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Abstract. Within the framework of the European COST Action 816, a five-year collabora-
tion between scientists from five European countries has made an important contribution to
biological control of field and hedge bindweeds (Convolvulus arvensis and Calystegia sepium,
respectively). A fungus Stagonospora convolvuli strain LA39, able to infect both field and
hedge bindweed, was found in the UK and its biocontrol efficacy improved by optimising
mass production, formulation and storage techniques. This fungus controlled bindweeds in
both a cemetery and in maize crops. Its use fits best in an integrated pest management system
where a green cover controls most of the weeds except the bindweeds. DNA marker analyses
indicate that the fungus reproduces sexually, which could be used to further improve this
mycoherbicide. In addition, the insect Melanagromyza albocilia, which itself exhibits biocon-
trol potential against bindweeds, may be used in combination with LA39 to improve the ability
of the fungus to penetrate the stem of bindweeds. Overall, the results suggest that S. convolvuli
LA39 has promising potential as a bioherbicide for control of field and hedge bindweed.

Key words: calystegines, DNA marker, integrated weed management system, living mulch,
phytotoxins, Calystegia sepium, Convolvulus arvensis
Introduction

Hedge and field bindweeds (Calystegia sepium [L.] R. Br. and Convolvulus
arvensis L., respectively) are very successful weeds in agriculture and
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amenity areas. They are deep-rooted perennials and thus can escape many
chemical and mechanical weed control methods (Weaver and Riley, 1982;
Westra et al., 1992). Chemical control is also restricted by the fact that
chemicals effective against bindweeds can often affect many other plants,
not to mention current public concern regarding environmental problems
associated with chemical pesticide usage. In addition, the abundant reserves
stored in the rhizomes of hedge bindweed and in the root of field bindweed
enable the plants to survive repeated defoliations (Klime§ and KlimeSova,
1994). Moreover, fragmentation and dispersal of underground parts leads to
vegetative propagation (Maillet, 1988). In this context, biocontrol appears as
a promising alternative against bindweeds (Table 1), both on farmland and in
non-cropped areas (e.g. gardens and parks).

A five-year collaboration on biocontrol of bindweeds has been established
between scientists from five European countries, within the framework of the
European COST Action 816, and here we review the results of the project.
We started with the collection of diseased field and hedge bindweed plants
throughout Europe to search for a suitable control agent, which resulted in
the selection of Stagonospora convolvuli Dearness and House strain LA39.
The assessment of strain LA39 as a potential biocontrol agent included the
determination of key genetic and pathogenic characteristics (i.e., phytotoxin
production), dew requirement, spore concentration required for effective
biocontrol, as well as the development of formulation, mass production and
storage protocols. In addition, the impacts of LA39 on growth, biomass
allocation and carbohydrate reserves of hedge bindweed were assessed before
application in the field. Efforts were made to improve hedge and field bind-
weed biocontrol by combining the mycoherbicide with plant competitors,
both in the greenhouse and the field. In addition, a survey of the phyto-
phagous entomofauna associated with field bindweed was carried out to
assess whether insects could act as vectors for pathogens and increase the
effect of strain LA39. Lastly, the possible contribution to bindweed control
by rhizosphere microorganisms capable of degrading calystegines, which are
secondary metabolites of bindweeds (Tepfer et al., 1988b), was studied.

The biocontrol agent

Stagonospora convolvuli 1LA39, found in Long Ashton (UK) in 1994, was
selected from approximately 600 fungal isolates as a possible biological
control agent of field bindweed (Pfirter et al., 1997). Field bindweed was
susceptible to the pathogen at all growth stages tested (Pfirter and Défago,
1998), showing brown lesions followed by defoliation and reduced plant
growth. Several phytotoxins, with potential as herbicides, are produced in
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Table 1. Potential biological control agents for field bindweed

Agent and taxonomic reference

Status and degree of control

EXOTIC MITES AND INSECTS?

Aceria malherbae Nuzzaci
(Acarina: Eriophyidae)

Tyta luctuosa (Denis and Schiffermiiller)
(Lepidoptera: Noctuidae)

NATIVE MITES AND INSECTS?

