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Abstract A vulnerability-based approach for delineating
groundwater protection zones around springs in fractured
media has been developed to implement Swiss water-
protection regulations. It takes into consideration the
diversity of hydrogeological conditions observed in
fractured aquifers and provides individual solutions for
each type of setting. A decision process allows for
selecting one of three methods, depending on the spring
vulnerability and the heterogeneity of the aquifer. At the
first stage, an evaluation of spring vulnerability is
required, which is essentially based on spring hydrographs
and groundwater quality monitoring. In case of a low
vulnerability of the spring, a simplified method using a

fixed radius approach (“distance method”) is applied. For
vulnerable springs, additional investigations must be
completed during a second stage to better characterize
the aquifer properties, especially in terms of heterogeneity.
This second stage includes a detailed hydrogeological
survey and tracer testing. If the aquifer is assessed as
slightly heterogeneous, the delineation of protection zones
is performed using a calculated radius approach based on
tracer test results (“isochrone method”). If the heteroge-
neity is high, a groundwater vulnerability mapping
method is applied (“DISCO method”), based on evaluat-
ing discontinuities, protective cover and runoff parame-
ters. Each method is illustrated by a case study.

Keywords Fractured rocks . Groundwater protection
zones . Springs . VulnerabilityMapping . Switzerland

Introduction

Fractured aquifers represent an essential groundwater
resource for large parts of the world. In Switzerland, where
more than 80% of drinking water is provided by ground-
water, fractured media cover 78% of the land surface and
supply approx. 35% of the exploited groundwater. Other
water-bearing formations are porous, unconsolidated aqui-
fers (6% of the land surface) and karst aquifers (16% of the
land surface), which provide some 45 and 20% of the
exploited groundwater respectively (Tripet 2005).

The delineation of protection zones in fractured
aquifers is a challenging task due to the heterogeneity
and anisotropy of hydraulic conductivities, which makes
prediction of groundwater flow organization and flow
velocities difficult (Berkowitz 2002). Important efforts are
currently being made by researchers in various fields of
hydrogeology to gain better understanding of groundwater
flow in fractured rocks (Krasny et al. 2003), but significant
improvement is still needed in the field of groundwater
protection (Bradbury 2002).

To date, several approaches have been proposed for the
delineation of protection zones in fractured rocks by
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applying basic fixed-radius methods to groundwater flow
models (Bradbury et al. 1991; Lipfert et al. 2004). Although
the application of numerical models may provide the most
accurate results for well-documented sites, insufficient data
often mean that such quantitative approaches are difficult to
apply. Methodologies for delineating groundwater protec-
tion zones must be adapted to different site characteristics
and to the type of data available. A multi-stage approach,
beginning with a general characterization of the hydro-
geological context, which then applies adequate field
techniques and finally selects the most appropriate method
for protection zone dimensioning should be considered in
order to obtain reliable results in any type of setting (Heath
1995; Barton et al. 1999).

The approach presented here sets out to delineate
protection zones for public drinking water supply in
fractured rocks in Switzerland. Groundwater is essentially
extracted from springs linked to shallow aquifers often
located in mountainous regions. They typically provide
moderate to low yields of between 20 and 500 L/min. The
springs are mainly located in areas where pollution
sources are related to cattle pasturing, mountain farming
and tourism, although in some areas, especially in the
Swiss Plateau, pollution hazards related to intensive
farming and industry may also exist. Delineation of
protection zones is required for a large number of water
supplies as each community generally relies on several
springs. It is therefore imperative that the methodology
is affordable in terms of cost and is technically feasible
for private consulting hydrogeologists. To promote the
national harmonization of protection zoning, the approach
must also be verifiable, reproducible and applicable to any

type of fractured aquifer exploited in Switzerland. The
approach presented in this paper is assumed to achieve
these objectives.

Characteristics of fractured aquifers
in Switzerland

Fractured non-karst aquifers exploited in Switzerland are
distributed across the Alps, the Prealps and the Swiss Plateau
(Fig. 1). The variety of sedimentary, igneous and metamor-
phic rocks located in diverse tectonic contexts coincides
with different types of hydrogeological settings (Table 1):

– Weakly fractured sandstones, marls and conglomerates
represent the bedrock of the Swiss Plateau (Plateau
Molasse). The hydraulic conductivity of these deposits
measured on samples and boreholes is low to moderate
(10−7–10−5 m/s) with a maximum of 10−4 m/s in poorly
consolidated coarse sandstone (Keller 1992). Preferen-
tial flow is observed along bedding planes and
fractures. Enhanced hydraulic conductivity is also
linked to the presence of high secondary interstitial
porosity in the uppermost weathered zone, which may
reach a thickness of several metres (Parriaux 1981).
Such aquifers are frequently associated with shallow
water-bearing Quaternary deposits (fluvio-glacial chan-
nels, sandy or gravely moraine deposits), which may
constitute the main storage capacity of these mixed
systems. Although many tracer experiments have been
performed in this type of aquifer for the delineation of
protection zones, little information has been published

Fig. 1 Hydrogeological sketch of Switzerland with location of the three test sites Wysseberg, Sarreyer and Ronco sopra Ascona
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to date. In general, tracer test results imply low mass
recovery and velocities not exceeding a few metres per
day (Wernli and Leibundgut 1993).

