotion cy-
cles are adapted so as to produce a curved path, illus-
trated in Fig. 18. The motions’ angular speed is continu-
ously changed and, therefore, modifies the yaw angle of
the root node. Thanks to our method, the foot remains
fixed to the floor during the constraint, while the root
rotates. When the constraint is relaxed, the ankle first
smoothly reaches its original trajectory. The toe is fixed to
the ground a little longer, allowing it to rotate around its
position.

Robust On-line Adaptive Footplant Detection and Enforcement 207

7 Conclusion and discussion

To correct a keyframed animation, an animator has to
detect footplants manually by labeling the constrained
frames. Then the enforcement of these constraints is per-
formed using methods either based on numerical or ana-
lytical inverse kinematics. In this paper, we improve this
process by presenting an on-line animation system based
on the generation of anticipated postures to detect, re-
position and apply footplants.

The detection algorithm is robust because it considers
the properties of the motion (e.g. speed, type of locomo-
tion, human size) from which the foot constraints have to
be extracted on-line. For a given motion, we define adap-
tively only one vertical position threshold value for each
joint describing a foot. The threshold intrinsic normaliza-
tion allows the method to work for any human size. A nu-
merical IK solver with priorities is applied to re-position
and enforce a footplant, described by two end-effectors.
The priorities set on these end-effectors ensure that at least
one goal position is exactly reached. Our method main-
tains smooth end-effector trajectories by anticipating pos-
tures at a constraint.

The generated motion continuity has also been eval-
uated. We can modify the goal position for a given foot-
plant, allowing the introduction of some smooth stylistic
variations in the original motion. We also modify the root
vertical orientation to perform curved motion, leading to
very satisfying results. The coherence of the method is
ensured, as the motion parameters vary continuously. Fi-
nally, the method is not computationally expensive, be-
cause even in the worst situation, where parameters have
to be updated at each time step, a frame update is per-
formed in less than 5 ms.

A limitation of our method concerns the IK method,
which is per-frame based. Theoretically, discontinuities
may occur, as the current modified frame is computed
relative to the original one. Therefore, it could happen that
the IK solver finds very different resulting postures for two
original consecutive frames, leading to discontinuities be-
tween the modified frames. In practice, we never observed
motion discontinuities during our experiments. An alter-
nate approach would be to compute the current modified
frame by applying IK to the previously modified one.

In our example, the curved motion generation may pro-
duce important end-effector position modifications in the
case of important angular speed with low linear speed. In
such an extreme situation the constraint duration of the
foot on the outer curve could be reduced.

In the future, we plan to apply this method to other mo-
tion pattern classes, such as jumping or tiptoeing dance
motions. In such a context, the footplant detection method
has to be improved, as the enclosing frame interval is more
difficult to establish. In addition, the order of the foot con-
straints may be inverted, i.e. by constraining the toe before
the ankle. In this case, our IK method would simply ex-
change the priorities on the corresponding effectors.

Finally, we believe that the introduced method of mo-
tion anticipation is a promising starting point for smoothly
avoiding potential collisions with nearby obstacles. In-
deed, we can benefit from the possibility of predicting
postures to check their proximity to other key elements in
the environment in addition to the floor.

Acknowledgement The authors would like to thank Benoı̂t Le Cal-
lennec for Maya support and IK help, as well as Helena Grillon for
careful proofreading.

The present research and the IK library used for the posture
correction were funded by the Swiss National Science Foundation.
The Maya licenses have been granted by Alias through their re-
search donation program.

References
1. Baerlocher, P., Boulic, R.: An inverse

kinematic architecture enforcing an
arbitrary number of strict priority levels.
Visual. Comput. 20(6), 402–417 (2004)

2. Bindiganavale, R., Badler, N.: Motion
abstraction and mapping with spatial
constraints. Lecture Notes in Computer
Science, Vol. 1537, pp. 70–83 (1998)

3. Boulic, R., Ulciny, B., Thalmann, D.:
Versatile walk engine. J of Game
Development 1(1), 29–50 (2004)

4. Bruderlin, A., Calvert, T.:
Knowledge-driven, interactive animation of
human running. In: Graphics Interface ’96,
pp. 213–221, Canadian Information
Processing Society. Toronto, Ontario,
Canada (1996)

5. Bruderlin, A., Williams, L.: Motion signal
processing. In: Proceedings of ACM
SIGGRAPH, Annual Conference Series,
pp. 97–104 (1995)

6. Butz, M., Sigaud, O., Gerard, P.:
Anticipatory Behavior in Adaptive
Learning Systems. Springer, Berlin
Heidelberg New York (2003)