Chelymorpha cassidea (Fabricius)
(Coleoptera: Chrysomelidae)

Chirida guttata (Olivier)
(Coleoptera: Chrysomelidae)

Metriona purpurata (Boheman)
(Coleoptera: Chrysomelidae)

FUNGI

Phomopsis convolvulus Ormeno
(Sphaeropsidales: Coelomycetes)

d

Phoma proboscis Heiny®
(Sphaeropsidales: Coelomycetes)

Canada. Ex Italy. Released in British Columbia and
Alberta (1994), where the insect overwintered success-
fully, but establishment not confirmed. Not established
in Manitoba or Saskatchewan.

USA. Ex Greece. Released in Colorado, Maryland,
Montana, New Jersey, Oklahoma, South Dakota, Texas
and Washington (1989). Established in Montana, Texas?
and Washington.

South Africa. Ex Greece. Released in 1994.€

Canada. Ex Italy. Released in Alberta and Saskatchewan
(1989). Not established.

USA. Ex Italy. Released in Arkansas, lowa, Missouri,
Oklahoma and Texas (1987). Not established. Released
in Maryland (1991) and Washington (1996). Establish-
ment not confirmed.

Canada. Native organism collected in 1979 in Saskat-
chewan and released in Alberta in an attempt to extend
its range. Not established.

Canada. Native organism collected in 1979 in Saskat-
chewan and released in Alberta in an attempt to extend
its range. Not established.

Canada. Native organism collected in 1979 in Saskat-
chewan and released in Alberta in an attempt to extend
its range. Established.

95% reduction in foliage biomass and up to 55%
mortality on seedlings with 10° conidia/ml and 18 h
dew. Up to 100% biomass reduction in pre-emergence
application.

Tested in the field during 1990-1993. Up to 90% seed-
ling mortality.

Julien and Griffiths (1998)
Boldt and Sobhian (1993)
Craemer (1995)

[CHEN =V el

Heiny (1994)

Morin et al. (1990a) and Vogelgsang et al. (1999)

liquid media by strain LA39, one being identified as leptosphaerodione
(Nicolet, 1999; Nicolet and Tabacchi, 1999).

The genus Stagonospora belongs to the Deuteromycota (Fungi imperfecti)
in the class Coelomycetes, order Sphaeropsidales and family Sphaerop-
sidicaceae. So far, this genus has been neglected as a source of poten-
tial mycoherbicides, as the biocontrol literature describes only two other
Stagonospora, i.e. Stagonospora sp. against bracken (Pteridium aquilinum
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[L.] Kuhn) (Petrini et al., 1992) and Stagonospora apocyni (Peck) von
Arx against hemp dogbane (Apocynum cannabinum L.) (Venkatasubbaiah et
al., 1992). In 1991, Charudattan listed more than 100 potential agents for
biological weed control, and most of them belonged to Colletotrichum spp.,
Fusarium spp., and Alternaria spp.

When dealing with disease-causing biocontrol agents, it is important to
characterise their host range, and if non-target plants can be affected there is
also the need to assess (risk analysis) persistence patterns and spread of the
inoculum after release (Bourdot et al., 2000). In the case of S. convolvuli
LA39, necrotic lesions formed on all Convolvulaceae species tested (i.e.,
Convolvulus arvensis, Convolvulus scammonia L., Convolvulus siculus
subsp. agrestis [Hochst. ex Schweinf.] Verdcourt, Convolvulus tricolor L.,
Convolvulus humilis Jacq., Calystegia sepium, Ipomea purpurea (L.) Roth
[= Convolvulus purpureus L.], Ipomea quamoclit L. [= Quamoclit pinnata
(Desr.) Bojer], Ipomea hederifolia L., and Ipomea versicolor Meissner [=
Quamoclit lobata House]) except sweet potato Ipomoea batatas var. batatas
[L.] Lam. Necrosis observed on field and hedge bindweeds was much more
severe than on the other Convolvulaceae species. The susceptible species of
the Convolvulaceae are not common at the sites where biocontrol of bind-
weed would be of interest. The fungus had no effect on the crop plants
(i.e., Zea mays L., Triticum aestivum L., Lolium multiflorum Lam., Sinapis
alba L., Medicago sativa L., Trifolium pratense L., Trifolium suaveolens
Willd., Vitis vinifera L.) that could be common at application sites (Pfirter
and Défago, 1998). Therefore, the specificity of strain LA39 is better than
that of Phytophthora palmivora (Butler) Butler, the active ingredient in the
commercial product DeVine® used for control of stranglervine (Morrenia
odorata L.). Indeed, the latter fungus is pathogenic to several crop plants such
as onion (Allium Cepa L.), citrus (Citrus limon [L.] Burm.) and pea (Pisum
sativum L.) (Ridings, 1986), but safety of the product with regards to non-
target plants was achieved using site-specific application protocols (Ridings,
1986).