– The same rock types located at the southern border of
the Swiss Plateau (Subalpine Molasse) show contrast-
ing hydrogeological properties compared to the Plateau
Molasse. The influence of the Alpine orogenesis
resulted in the exhumation, folding and faulting of
more consolidated rocks, due to diagenetic processes
(Keller 1992). Interstitial porosity is low, while fracture
porosity is globally moderate but may be enhanced by
dissolution of carbonate minerals, especially along
discontinuities, with a resulting enhancement of the
aquifer heterogeneity. In such contexts, flow velocities
of up to several hundreds of metres per day have been
determined by tracer experiments (compiled in Pochon
and Zwahlen 2003). To the south of the Subalpine
Molasse, flysch consisting mainly of sandstones, sandy
limestone and shales show similar hydrogeological
properties, with dominant fracture porosity enhanced
locally by dissolution processes (Basabe-Rodriguez
1982). Slope instabilities and landslides are frequent
in these regions (Lateltin et al. 1997) and groundwater
resources may occur in both displaced fractured rock
mass and Quaternary deposits.

– Igneous and metamorphic rocks represent the backbone
of the central and southern Swiss Alps. In such rock
types, groundwater essentially flows along fractures as
matrix permeability is negligible. Dissolution processes
are not significant and flow organization is predomi-
nantly dependent on fracture networks generated by
tectonics (NRC 1996). Hydraulic conductivities deter-
mined in the Swiss Alps are generally low, for example
between 10−7 and 10−5 m/s according to slug tests
performed in shallow depth boreholes (Beatrizotti
1996; Ofterdinger 2001) and between 10−11 and
10−6 m/s based on methods which take inflows along
gallery sections (Maréchal 1998; Ofterdinger 2001)
into account. However, very permeable zones linked to
intensely fractured zones are observed along tunnels
(Jamier 1975; Dubois 1991), confirming the impor-
tance of heterogeneity and the existence of locally high

flow velocities in such aquifers. In addition, a
decompression zone, linked to post glacial relaxation
and gravity forces, is often described in the Alps
(Cruchet 1985; Maréchal 1998). It accounts for
enhanced fracture aperture and permeability in the first
tens of metres below the surface. Crystalline Alpine
rocks do not exhibit a shallow zone of high porosity
due to chemical weathering as observed in other
climatic regions (Taylor and Howard 1998). This can
be explained by intense glacial ablation processes
across the region which were active until less than
10,000 years ago (Jäckli 1970).

Groundwater protection zoning in Switzerland

Regulations and requirements
According to the Swiss Federal Water Protection Ordinance
(WPO 1998), the strategy in force for the protection of
groundwater quantity and quality is based on prevention.
Groundwater protection zones must be defined in the water
catchment area of each groundwater supply used for public
drinking water. The aim of the protection zones (S1, S2 and
S3) is mainly to protect the drinking water against
contaminants, including pathogenic micro-organisms such
as protozoa, bacteria and viruses. Moreover, a code of
practice regulates all potentially polluting activities or
adverse influences threatening groundwater quality in each
zone (Table 2). In unconsolidated porous media, the
delineation of protection zones is based on groundwater
residence time. The limits of the different zones are
approximately concentric around the groundwater well,
with the degree of land use restriction decreasing with
increasing distance from the source (Fig. 2a). In karst and
fractured media, flow velocities are often highly variable in
time and space. Under these circumstances, the delineation
of protection zones based on the hypothesis of uniform
flow velocities may or may not be justified (Fig. 2b, 2c).
For this reason, the WPO requires the degree of ground-
water vulnerability to be considered as a basic criterion for
the delineation of protection zones in these aquifer types.
Specific methodological approaches and guidelines have

Table 1 Groundwater resources in fractured media: geological and hydrogeological conditions in Switzerland

Lithology Porosity Flow type Geographic
distributionInterstitial Fracture

Sandstones, conglomerates, marls (Plateau
Molasse)a

Low to moderate, primary and
secondary (alteration,
dissolution)

Low Dual porosity
(interstitial
and/or
fractures)

Swiss Plateau,
synclines of
the Jura
Mountains

Sandstones, conglomerates, marls, schists,
siliceous limestones, non-karstic dolomites
(Among others: Subalpine Molasse,
flysch)a

Low to insignificant, mostly
secondary; may be
significant near the ground
surface (alteration)

Low to moderate,
locally high in
the presence of
dissolution

Mostly in
fractures

Southern
border of the
Plateau,
Prealps, Alps

Granites, gneiss, schists, basic to ultra-basic
igneous rocks, sandstones (Among others:
crystalline units, permo-carboniferous
series of the penninic nappes)a

Insignificant Low to moderate In fractures Alps

a Structural units or examples
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thus been developed for delineating protection zones in
karst (Doerfliger et al 1999; SAEFL 2000) and in fractured
media (Pochon and Zwahlen 2003; Pochon et al. 2003). As
the concept of protection zones is based on groundwater
residence time, referring to the attenuation of bacteriolog-
ical contaminant, an additional approach must be applied in
the case of observed contamination linked to persistent
substances (OFEFP 2005; Bussard et al. 2006).

Existing methods and need for a novel approach
The topic of delineation of protection zones, specifically for
springs but regardless of the aquifer type, has been
addressed by general guidelines (Jensen et al. 1997) and
by the study of selected aspects such as the evaluation of
the protective function of soil (Mania et al. 1998). The
importance of establishing a hydrogeological conceptual
model based on geological and hydrogeological data, as
well as delineating the spring catchment area, has been
emphasized (Jensen et al. 1997; Barton et al. 1999). In the
case of heterogeneous aquifer properties, hydrogeological
mapping or groundwater vulnerability mapping approaches
may be indispensable in order to delineate protection zones
(Jensen et al. 1997; Hemmer and Beach 1997).