7. Choi, K., Ko, H.: Online motion
retargetting. J. Visual. Comput. Anim. 11,
223–235 (2000)

8. Choi, M., Lee, J., Shin, S.: Planning biped
locomotion using motion capture data and
probabilistic roadmaps. ACM Trans. Graph.
(2003)

9. Chung, S., Hahn, J.: Animation of human
walking in virtual environments. In:
Proceedings of Computer Animation,
Geneva, IEEE Computer Society
(1999)

10. Conde, T., Thalmann, D.: An artificial life
environment for autonomous virtual agents
with multi-sensorial and multi-perceptives
features. Comput. Anim. Virtual World 15,
311–318 (2004)

11. Girard, M.: Interactive design of 3-D
computer-animated legged animal motion.
In: Proceedings of ACM Symposium on
Interactive 3D Graphics, pp. 131–150
(1987)

12. Glardon, P., Boulic, R., Thalmann, D.:
A coherent locomotion engine
extrapolating beyond experimental data.
In: Proceedings of Computer Animation
and Social Agent, pp. 73–83, Geneva
(2004)

13. Glardon, P., Boulic, R., Thalmann, D.:
On-line adapted transition between
locomotion and jump. In: Proceedings
of Computer Graphics International,
pp. 44–49, IEEE Computer Society
(2005)

14. Gleicher, M.: Motion editing with
spacetime constraints. In: Proceedings of
ACM Symposium on Interactive 3D
Graphics, pp. 139–148 (1997)

208 P. Glardon et al.

15. Gleicher, M.: Comparing constraint-based
motion editing methods. Graphical Models
63(2), 107–134 (2001)

16. H-ANIM: Humanoid animation working
group. www.hanim.org (2005)

17. Hreljac, A., Marshall, R.: Algorithms to
determine event timing during normal
walking using kinematic data. J. Biomech.
33(6), 783–786 (2000)

18. Ko, H., Badler, N.: Animating human
locomotion with inverse dynamics. IEEE
Comput. Graph. Applic. 16(2), 50–58
(1996)

19. Kovar, L., Gleicher, M.: Flexible automatic
motion blending with registration curves.
In: Proceedings of ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 214–224 (2003)

20. Kovar, L., Schreiner, J., Gleicher, M.:
Footskate cleanup for motion capture
editing. In: Proceedings of ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 97–104 (2002)

21. Labbé, V., Sigaud, O., Codognet, P.:
Anticipation of periodic movements in real
time 3D environments. In: Proceedings of
ABiALS Workshop, Los Angeles (2004)

22. Le Callennec, B., Boulic, R.: Interactive
motion deformation with prioritized
constraints. In: Proceedings of ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation (2004)

23. Lee, J., Chai, J., Reitsma, P., Hodgins, J.,
Pollard, N.: Interactive control of avatars
animated with human motion data. In:
Proceedings of ACM SIGGRAPH, Annual
Conference Series (2002)

24. Lee, J., Shin, S.: A hierarchical approach to
interactive motion editing for human-like
figures. In: Proceedings of ACM
SIGGRAPH, Annual Conference Series,
pp. 39–48 (1999)

25. Liu, K., Popović, Z.: Synthesis of complex
dynamic character motion from simple

animations. In: Proceedings of ACM
SIGGRAPH, Annual Conference Series,
pp. 408–416 (2002)

26. Maya R©: Alias systems corp.
www.alias.com (2005)

27. Menardais, S., Kulpa, R., Arnaldi, B.:
Synchronisation for dynamic blending of
motions. In: Proceedings of ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation (2004)

28. Multon, F., France, L., Cani-Gascuel, M.,
Debunne, G.: Computer animation of
human walking: a survey. J. Visual.
Comput. Anim. 10(1), 39–54 (1999)

29. Park, S., Shin, H., Shin, S.: On-line
locomotion generation based on motion
blending. In: Proceedings of ACM
SIGGRAPH/Eurographics Symposium on
Computer Animation (2002)

30. Popović, Z., Witkin, A.: Physically based
motion transformation. In: Proceedings of
ACM SIGGRAPH, Annual Conference
Series, pp. 11–20 (1999)

31. Reynolds, C.: Steering behaviors For
autonomous characters. In: Proceedings of
Game Developers Conference, pp. 763–782
(1999)

32. Rose, C., Cohen, M., Bodenheimer, B.:
Verbs and adverbs: Multidimensional
motion interpolation. IEEE Comput. Graph.
Applic. 18(5), 32–41 (1998)

33. Rose, C., Sloan, P., Cohen, M.:
Artist-directed inverse-kinematics using
radial basis function interpolation. In:
Proceedings of Eurographics, vol. 20(3)
(2001)