The genetic relationship between Stagonospora convolvuli LA39 and
37 Stagonospora isolates (taken from field and hedge bindweeds) and 10
Septoria isolates (from field bindweed) was assessed using Restriction Frag-
ment Length Polymorphism (RFLP) analysis of PCR-amplified Internal
Transcribed Spacer (ITS) region and the comparison of Randomly Amplified
Polymorphic DNA (RAPD) markers. The genus Sepforia was included in the
study because of its close relatedness with Stagonospora. Little variation was
found in the PCR-RFLP assay, where only three types of banding patterns
were found. In contrast, 26 different groups could be distinguished based
on cluster analysis of RAPD data (Pfirter et al., 1999a). PCR-RFLP data
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Table 2. Main clusters (n > 2 isolates)? obtained by cluster analysis (UPGMA) of 38
isolates of Stagonospora sp. and 10 isolates of Septoria sp. based on RAPD markers
(Pfirter et al., 1999a). LA39 was included in RAPD cluster C1

RAPD n PCR-RFLP Fungal genus Geographic origin® Plant hostd

cluster typeb

C1 11 A Stagonospora UK: Long Ashton C. arvensis or
(n=10) or Yeorile (n=1) C. sepium

C2 5 A Stagonospora UK: Long Ashton C. arvensis or
(n=1)or Yeorile (n=4) C. sepium

C3 3 B Stagonospora UK: Long Ashton C. arvensis

C4 5 C Stagonospora CH, CzR, Fra C. sepium

C5 7 C Septoria CH, CzR, Fra, You C. arvensis

4 RAPD clusters were defined using an arbitrary value of 0.96 for Dice similarity coeffi-
cient.

b PCR-RFLP analysis was carried out on the Internal Transcribed Spacer (ITS) region.

¢ CH, Switzerland; CzR, Czech Republic; Fra, France; UK, United Kingdom; You,
Yougoslavia.

d In C1 and C2, all isolates from Yeorile were obtained from C. sepium and those from
Long Ashton were obtained from C. arvensis.

and RAPD clusters were generally in agreement. RAPD clusters allowed
classification of the fungi according to genus, collection site and host plant
(Table 2), as well as year of sampling. Strain LA39 corresponded to PCR-
RFLP type A, but could be distinguished from all other type-A isolates when
PCR-RFLP patterns were compared in more detail. The variation between
isolates collected from a same place in different years suggests that sexual
reproduction occurs under natural conditions, but a sexual stage has not been
observed yet. In Stagonospora nodorum (Berkeley) Castellini et Germano
and S. avenae (Frank) Bissett, the two best-known species of the genus, the
sexual stages are known as Phaeosphaeria nodorum (Miiller) Hedjaroude and
P. avenaria (Weber) Eriksson, respectively.

Six Stagonospora isolates were tested for pathogenicity on three field
bindweed ecotypes, which originated from the USA, England and Switzer-
land. Differences were found both in terms of pathogenicity and host
susceptibility. Only strain LA39 was highly pathogenic on all ecotypes (Table
3) (Pfirter et al., 1999a). All Stagonospora isolates from the UK but LA39
showed a lower degree of pathogenicity on the UK ecotype compared with
the Swiss ecotype. The US ecotype was as susceptible as the Swiss ecotype,
except for one Swiss strain and one from the UK (Pfirter et al., 1999a).
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Table 3. Susceptibility of field bindweed ecotypes to six isolates of
Stagonospora sp. at two weeks after inoculation with 107 spores per
ml sprayed until run off occurred (Pfirter et al. 1999a)

Stagonospora Susceptibility of the ecotypes (%)?
isolates CH USA UK
LA39 (UK)® 100 (97) 97 102
LA30B (UK) 100 (97) 99 55
LA24 (UK) 100 (90) 96 36
LA31 (UK) 100 (99) 99 37
LA10A (UK) 100 (89) 34 60
92 Co a (CH) 100 (50) 38 51

4 Susceptibility of the ecotypes from the USA and the UK is expressed
by comparison with susceptibility of the Swiss (CH) ecotype, which is
arbitrarily shown as 100%; in brackets: the percentage of the necrotic
leaf area caused by the isolates on the Swiss ecotype.

b Country of origin of the isolates.