Several methods for delineating protection zones in
fractured media have been proposed in specific guidelines
(Bradbury et al. 1991) or have been included in guidelines

covering all aquifer types (Burgess and Fletcher 1998).
However, they are generally focused on well protection and
therefore are not directly applicable to springs. Various
techniques and methods including tracer experiments
(Robinson and Barker 2000) and vulnerability mapping
approaches (Lipponen 2007) have been applied to
groundwater protection zone delineation in several frac-
tured aquifer case studies. However, criteria for choosing
one technique over another, and for selecting the adequate
method for protection zoning, are generally not specified.

In Switzerland, drinking water supplies linked to
fractured aquifers essentially consist of small springs
located in mountainous regions, and pumping test or
piezometric data are therefore not available. Methods
based on aquifer testing or groundwater modelling are
consequently not applicable. Accordingly, the delineation
of protection zones requires that other types of data are
taken into account and the development of specific
approaches. Although some of the methods and concepts
mentioned in the literature can be applied in Switzerland,
a novel approach was developed to meet the requirements
of Swiss regulations. Due to the great diversity of
geological and hydrogeological conditions observed in
fractured media in Switzerland (Table 1; Fig. 2b and c), it
is not possible to delineate protection zones for such
aquifers using a single method. The presented approach
uses consistent criteria firstly for selecting the appropriate

Fig. 2 Explanatory diagram of three aquifers with increasing heterogeneity. a Homogeneous porous aquifer; b fractured aquifer, slightly
heterogeneous; c fractured aquifer, highly heterogeneous. Groundwater protection zones (S1, S2, S3) around the groundwater supply
(spring) are represented for each case

Table 2 Groundwater protection zones according to the Swiss water regulations (WPO 1998)

S1 zone: wellhead
protection zone

This zone must prevent damage to the groundwater supply or artificial recharge facilities, as well as prevent
pollution in its immediate surroundings

S2 zone: inner protection
zone

This zone defines an area suitable for preventing germs and viruses reaching the groundwater supplies. The
S2 zone must also prevent drinking water supplies from being polluted by excavation and subsurface
works. Moreover, the flow of water towards the source should not be disturbed by subsurface works

S3 zone: outer protection
zone

This zone must provide sufficient space and time for remediation when accidental pollution threatens a
groundwater supply
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method and secondly for proposing a reliable procedure
for the delineation of protection zones in each case. For
this purpose, diverse existing techniques and concepts
applicable to fractured rocks have been considered.

Main concepts and definitions

Aquifer global characterization: spring monitoring
Within the framework of protection zone delineation, it is
essential to obtain data concerning the hydraulic proper-
ties of the aquifer. When considering springs, interpreting
the natural response to recharge events at the discharge
area is the most appropriate way of globally evaluating the
aquifer properties and compensating for the lack of
pumping test data.

Hydrograph analysis was initially applied to rivers and
permitted the separation of fast flow components linked to
runoff from retarded flow components linked to soil, as
well as baseflow components linked to groundwater
exfiltration (Barnes 1939). The same method, using the
fitting of an exponential decay function to the observed
data, was applied to karst springs to evaluate the volume
and the recession of groundwater reservoirs with different
permeabilities (Ford and Williams 2007; Baedke and
Krothe 2001).

More comprehensive approaches, including the con-
sideration of physico–chemical parameters (temperature,
electrical conductivity, isotopes, chemical elements, tur-
bidity) proved useful in better characterizing karst hydro-
geological systems (Dreiss 1989; Sauter 1992). Spring
hydrographs in non-karst fractured rocks have received
less attention, but the same methods can be applied to
characterize and compare crystalline aquifers (Gentry and
Burbey 2004; Rossier and Sandmeier 1989).

Although these “global methods” are based on very
simplified conceptual models, they allow the characteriza-
tion and comparison of hydrogeological systems. Springs
related to different aquifer types show clearly different
hydrographs (Mangin 1982; Amit et al. 2002), i.e. on one
hand the rapid evacuation of a high proportion of water

infiltrated during a rain event in the presence of well
developed karst or highly permeable fracture systems (e.g.
a few days) and on the other the slow evacuation of
freshly infiltrated water in the presence of less heteroge-
neous and less permeable systems (e.g. several months).
Within the scope of the present approach, hydrographs
and the variability of groundwater quality are used as a
tool to evaluate, in a global manner, the vulnerability of
the springs (Fig. 3; for definition see section Spring
vulnerability versus vulnerability mapping). Specifically,
the vulnerability of the spring is defined as low if no
evidence of a significant amount of freshly infiltrated
water is observed after an intense recharge event.

Aquifer spatial characterization: heterogeneity
and vulnerability mapping
The spatial distribution of hydraulic properties is a crucial
issue for the delineation of protection zones in fractured
media (Bradbury et al. 1991). If no piezometric data are
available, the main tool for determining the spatial
characteristics of the aquifer is hydrogeological mapping
and field testing (Jensen et al. 1997). Most field
techniques include a qualitative interpretation of surface
and subsurface features (geological, pedological, geomor-
phological and geophysical survey), which are interpreted
in terms of hydraulic properties and which allow some
groundwater flow hypotheses to be proposed.