34. Safonova, A., Hodgins, J., Pollard, N.:
Synthesizing physically realistic human
motion in low-dimensional,
behavior-specific spaces. In: Proceedings of
ACM SIGGRAPH, Annual Conference
Series (2004)

35. Salvati, M., Le Callennec, B., Boulic, R.:
A generic method for geometric contraints

detection. In: Proceedings of Eurographics,
short presentation (2004)

36. Shin, H., Kovar, L., Gleicher, M.: Physical
touch-up of human motions. In:
Proceedings of Pacific Graphics, pp.
194–203, IEEE Computer Society (2003)

37. Shin, H., Lee, J., Shin, S., Gleicher, M.:
Computer puppetry: an importance-based
approach. ACM Trans. Graph. 20(2), 67–94
(2001)

38. Sun, H., Metaxas, D.: Automating Gait
Generation. In: Proceedings of ACM
SIGGRAPH, Annual Conference Series
(2001)

39. Unuma, M., Anjyo, K., Takeuchi, R.:
Fourier principles for emotion-based human
figure. In: Proceedings of ACM
SIGGRAPH, Annual Conference Series,
pp. 91–96 (1995)

40. van de Panne, M.: From footprints to
animation. Comput. Graph. Forum 16(4),
211–223 (1997)

41. Veloso, M., Stone, P., Bowling, M.:
Anticipation: a key for collaboration in
a team of agents. In: Proceedings of
Conference on Autonomous Agents (1998)

42. Witkin, A., Popović, Z.: Motion warping.
In: Proceedings of ACM SIGGRAPH,
Annual Conference Series, pp. 105–108
(1995)

43. Wooten, W., Hodgins, J.: Simulating
leaping, tumbling, landing and balancing
humans. In: Proceedings of IEEE
International Conference on Robotics and
Automation (2000)

44. Yamane, K., Nakamura, Y.: Natural motion
animation through constraining and
deconstraining at will. IEEE Trans. Visual.
Comput. Graph. 9(3), 352–360 (2003)

Robust On-line Adaptive Footplant Detection and Enforcement 209

PASCAL GLARDON is a research assistant and
pursuing a PhD in the Virtual Reality Laboratory
at the Swiss Federal Institute of Technology
(EPFL). His research interests include the gen-
eration and the control of virtual character
animations, as well as their interaction with
virtual environments. He received his Master’s
degree in Computer Science in 2000 at the
Swiss Federal Institute of Technology, Zurich
(ETHZ). In 2001 he worked as a software en-
gineer at a company specialized in security
document printing.

RONAN BOULIC is a Senior Researcher, Lec-
turer and PhD Director at the Swiss Federal
Institute of Technology, Lausanne (EPFL). He
is working in the Virtual Reality Lab and his
research interests include realistic motion syn-
thesis for virtual humans and robot. He received
his PhD degree in Computer Science in 1986
from the University of Rennes, France, at the
INRIA-IRISA Research Institute. He received
his Habilitation degree from the University of
Grenoble, France, in March 1995. Ronan Boulic
is co-author of 83 research papers, among
which 21 have appeared in international peer-
reviewed journals. He served as paper chair of
the 2004 SIGGRAPH-Eurographics Sympo-
sium on Computer Animation. He is a senior
member of IEEE and a member of ACM and
Eurographics.

DANIEL THALMANN is Professor and Director
of The Virtual Reality Lab (VRlab) at EPFL,
Switzerland. He is a pioneer in research on
virtual humans. His current research interests
include real-time virtual humans in virtual
reality, networked virtual environments,
artificial life, and multimedia. Daniel Thal-
mann has been Professor at The University of
Montreal and Visiting Professor/Researcher
at CERN, University of Nebraska, University
of Tokyo, and Institute of System Science in
Singapore.
He is coeditor-in-chief of Computer Animation
and Virtual Worlds (formerly Journal of
Visualization and Computer Animation), and
member of the editorial board of the Visual
Computer and four other journals.
Daniel Thalmann has been member of
numerous program committees, the program
chair of several conferences and chair of the
Computer Graphics International ’93, Pacific
Graphics ’95, ACM VRST ’97, and MMM ’98
conferences. He was program cochair of IEEE
VR 2000. He has also organized five courses
at SIGGRAPH on human animation and crowd
simulation.
Daniel Thalmann has published more than
400 papers on graphics, animation, and virtual
reality. He is coeditor of 30 books included
the recent “Handbook of Virtual Humans”,
published by John Wiley and Sons and
coauthor of several books. He was also codi-
rector of several computer-generated films with
synthetic actors, including a synthetic Marilyn
shown on numerous TV channels all over the
world.
He received his PhD in Computer Science in
1977 from the University of Geneva and an
Honorary Doctorate (Honoris Causa) from the
University Paul-Sabatier in Toulouse, France,
in 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