Formulation, mass production and storage of Stagonospora convolvuli
LA39

The goal of a formulation is to facilitate storage, handling and application of
an active ingredient. With a mycoherbicide, formulation may also enhance
biocontrol efficacy (Greaves et al., 1998), for example by reducing dew
requirement during infection. Formulation of conidia of S. convolvuli LA39 in
a 10% vegetable oil emulsion (Potyka, 1995) significantly increased biocon-
trol effectiveness, reducing the conidial dose needed to cause 80% necrotic
leaf area by a factor of 10 (i.e., from 108 to 107 spores per ml sprayed until run
off). The formulation was developed for Mycocentrospora acerina (Hartig)
Deighton against field pansy (Viola arvensis Murr.) and reduced the dew
period needed to infect and kill field pansy from >36 h to 12 h (Potyka,
1995). Under field conditions, disease development took place even when
exposure of LA39-treated bindweed plants to 100% relative humidity was
delayed by up to 8 h after mycoherbicide application. Importantly, severe
disease was found even without exposure to 100% relative humidity (Pfirter
and Défago, 1998). As dew is irregular in the field, resistance to short-term
desiccation greatly increases the suitability of a pathogen as a control agent.
The favourable effect of the emulsion may be explained by extraction of
water from leaf tissue cells and a better spore distribution in spray droplets
(Lawrie et al., 1997; Greaves et al., 2000). Electron microscope examination
of transverse sections of field pansy leaves showed that the oil phase had
penetrated into the leaf tissue and contained many small droplets of water.



THE BIOCONTROL OF BINDWEEDS 163

Table 4. Spore production of Stagonospora convolvuli strain
LA39 on five different solid substrates 15 days after inoculation

Substrate Spores (x 108)
per g substrate

Couscous 4.7 a
Maize semolina 2.8b
Hard wheat semolina 1.1c
Soya beans 0.7¢
Wheat bran 03¢

Values marked with the same letter are not significantly different
(p < 0.05) (Pfirter et al. 1999b)

This was also observed in the deposits on the leaf (Greaves et al., 2000). Klein
et al. (1995) reported that, compared to aqueous formulations, canola and
soybean oil (0.5, 1, 5, and 10%) emulsions improved control of Bathurst burr
(Xanthium spinosum L.) by Colletotrichum orbiculare (Berk. and Mont.) Arx
in the field in 1991-1992, but not in 1992-1993. Oil-in-water formulations
are relative inexpensive, easy to prepare and can be applied with standard
equipment. This formulation was used in all our mycoherbicide experiments
reported here.

Effective production of S. convolvuli LA39 on couscous (cracked hard
wheat, Triticum durum Desf.) highly improved its potential to become a
cost-effective bioherbicide (Pfirer et al., 1999b). Couscous was selected
after comparison of 17 solid substrates (e.g. maize semolina, hard wheat
semolina, wheat bran, soya beans, spaghetti, lentils, pieces of carrots, bean
seeds) because it is relatively inexpensive and easy to purchase and handle.
Compared with V8-juice agar, which is the standard substrate for the cultiva-
tion of Stagonospora spp., couscous enabled to produce 80 times more spore
material per weight unit of substrate (i.e. up to 4 x 10® spores/g substrate;
Table 4) (Pfirter et al., 1999b). Various solid substrates have been evaluated
for spore production by Phomopsis convolvulus, a potential mycoherbicide
for field bindweed (Morin et al., 1990b). Pot barley grains produced a similar
yield of virulent conidia (5 x 10® conidia/g substrate) as we found with S.
convolvuli strain LA39 on couscous.

A potential bioherbicide should have an appropriate shelf-life in order
to pass through the market network and allow storage before application.
Conidia dried on kaolin and stored at 3 °C stayed viable for 180 days, though
germination declined to 70% and 50% after 140 and 175 days, respectively.
The dried conidia were easily rehydrated and formulated in oil emulsion.
No loss in pathogenicity was observed (Pfirter et al., 1999b). This strategy
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seems, therefore, acceptable for commercial use. Nevertheless, further studies
should be carried out to develop granule-based formulations, which afford
physical protection, provide nutrients for the incorporated conidia and can be
directly added to the soil. This approach has been developed with so-called
‘Pesta’ granules (Connick et al., 1991), containing fillers such as wheat flour
and kaolin, which may confer advantages to S. convolvuli 1LA39 conidia.
So far, solid carriers have mostly been used with mycoherbicides applied
to soil (e.g. Fusarium oxysporum, Phomopsis convolvulus, Connick et al.,
1998; Vogelgsand et al., 1998). The pathogen may either sporulate on the
substrate or directly infect the host by mycelial growth, as described for Scler-
otinia sclerotiorum (Lib.) deBary against Canada thistle (Cirsium arvense
[L.] Scop.) (Brosten and Sands, 1986).