Artificial tracer tests are often the only tool available to
precisely determine groundwater velocity and to forecast
contaminant flow in aquifers (Käss 1998; Field 1999).
Most tracer experiments performed in fractured rocks
presented in the literature involve the injection of tracers
in boreholes with sampling at wells (Robinson and
Barker 2000), galleries (Bäumle et al. 2001) or springs
(Maloszewski et al. 1999). Many experiments have been
performed with a focus either on a single fracture
(Novakowski et al. 2004) or at the scale of a block including
several fractures (Abelin et al 1991). Such experiments
permit precise characterization of groundwater flow and
solute transport at the small scale, but little information
is available regarding tracer experiments including

Fig. 3 Hypothetical example of spring hydrograph. a Low spring vulnerability; b high spring vulnerability
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injection on soil or in sinking streams while sampling at
springs. Tracer testing has been widely used in karst
environments to explore conduit flow at the scale of
spring water catchment areas (Smart 1988; Ford and
Williams 2007) but such experiments are less common for
the characterization of the fracture network around non-
karst springs. Even if flow velocities and recovery rates
are generally lower in fractured aquifers than in karst
aquifers, some experiments performed in mountainous
regions revealed flow velocities in excess of 100 m/day
over distances of several hundreds of metres in non-
karstified aquifers (Maloszewski et al. 1999; Besson
1990). By comparing the results of different tracer tests,
it is possible to evaluate aquifer heterogeneity and to
correlate surface or subsurface features with observed
groundwater flow velocities towards the spring. Thus,
groundwater flow velocity hypotheses and hydrogeolog-
ical maps can be locally verified and validated by
quantitative data.

In the presence of highly heterogeneous aquifers and
very high local flow velocities along fractures revealed by
tracer experiments, groundwater vulnerability mapping
appears to be the only method that can be reasonably
applied to delineate groundwater protection zones. In such
contexts, methods based on the determination of iso-
chrones in the saturated zone would result in very wide
protection zones, involving unnecessarily restrictive land
use across extended areas. In contrast, vulnerability
mapping permits the identification of areas less sensitive
to contamination, where more intensive activities could be
accepted without compromising groundwater quality.

Spring vulnerability versus vulnerability mapping
The term “vulnerability” refers to an intrinsic property of an
aquifer which is dependent on its sensitivity to natural and
human impacts, irrespective of the nature of the contami-
nant (Daly et al. 2002; Zwahlen 2004). This concept of
groundwater vulnerability, defined either globally for a
spring or spatially, is central for the approach developed for
delineating protection zones in fractured media (see section
Decision process for method selection). The term “spring
vulnerability” is defined herein with reference to a global
characterization of the aquifer and allows the attribution of
a unique degree of vulnerability to the whole catchment
area supplying the spring. The aim is to determine whether
a spring is vulnerable to pollution without considering the
range of vulnerabilities within its catchment area. Specif-
ically, the question is whether a significant proportion of
freshly infiltrated water quickly reaches the spring (high
spring vulnerability) or not (low spring vulnerability)
during a recharge event. This is achieved by performing
discharge and water quality measurements.

A low spring vulnerability is determined if the
following conditions are met (Fig. 3a):

– Spring discharge only varies with marked inertia and
low amplitude to recharge events without significant

relative variation of physico–chemical parameters (not
clearly exceeding the analytical error or fluctuating
according to seasonal trends).

– No significant turbidity is observed even after intense
recharge events and no sediment deposits accumulate
in the spring pool.

– Bacterial contamination is never detected.

A high spring vulnerability is determined if any of the
above conditions is not met (Fig. 3b).

On the other hand, when considering “vulnerability
mapping methods”, vulnerability is determined spatially
by evaluation and mapping of relevant parameters. In this
case, the vulnerability is determined separately for each
surface element of the catchment area. The concept of
groundwater vulnerability mapping has been extensively
used for different types of aquifers using various evalu-
ation criteria (Vrba and Zaporozec 1994). Parameters
taken into account may include: soil thickness and
hydraulic conductivity, aquifer type and hydraulic con-
ductivity, depth to groundwater level and net recharge,
among others (Aller et al. 1987; Adams and Foster 1992).
These maps were initially useful in providing a decision
tool for land use planning and community information
(NRC 1993). Recently, some groundwater vulnerability
mapping methods have been developed to delineate
groundwater protection zones around springs or wells,
especially in karst settings (SAEFL 2000; DoELG/EPA/
GSI 1999; Zwahlen 2004).

Unlike other methods which set out to delineate
protection zones, vulnerability mapping methods take the
protective effect of the unsaturated zone into account and
assign less significance to transit times (which are
included qualitatively in parameter evaluation, but are
not directly evaluated). Ignoring transit times in the
presence of highly permeable fractures is justified due to
the limited filtration and sorption capacities along frac-
tures and conduits, which suggest a significantly lower
attenuation of bacteriological contamination compared to
other media for the same residence time (Becker et al.
2003). Higher significance is therefore given to soil cover
in view of the filtration and degradation properties of
these layers (Golwer 1983). Interest in groundwater
vulnerability mapping as a tool to delineate protection
zones is particularly evident in highly heterogeneous
media such as karst or highly permeable fractured
aquifers, where the delineation of protection zones based
exclusively on transit time in the saturated zone would
result in the determination of excessively restrictive
protection zones over large distances (e.g. several kilo-
metres). In such cases, the consideration of the protective
function of layers covering the aquifers (e.g. thick soils,
moraine deposits) and/or the determination of less
fractured areas, may permit the designation of locally less
restrictive protection zones within the spring catchment
area, thus allowing the coexistence of viable economic
activities (agriculture, tourism) and the exploitation of
groundwater.
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Decision process for method selection

Overview
The development of new guidelines for the delineation of
protection zones in fractured media requires consideration
of the varying properties of fractured aquifers exploited in
Switzerland whilst applying a scientifically justified
approach which is also user-friendly, financially affordable
and avoids unnecessary land use restrictions. The recom-
mended approach involves more or less detailed investi-
gation depending on the complexity of the case. A suitable
method for delineating groundwater protection zones is
selected according to spring vulnerability and aquifer
heterogeneity (Fig. 4).

Evaluation of the spring vulnerability: basic data
acquisition
The first stage includes the collection and the interpretation
of basic data about the aquifer. Monitoring of discharge
rate, physico–chemical and microbiological parameters,
turbidity, including observations in various hydrological
conditions, allows the global vulnerability of the spring to
be evaluated. Although continuous monitoring of discharge
and physico–chemical parameters is becoming increasingly

feasible in technical terms and economically affordable,
and is therefore highly advisable, only a basic evaluation of
spring hydrographs is required in the initial phase. This
“qualitative” evaluation of spring hydrographs includes
monthly measurements of discharge, temperature and
electrical conductivity, complemented by more detailed
monitoring (e.g. one measurement per day over three
successive days) of the same parameters during an intense
flood event (e.g. > 20 mm of daily precipitation in a period
with limited soil water deficit). Additionally, several more
detailed analyses (e.g. three samplings) including bacterio-
logical, chemical, and turbidity measurements in adverse
conditions are required. At least one detailed analysis must
be performed after a high recharge event occurring during a
period of intense potentially polluting activities (e. g.
fertilizer or manure application).

Spring vulnerability is assessed as low if no groundwater
with short residence time contributes to spring discharge at
all, even during flood events. This situation is characterized
by a non-significant temporal variability in spring discharge,
temperature and electrical conductivity (Fig. 3a) and by an
undisputable water quality (bacteriology, turbidity). Spring
vulnerability is assessed as high once a significant propor-
tion of groundwater with short residence time contributes to
spring discharge during flood events (even in the range of

Fig. 4 Decision process allow-
ing the selection of one of three
specific methods to delineate
groundwater protection zones in
fractured media (after OFEFP
2004). The examples are pre-
sented in the text
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some percents). This situation is characterized by detectable
variations of groundwater discharge, temperature and
electrical conductivity implying the presence of locally high
flow velocities within the aquifer (Fig. 3b). If the spring
vulnerability is low, protection zones can be defined with a
minimum size according to the Swiss regulations (extent of
the S2 zone: 100 m), without any additional investigation
(distance method, Fig. 4, see section Low vulnerability
springs). For vulnerable springs, a second investigation
stage is required.

Evaluation of aquifer heterogeneity: additional
investigations
Only in the case of vulnerable springs must a second stage
of field survey be carried out. The following additional
investigations may be required: detailed analysis of rock
jointing in the groundwater catchment area, identification
of concentrated infiltration zones, continuous spring
monitoring and detailed analysis of groundwater dis-
charge, temperature and electrical conductivity time series,
as well as tracer testing. These data allow more precise
information concerning groundwater flow organization
and the degree of aquifer heterogeneity to be obtained. If
the spring is vulnerable and the degree of heterogeneity is
found to be low, the residence time of groundwater in the
network of connected joints is expected to increase in
relation to distance from the spring. In this case, the
protection zones are delineated by means of isochrones
(isochrone method, Fig. 4, see section Vulnerable springs
in slightly heterogeneous aquifers) on the basis of tracer
testing. If the groundwater supply is vulnerable and the
aquifer is highly heterogeneous, rapid hydraulic connec-
tions between vulnerable points located in any part of the
catchment area and the spring may be possible; the
residence time of groundwater in a highly permeable
fracture network does not significantly increase with
distance from the spring. In this case, a multi-parameter
groundwater vulnerability mapping method is applied
(“DISCO” method, Fig. 4, see section Vulnerable springs
in slightly heterogeneous aquifers). The three methods are
presented into more detail and illustrated by examples in
the following chapter.

Methods and examples

Low vulnerability springs

Distance method
The distance method (fixed radius) is applied when the low
vulnerability of the spring is demonstrated. In this case,
groundwater residence time is assumed to be sufficient to
allow natural purification processes to take place. Such
springs can be related both to homogeneous and heteroge-
neous aquifers (e.g. confined in the discharge area;
associated with a deep flow system drained by regional
fractures). In these types of hydrogeological setting, tracer
tests are often unsuccessful (no tracer recovery occurs even

after several weeks) and do not represent an adequate
investigation method. Only the collection of basic data is
needed and small protection zones are sufficient to
guarantee the quality of the exploited water.

In a simplified manner, this method considers the
fractured aquifer as a continuous medium at the scale of
the spring groundwater catchment area. The delineation of
the protection zones according to the minimum distance
defined for non-consolidated porous media by the Swiss
water regulations is adequate to efficiently protect the
groundwater supply (WPO 1998):

S1 zone. This zone must extend for a minimum at 10 m
around or upstream of a spring and must
incorporate drains, draining trenches or galleries.

S2 zone. The distance between the external limits of the
S1 and the S2 zones must be at least 100 m
upstream, considering the general groundwater
flow direction.

S3 zone. The distance between the external limits of the S2
and the S3 zones must be at least equal to the
distance between the outer limits of the S1 and S2
zones.

Test site application
The Sarreyer test site is located in the western part of the
Swiss Alps (Canton Valais). The aquifer consists of
metamorphic gneiss and schists, and groundwater is
collected from four subhorizontal drains measuring 20–
30 m. Water quality is good throughout the year and no
significant variation of discharge, electrical conductivity
or quality has been observed even during heavy rainfall.
This suggests a low spring vulnerability.

Due to the subhorizontal drains, the extension defined
for S1 is approx. 40 m. The S2 zone extends between
40 m (external limit of S1) and 140 m from the spring and
the S3 zone is defined between 140 m (external limit of
S2) and 240 m from the spring (Fig. 5).