Field release and monitoring

The development of a bioherbicide must consider its application in the range
of field conditions it would meet in commercial use. S. convolvuli LA39 was
applied in the field using standard spraying technique (i.e. flat fan nozzles
operating at 2 bars; 300-600 1 per ha; 3 x 10'! to 10'3 spores per ha) (Guntli
et al., 1998, 1999a; Pfirter et al., 1997).

In 1995, S. convolvuli LA39 was applied in a field trial with maize (Pfirter
et al., 1997). Ground cover with bindweed in the Stagonospora-treated plots
did not increase and remained at 14.6%; the necrotic leaf area reached 78%
(45.4% of leaves dead). In the control plots (treated with the fungicide
benomyl), ground cover increased by 115%, and necrotic leaf area was 13.8%
(6% of leaves dead) (Pfirter et al., 1997). Field trials with S. convolvuli LA39
in maize were continued in 1996 and 1997 using ground cover with red
clover (Trifolium pratense L.) to compete with hedge bindweed (Guntli et
al., 1999a). In both field trials, the fungus caused severe epidemics. Disease
severity increased throughout the observation periods. Humid, cool weather
increased disease severity. In 1997, up to 79% of the leaf surface was necrotic
at 10 weeks after the application, but only 34% in 1996. Thus, ground cover
by bindweed was reduced by 83% in 1997 and 70% in 1996 (Table 5). Under-
sowing with red clover had no positive effect on bindweed control (Guntli
et al., 1999a). Living green cover used in maize crops (the so-called ‘maize
meadow’; Burgos and Talbert, 1996; Garibay, 1996; Garibay et al., 1997; Hall
and Hartwig, 1990) can suppress many weeds but not bindweeds (Garibay
et al., 1997). Using S. convolvuli 1LA39 to control the escaping bindweed
would fit well in an integrated pest management system. Application of a
bioherbicide to a broad weed spectrum, where bindweed would be replaced
by another weed, seems unwise. A mixture of various mycoherbicides is a
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Table 5. Effect of the mycoherbicide S. convolvuli strain LA39 on ground
coverage of hedge bindweed in a maize field in 1996 and 1997 (Guntli et al.,

1999a)
Ground coverage with hedge bindweed (%)
Weeks after application
Year LA392 0 2 4 6 8 10
1996 — 26 70 95 93 90 71
+ 26 49 64* 55%* 34* 21*
1997 — 19 67 68 64 63 58
+ 19 36* 21%* 19* 12* 10*

4 LA39 was applied at 3 x 1012 spores per ha.
* Statistically different from the untreated control according to Bonferroni’s
protected test (p < 0.05).

possible answer to this problem but they should all be formulated and applied
in the same way to become a real alternative to broad-spectrum chemical
herbicides. Careful integration of bioherbicides into any pest management
system is essential for successful product promotion (Miiller-Schérer and
Scheepens, 1997). LA39 offers potential for such integration.

The potential of S. convolvuli 1L.A39 as a bioherbicide was also demon-
strated in an amenity area (a cemetery), where cotoneaster (Cotoneaster
dammeri CK. Schneider) was heavily infested by field bindweed (Guntli et
al., 1998). Within 20 days after application of 3 x 10'? spores per ha, 60%
of the bindweed leaf area was necrotic, this increasing to over 80% after 40
days. Cover of the cotoneaster plants by bindweed decreased from 40% to
17% 1in the plots treated with S. convolvuli LA39.