Vulnerable springs in slightly heterogeneous aquifers

Isochrone method
The isochrone method (calculated radius) is applied to the
case of vulnerable springs linked to slightly heterogeneous
aquifers. In such contexts, some water may discharge at
the spring after short residence time without sufficient
natural purification processes in the aquifer (even a
proportion of some percent may alter the spring water
quality). Additional investigations are therefore needed to
better characterize the aquifer. As fractured media are
generally heterogeneous at the local scale, tracer injection
must be performed on the most permeable areas based on
a detailed hydrogeological survey (geological mapping,
geophysics, infiltration tests). The isochrone method is
applied when groundwater flow velocities along fractures
are typically moderate to high (maximum: a few tens of
metres per day) and when flows are relatively uniform at the
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scale of the spring catchment area. The results of tracer
injections performed at several favourable points during
high water conditions allow determination of the isochrones.

When applying this method, the fractured aquifer is
considered as a continuous medium at the scale of the
groundwater catchment area. Therefore, the delineation of
the protection zones is achieved according to the criteria
recommended by the Swiss water regulations for uncon-
solidated porous media (WPO 1998):

S1 zone. This zone must extend to a minimum of 10 m
around or upstream of a spring and must
incorporate drains, draining trenches or galleries.

S2 zone. This zone is based on the evaluation of the
maximum flow velocity in the aquifer. The 10-
day isochrone must be defined and corresponds
to the outer limit of the S2 zone. Moreover, the
distance between the external limit of the S1
zone and the external limit of the S2 zone must
be at least 100 m upstream, taking into account
the general groundwater flow direction (Fig. 6).

S3 zone. The distance between the external limits of the
S2 and the S3 zones must be at least equal to the
distance between the outer limits of the S1 and
S2 zones.

Test site application
The Ronco sopra Ascona test site is situated in the
southern part of the Swiss Alps (Canton Ticino). The

aquifer consists of metamorphic amphibolites and gabbros
and the groundwater supply collects water discharging
from a fracture. Significant variations in discharge,
electrical conductivity and temperature are observed
during the year and suggest that the spring is potentially
vulnerable to contamination. Consequently additional
investigations were carried out.

A field survey including structural geology, geomor-
phology observations, geophysics and a multi-tracer
experiment led to the conclusion that the degree of
aquifer heterogeneity is low. Fracturing is distributed
evenly across the catchment area with a spacing of
approx. 10 to 20 m. However, rock permeability and
flow velocities were assumed to be variable at the small
scale. Therefore, tracer testing was performed on two
potentially highly permeable areas (fractured zones).
The fluorescent dyes tinopal and uranine (Käss 1998)
were injected respectively 20 and 90 m from the spring.
To account for a probable increase of flow velocities
during high water conditions, the experiment was
conducted during an intense recharge event. Moderate
flow velocities of 12 and 15 m/day respectively were
determined. Moreover continuous monitoring of dis-
charge, electrical conductivity and temperature over a

Fig. 6 Principle of the delineation of groundwater protection
zones with the isochrone method for relatively homogeneous
fractured aquifers

Fig. 5 Delineation of groundwater protection zones with the
distance method for Champi Spring at Sarreyer
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period of several months suggested a significant inertia
of the spring to recharge events, illustrated by slow
recession curves (1 month to return to the base flow
after a significant recharge period of approx. 250 mm of
precipitation over 5 days). It was also determined that
there was no significant variation in temperature and
electrical conductivity during moderate recharge events
(10 to 20 mm).

As water is collected from a small fracture discharging
into the catchment facility, an S1 zone extending 10 m
from the spring was considered to be sufficient. The
distance between the external limits of the S1 and the
S2 zones was set at 150 m based on the maximum flow
velocity determined by tracer tests (15 m/day). Accord-
ingly, the S3 zone extends from 160 to 310 m from the
spring (Fig. 7).

Vulnerable springs in highly heterogeneous aquifers

DISCO method
The DISCO method (groundwater vulnerability mapping
method) is applied in the case of vulnerable springs
linked to a highly heterogeneous aquifer. In such
contexts, a significant proportion of water discharges
at the spring after a short residence time in the aquifer,
preventing sufficient natural purification processes to
take place. Additional investigations are needed and
tracer testing typically reveals locally very high flow
velocities (up to several hundreds of metres per day). In
this case, a groundwater vulnerability mapping method
is applied to the whole catchment area of the spring.
The parameters taken into account in the DISCO
method include characterization of hydrogeological
properties of the fractured aquifer (DIScontinuities
parameter) and evaluation of the thickness and perme-
ability of protective cover (protective COver parameter).
Moreover, taking runoff processes into account may be
required for some areas, where surface movement of
polluted water towards preferential infiltration zones is
expected. A protection factor map is determined by
combining the different parameter maps and the
protection zones are finally determined by converting
the protection factor map into protection zones. Conse-
quently, the multi-parameter vulnerability mapping
method includes four steps as follows:

Step 1 Assessment of the parameters “discontinuities” and
“protective cover”.

This first step consists of the evaluation and mapping
of the parameters “discontinuities” and “protective
cover” over the whole catchment area, subdivided into
areas of uniform properties for each of the parameters.
The parameter “discontinuities” referred to below as
“D” takes into account the groundwater flow velocity
within the fractured aquifer between an infiltration point
in the water catchment area and the spring under
consideration (e.g. highly permeable fractured zone with
rapid connection to the spring versus weakly fractured
area). The evaluation of the parameter “D” is essentially
based on structural geology (field survey and remote
sensing), geophysics and tracer experiments. The rating
values of “D” range from 0 to 3, with increasing values
corresponding to higher residence time and attenuation

Fig. 7 Delineation of groundwater protection zones with the
isochrone method, Livurcio Spring at Ronco sopra Ascona, based
on tracer experiments

Table 3 “Discontinuities” parameter evaluation

Class Rating Evaluation criterion

D0 0 Highly permeable discontinuities with preferential connection to the spring (maximum groundwater residence time of a
few tens of hours) / no significant natural purification processes

D1 1 Discontinuities with a relatively rapid connection to the spring (residence time of a few days) / limited purification
processes

D2 2 Discontinuities with a relatively slow connection to the spring (residence time of approx. ten days) / significant
purification processes

D3 3 Low permeability zone or discontinuities with a slow connection to the spring (residence time of several tens of days) /
efficient purification processes
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processes (Table 3). The parameter “protective cover”
referred to below as “P” takes into account the protective
effect linked to the flow of water through the soil and
geological formations (e.g. moraine, slope deposits, marls,
clay material) overlying the fissured aquifer. Data neces-
sary for the evaluation of the parameter “P” may be
assessed using hand drilling, on-site soil analysis, geo-
morphological mapping (field survey and remote sensing),
geophysics and infiltration tests. The rating values of “P”
range from 0 to 4, with increasing values corresponding
both to higher protective cover thickness or/and lower
permeability of the deposits (Tables 4 and 5). The ratings
were defined based on field studies at numerous test sites.
It takes the feasibility and constraints of field methods
(e.g. maximal depth of hand drilling) for each parameter
into account, as well as groundwater velocity estimate for
different types of soil and fractured rock.

Step 2 Determination of the intermediate protection factor
“Fint”.

For each polygon presenting uniform values for the
parameters D and P, the protection factor Fint is calculated
as follows:

Fint ¼ 2Dþ 1P

This empirical relationship is based on the assumption that
the protective effect related to the fractured aquifer as
described in Table 3 is greater than the protective effect of
the soil as described in Tables 4 and 5.

Step 3 Evaluation of the runoff parameter and calculation
of the final protection factor “F”.

Surface or subsurface runoff can generate rapid
contaminant flow over several tens (diffuse runoff) or

hundreds of metres (e.g. presence of natural or artificial
drain, perennial or temporary stream, path or road). Since
the majority of fractured aquifers exploited in Switzerland
are located in mountainous regions, it is essential to take
these processes into consideration. Unlike the parameters
“discontinuities” and “protective cover”, which are
mapped over the whole catchment area, the runoff
parameter is only considered for areas where runoff may
induce substantial pollutant movement toward vulnerable
zones, i.e. where the intermediate protection factor value
is low or very low (0≤Fint≤4). The extent of these areas
(“local surface watersheds”) is determined by estimating
the influence of runoff, i.e. slope gradient and soil
permeability, etc. (Fig. 8). Evaluation of these factors
requires field observation during intense rainfall events.

The final protection factor map is obtained by
modifying the intermediate protection factor map
(obtained under step 2) according to the already men-
tioned local surface watersheds. In these areas, the value
of the intermediate protection factor Fint for the vulnerable
zones threatened by runoff is extended to cover the whole
local surface watershed. Outside these local surface
watersheds, the final protection factor F remains the same
as the intermediate protection factor Fint determined in
step 2.

Step 4 Protection zone delineation. The final protection
factor “F” map is converted into protection zones
S according to the relationship presented in
Table 6.

In all cases, spring drains, draining trenches and
galleries as well as their immediate surroundings must
be part of the S1 zone, with a buffer of 10–30 m
depending on the gradient of the slope. Additionally, as
a precautionary measure, no S3 zone must be defined at a
distance of less than 100 m from the outer limit of the S1

Table 4 “Protective cover” parameter evaluation taking into consideration pedological soil overlying the aquifer

Pedological soils
Thickness (m) High permeability soil (sand, pebbles) Moderate permeability soil (silt, loam) Low permeability soil (loam, clay)

Class Rating Class Rating Class Rating

0.0–0.2 P0 0 P0 0 P0 0
> 0.2–0.5 P0 0 P0 0 P1 1
> 0.5–1.0 P0 0 P1 1 P2 2
> 1.0 P1 1 P1 1 P3 3

Table 5 “Protective cover” parameter evaluation taking into consideration geological formations other than pedological soils overlying the
aquifer

Additional presence of low permeability formations (e.g. clay, loam, marl)
Thickness (m) Combined with P0 soil Combined with P1 soil Combined with P2 soil Combined with P3 soil

Class Rating Class Rating Class Rating Class Rating

< 1.0 m P1 1 P2 2 P3 3 P3 3
1.0–2.0 m P2 2 P3 3 P3 3 P4 4
> 2.0 m P3 3 P3 3 P4 4 P4 4
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zone adjacent to the water supply, and no area
corresponding to the “rest of the catchment area” should
be defined closer than 200 m to this S1 zone boundary.

Test site application
The Wysseberg test site is located in the Swiss Prealps to
the south of Bern (flysch of the Niesen Nappe, Canton of
Bern). The aquifer consists of folded and fractured flysch
sandstones and schists (Fig. 9a). Groundwater protection
zones have been delineated for two groups of springs
(three springs to the east, five springs to the west), as
explained below. The springs are aligned along major
fractures. They collect groundwater from the fractured
bedrock and from weathered flysch at shallow depths
(approx. 2 m). The aquifer is covered by approx. 1 m of
brown soil with high proportions of silt and clay in the
bottom layer. Additionally, ground and lateral moraine as
well as slope deposits (scree) are present locally. The
limits of the groundwater catchment area were defined
according to topographical and geological criteria and
have been verified with a water balance calculation. Cattle
rearing and manure spreading between June and Septem-
ber represent the main pollution hazards upstream of the

springs. Significant fluctuations in spring discharge, water
temperature and electrical conductivity, as well as indica-
tions of bacteriological contamination, even in winter,
have been observed. Consequently, the springs appear to
be vulnerable to contamination and additional investiga-
tions are needed.