Effects of Staganospora convolvuli LA39 on bindweed growth

The effects of S. convolvuli 1LA39 on hedge bindweed were studied in
pots placed outside to mimic field conditions (Guntli, 1998). Pots were
used to allow observation of the entire root systems of the plants and
to eliminate possible interference by other plants (Klime$ and KlimeSova,
1994). However, this approach does restrict the development of the under-
ground plant parts. Hedge bindweeds were grown from seeds or rhizomes
to represent both modes of propagation. In agricultural fields, transmittable
seeds usually cause new infestations while rhizomes are responsible for bind-
weed multiplication in an already infested field. This experiment included
two levels of nutrient (i.e. high level: 262.5 mg/l N, 225 mg/1 P,05, 300 mg/1
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Figure 1. Effect of mycoherbicide LA39 on contents in starch and water-soluble carbo-
hydrates (WSC) in rhizomes of hedge bindweed in August and November. Factors studied
included nutrition level (L: low; H: high; see text), bindweed propagation method (S: from
seeds; R: from rhizomes) and mycoherbicide (0: not applied; 1: applied at 107 spores per ml
sprayed until run off). Error bars indicate standard error (Guntli, 1998).

K,0, pH 6.0; low level: one third of the high level) representative of levels
likely to be met in the field, as fertiliser levels are known to affect the growth
of hedge bindweed (Klime§ and KlimeSovéd, 1994).

Application of S. convolvuli LA39 resulted in infected hedge bindweeds
with fewer leaves, taller climbing stems with greater number of nodes
and flowers and rhizomes containing less carbohydrate reserves (Figure 1).
However, total plant biomass was not affected. Necrosis of leaves and defoli-
ation caused by the fungus probably reduce the photosynthesis rate, which is
known to increase leaf production in bindweeds (Bakke and Gaessler, 1945).
However, we observed a reduction in the number of leaves. This suggests that
the effect of the fungus on the bindweed was important, particularly when
considering the reduction in rhizome carbohydrate reserves, and could not
be completely compensated for. Possibly, the new leaf surface was produced
at the cost of rhizome carbohydrate reserves. The amounts of these largely
influences winter survival and subsequent emergence of the weeds (Frazier,
1943; van Ast and van Groenendael, 1993). Therefore, S. convolvuli 1LA39
might have the potential to control bindweeds in the long term by depleting
the carbohydrate reserves stored in the rhizomes (Figure 1).
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The interaction of bindweeds with microorganisms able to degrade
bindweed alkaloids

Calystegines (tropane alkaloids) are produced by hedge and field bindweeds
and a few other plants species (Tepfer et al., 1988b; Fellows et al., 1992;
Driger, 1995). In bindweeds, they are present in high quantities in roots and
rhizomes (Tepfer et al., 1988b). Calystegines can be poisonous to arthropods
(Nash et al., 1993) and mammals (Todd et al., 1995), presumably as a result
of glycosidase inhibition (Asano et al., 1996; Molyneux et al., 1993). They
may also be allelopathic to plants (Goldmann et al., 1996).

Calystegine-degrading microorganisms are present in the rhizosphere of
many plant species (Tepfer et al., 1988a; Goldmann et al., 1996; Guntli
et al,, 1999b). Although they can be found also in the rhizosphere of
calystegine-negative plants, their prevalence is higher in the rhizosphere of
calystegine-positive plants, such as hedge bindweed (Guntli et al., 1999b).
Moreover, calystegine-degrading rhizobacteria are selectively favoured for
the colonisation of bindweed rhizosphere, as shown with Sinorhizobium
meliloti (Dangeard) De Lajudie strain Rm41, which harbours the genes for
calystegine catabolism (cac genes) on the non-symbiotic plasmid pRme41
(Guntli et al., 1999c; Tepfer et al., 1988a). Similarly, plants producing opines
have been shown specifically to favour rhizosphere microorganisms capable
of using these compounds as carbon sources (Guyon et al., 1993; Hartwig et
al., 1990; Oger et al., 1997; Savka and Farrand, 1997).

Bindweed development and health were not affected by the presence
of calystegine-degrading rhizobacteria in the rhizosphere, even when the
bacteria were provided experimentally (gnotobiotic conditions) with the
opportunity to grow and colonise the roots of bindweed at unusually-high
population levels (in excess of 107 CFU/ g root) (Guntli et al., 1999c¢). Further-
more, inoculation of calystegine-degrader strain Rm41 had no effect on the
biocontrol efficacy of the mycoherbicide LA39 (Guntli, 1998). However,
because of its specific advantage for rhizosphere colonisation, the ability
to use calystegines as nutrient source could be a useful trait to search
for in rhizobacteria that are deleterious to bindweed. This would ensure
that screening programmes designed to find novel biocontrol agents against
bindweeds do not yield strains restricted by poor root-colonising ability.
Alternatively, the genes for calystegine degradation could be inserted in
bacteria deleterious to bindweeds. Attempts to mobilise the catabolic plasmid
pRme41la into other bacterial species have failed so far, but other genetic
strategies could be considered since the cac genes have been cloned (Boivin
et al., 1990).

Calystegines are not only produced in underground structures of bind-
weeds but also in stems and leaves (Hoeke and Driéger, unpublished). There-
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fore, interactions between bindweeds and microorganisms in the phyllosphere
might be similar to those in the rhizosphere. Whether microorganisms present
in the phyllosphere of bindweeds and/or fungal biocontrol agents of bind-
weeds (Table 1) display calystegine degradation ability is unknown (Heiny,
1994; Morin et al., 1990a; Ormeno-Nunez et al., 1998; Vogelgsang et al.,
1998, 1999), even in the case of the mycoherbicide LA39. From the viewpoint
of biocontrol however, this trait is probably of less interest in the phyllosphere
where an effective microbial biocontrol agent (LA39) is already available.

Insects associated with field bindweed

An extensive survey of the entomofauna associated with field bindweed
in Slovakia was done in 1997-1998 (Téth, 2000; Téth et al., 1998). Of
108 insect species belonging to 5 orders and 17 families (e.g., Coleoptera,
Lepidoptera, Diptera), the fly Melanagromyza albocilia Hendel (Diptera:
Agromyzidae), two flea beetles Longitarsus pellucidus Foudras and L. longi-
pennis Kutschera (Coleoptera: Chrysomelidae) and one tortoise beetle, Hypo-
cassida subferuginea Schrank (Coleoptera: Chrysomelidae) were selected as
possible biocontrol agents. Aceria malherbae and Typha lactuosa used by
others to control bindweeds (Table 1) (Boldt and Sobhian, 1993; Craemer,
1995; Julien and Griffiths, 1998; McClay et al., 1999; Rosenthal and Platts,
1990) were also found in the study.

M. albocilia, a native European stemborer of C. arvensis, was considered
by Rosenthal and Buckingham (1982) and Téth et al. (1998) as promising
candidate for biological control of bindweed. Larvae are boring a tunnel in
bindweed stem and crown of roots, causing death of infested shoots (Spencer,
1973). Also, the fly can promote secondary damage due to infection by patho-
genic microorganisms. During 1998-2000, thirty C. arvensis plants were
checked every week, starting at mid May at the locality Tehla (48°12' N
18°23" E; 175 m) in Slovakia. For each selected plant, number of healthy,
dried and infested sprouts were recorded. The total amount of infested and
dried bindweed shoots ranged from 38% in August to 50% in October. At the
end of the autumn, 100% of the plants were infested. Infestation effects were
more evident on plants growing in wild areas and dry fields than in irrigated
fields and other moist areas (T6th, 2000).

Conclusions and outlook

The fungus Stagonospora convolvuli effectively controlled bindweeds in
both amenity and crop situations. It is best fitted for use in an integrated
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pest management system where a green cover controls most of the weeds
except the bindweeds. Its commercial potential needs to be enhanced through
improved mass production, formulation and storage techniques. Recent
discoveries of secondary metabolites of the fungus (potential phytotoxins)
and the weed (calystegines) might be of key importance. DNA marker
analyses indicate that the fungus reproduces sexually, which might be useful
to further improve the strain. Also, the insect M. albocilia might improve the
ability of the fungus to penetrate the stems of bindweed.

A study of the genetic variation among isolates of Stagonospora sp.
collected in different European countries suggested that identification and
tracking of the strain applied as a mycoherbicide is possible. The data
obtained, along with further research on disease development under different
environmental conditions, would allow epidemics of strain LA39 to be
modelled to optimise timing of application for effective disease development
and control of bindweeds. The development of DNA markers for the host
plants, analogous to those described for the pathogens, will allow studies
on the impact of the pathogens on bindweed population structure. The use
of molecular methods will help with clarification of pathogen taxonomy,
tracking of released bioherbicide and assessment of its impact on host
population structure, thereby facilitating standardisation of protocols for the
development and the release of biological control agents.

So far, S. convolvuli LA39 has been studied only where fungicides
were not used. Application to other agricultural areas (e.g. vineyards) will
necessitate compatibility with commonly used fungicides.
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