Various systems of structural discontinuities at the
scale of the groundwater catchment as well as at outcrop
level have been observed. They dictate the location of the
springs. Geomorphological depressions constitute poten-
tial locations of concentrated infiltration and open frac-
tures are apparent along stream beds. Tracer tests have
shown highly variable flow velocities for different
injection points in the spring catchment (50–600 m/day).
All these data indicate the presence of rapid flow along
interconnected networks of highly permeable joints. Rapid
connections are possible between the springs and surfaces
that may be distributed across the whole catchment area of
the spring. Consequently, the groundwater residence time
does not increase globally or significantly with increasing
distance from the spring, and an assimilation of the
fissured aquifer to a continuous medium is inappropriate.
Under these conditions, only the use of a multi-parameter
groundwater vulnerability mapping method over the
whole catchment area enables effective delineation of
protection zones by taking into account the large degree of
heterogeneity within the aquifer.

With reference to the delineation of protection zones at
Wysseberg test site, strips of 20–30 m in width with the
value D1 were assigned along the major faults for the
parameter discontinuities (Fig. 9b). The value D2 was
assigned to the rest of the groundwater catchment. For the
parameter protective cover (Fig. 9c), surfaces of aquifer
outcrops (P0), surfaces covered with soil only (P1, P2) and
surfaces with an overlay of moraine material (P3) were

Table 6 Conversion between the protection factor F and the ground-
water protection zones

Protection factor F Vulnerability S zones

F very low (0, 1) Very high S1
F low (2, 3, 4) High S2
F moderate (5, 6, 7) Moderate S3
F high (8, 9, 10) Low Rest of the catchment area

Fig. 8 Modification of the in-
termediate protection factor to
take runoff processes into
account
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mapped. Accordingly, the value determined for Fint ranges
from 3 (low protective effect) to 7 (moderate protective
effect).

Due to the slope topography and the presence of low
permeability cover over large parts of the groundwater
catchment area at the site, it was necessary to adjust the
Fint map, taking the runoff parameter into account. Finally,
the protection zone map (Fig 9d) shows that S2 zones
were assigned to the most important draining disconti-
nuities, taking into account the aquifer heterogeneity. S3
zones are only defined in areas characterized both by
the absence of important fractures and the presence
of efficient protective cover. Due to the presence of
collecting drains of unknown extension and the rela-
tively steep gradients of the slopes above the springs
(10 to 20%), the S1 zones were extended to not less
than 25 m.

Conclusions

In Switzerland, specific methodologies for the delineation
of protection zones have been developed and are currently
used for the main aquifer types (unconsolidated porous
aquifers, karst and fractured media). For fractured media,

a new vulnerability-based approach, which takes into
account the great diversity of geological and hydro-
geological conditions observed in this country, was
established. This approach includes a decision process
that alternatively selects one of three methods depending
on the hydrogeological settings considered. It is dedicated
to springs, which are the main water supply in fractured
environments in Switzerland.

This approach has the advantage of globally assessing
the spring vulnerability at an early stage of the investiga-
tion, allowing the selection of a simplified method
(distance method) for uncomplicated cases (low spring
vulnerability). In such hydrogeological settings character-
ized by high residence times and low flow velocities,
detailed hydrogeological investigation would not bring
useful additional data for the protection of the groundwa-
ter supply. More detailed investigation including tracer
experiments and an evaluation of the aquifer’s heteroge-
neity are required for more complicated cases (high spring
vulnerability). The additional data obtained can be used to
determine whether a method considering the aquifer as
homogeneous can be applied (isochrone method), or
whether vulnerability mapping is necessary to adequately
delineate spring protection zones, i.e. for highly hetero-
geneous media (DISCO method).

Fig. 9 Wysseberg test site. a Bloc diagram showing the geological setting; b discontinuities parameter map; c protective cover parameter
map; d delineation of groundwater protection zones with the DISCO method
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Investigations carried out at various test sites have
shown the technical feasibility and the suitability of the
vulnerability-based approach for fulfilling the require-
ments of the Swiss regulations concerning groundwater
protection zones. It is applicable to the variable conditions
encountered across the whole country, and gives repro-
ducible results with a financial effort proportionate to the
complexity of the site. The methodology should facilitate
a countrywide harmonization of the groundwater protec-
tion zone delineation in fractured media.

The Swiss environmental authorities recommend this
methodology in their current guidelines (OFEFP 2004).
The delineation of protection zones according to the
proposed methodology and the application of associated
land use restrictions is assumed to prevent the majority of
spring contamination in fractured aquifers in Switzerland.
However, a detailed analysis of the effectiveness of the
approach will only be possible as more case studies are
carried out and data from long-term groundwater quality
monitoring become available.

It is assumed that this approach is also applicable to
fractured media outside Switzerland. Furthermore, this
concept may also be adapted to the delineation of
protection zones around wells and to other aquifer types
(e.g. deep and/or confined aquifers). The implementation
of this approach is believed to contribute to a valuable
improvement of spring drinking water quality in many
regions. It is expected that ongoing research on fractured
media hydrogeology and experience with additional
applications of the approach and its associated methods
will give significant input for further refinement.
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